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Local polariton states in impure ionic crystals

V. S. Podolsky, Lev I. Deych, and A. A. Lisyansky
Department of Physics, Queens College, CUNY, Flushing, New York 11367

~Received 28 July 1997!

We consider the dynamics of an ionic crystal with a single impurity in the vicinity of the polariton reso-
nance. We show that if the polariton spectrum of the host crystal allows for a gap between polariton branches,
the defect gives rise to local states with frequencies within the gap. Despite the atomic size of the impurity we
find that the in-gap local states are predominated by long-wavelength polaritons. The properties of these states
are shown to be different from the properties of the well-known vibrational local states. The difference is due
to the singular behavior of the density of states of polaritons near the low-frequency boundary of the polariton
gap. Assuming cubic symmetry of the defect site we consider a complete set of the local states arising near the
bottom of the polariton gap.@S0163-1829~98!05909-8#
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I. INTRODUCTION

The existence of local excitations caused by crystal
fects is a well-known phenomenon in solid-state physics1,2

A single pointlike defect can give rise to new states localiz
in the vicinity of a defect with frequencies outside the ban
of extended states of a host crystal. These states and
interaction with electromagnetic waves~IR absorption, Ra-
man scattering! have been extensively studied since the ea
1940’s following the pioneering works of Lifshitz.3–5 In all
these studies the electromagnetic field was considered a
external field, which excites the vibrational states. The fe
back effect of the vibrations upon the electromagnetic fi
was neglected. However, in ionic crystals in the region
frequencies close to the crossing point of phonon and pho
dispersion curves one has to take this effect into acco
because the coupling between electromagnetic waves an
brations becomes so strong that a different kind
excitation—polaritons—emerges. In this situation the ana
ses of local vibrations and their interaction with electroma
netic field has to be done more carefully with taking t
polariton effects into account. Such a consideration was
ried out in Ref. 7 where a new kind of local excitation w
discovered. It was shown in Ref. 7 that if the polariton sp
trum of a crystal exhibits a gap between polariton branch
where the density of states of a host material is equal to z
a defect embedded in the crystal gives rise to local st
with frequencies within the gap. These states are a mix of
electromagnetic field and excitations of a host material. Th
properties appeared to be quite different from those
known local phonon states. Unlike pure phonon systems
the case of isotropic materials there is no minimum criti
value of the ‘‘strength’’ of the impurity for local polariton
states to appear. This feature was shown to be caused
negative dispersion of optical phonons resulting in a n
monotonic dispersion of polaritons.

A general analysis made in Ref. 7 refers to arbitrary ‘‘p
larization waves.’’ It is applicable to a variety of excitation
such as phonon-polaritons, exciton-polaritons, etc. Conc
ing a particular case of phonon polaritons the model o
dipole interaction between scalar electromagnetic and po
ization waves, used in Ref. 7, needs to be extended to
570163-1829/98/57~9!/5168~9!/$15.00
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count for a vector nature of the excitations. Moreover,
analysis of nonisotope impurities, affecting the elastic bon
around a defect, is not consistent within the scalar mode

In the present paper we take into account the vector na
of electromagnetic waves interacting with vibrations in cry
tals with cubic symmetry. We assumed that an impurity at
in addition to having a different mass can locally chan
elastic constants. The anisotropy of the crystal is assume
be weak and is neglected in the long-wavelength limit. W
obtained two series of local states which differ in parity.
agreement with the results of Ref. 7, all these states ap
first at the bottom of the polariton gap for infinitesimal
small variations of impurity parameters. This is shown to
caused by a singularity of the density of states in the low
polariton band. This singularity also provides that the loc
ization of transverse polaritons is most effective near
lower boundary of the gap. We show that the local polarit
states, unlike usual transverse extended states are affect
the interaction with the longitudinal phonon modes. This
teraction narrows the frequency range available for the lo
polariton states.

II. POLARITONS IN A PURE CRYSTAL:
ISOTROPIC APPROXIMATION

We consider below a body-centered-cubic~bcc! dielectric
crystal with two oppositely charged ions per each elemen
cell. The interaction between ions is assumed to be a cen
one. Denoting masses of the positive and negative ion
m1 andm2 , respectively, and their displacements asU6(r ),
wherer belongs to the positive or negative sublattice, we c
write down the equations of stationary lattice vibratio
coupled to a coherent electric field,E(r ):

m6v2U6~r !6qE~r !52(
s F(Rs

f~rR s!1(
Rs8

f8~rR s8!G ,

~1!

whereq denotes an ion charge andv is the frequency.
The right-hand side of Eq.~1! presents all elastic force

acting on the ion hosted at the siter . VectorsRs and Rs8
denote radius vectors of neighboring ions in thes-shell
5168 © 1998 The American Physical Society
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57 5169LOCAL POLARITON STATES IN IMPURE IONIC CRYSTALS
spheres of the original and alternative sublattice, resp
tively. In the case of a central interaction the elastic forc
within one sublattice have the form:

f~rR s!52
b~Rs!

Rs
2

Rs$Rs•@U6~r !2U6~r1Rs!#% ~2!

and forces between ions from different sublattices are

f8~rR s8!52
b8~Rs8!

Rs8
2

Rs8$Rs8•@U6~r !2U7~r1Rs8!#%,

~28!

where the elastic constants of intra- and intersublattice in
action,b(R) andb8(R8), depend on a distance between io
only.

A coherent electric field induced by the ionic vibratio
E(r ) invokes an additional pair of equations:

¹•E~r !524pq(
l

@U1~ l !•¹d~r2 l!

2U2~ l 1b!•¹d~r2 l2b!#, ~3!

¹3@¹3E~r !#1
v2

c2
E~r !52

4pqv2

c2 (
l

@U1~ l !d~r2 l!

2U2~ l 1b!d~r2 l2b!#, ~4!

where vectorsl denote lattice vectors,b is the basis vector
andc is the speed of light.

The lattice normal modes arise as simultaneous solut
of Eqs. ~1!, ~3!, ~4!. Fourier transformation of this system
gives the dynamic equations in the momentum represe
tion:

S D̂~k!1F̂~k!2v2m1 D̂8~k!2F̂~k!

D̂8~k!2F̂~k! D̂~k!1F̂~k!2v2m2

D S A1~k!

A2~k!
D

50. ~5!

HereA6(k) denotes the Fourier amplitudes of the displa
ments,D̂(k) is the dynamical matrix of the intrasublattic
interaction

D̂~k!5(
s

b~Rs!

Rs
2 (

Rs

Rs^ Rs~12eik–Rs!

1
b8~Rs8!

Rs8
2 (

Rs8
Rs8^ Rs8 , ~6!

and D̂8(k) is the dynamical matrix of the intersublattice in
teraction

D̂8~k!52(
s

b8~Rs8!

Rs8
2 (

Rs8
Rs8

8 ^ Rs8e
ik•Rs8, ~68!

whereR^R denotes the direct products of two vectors.
c-
s

r-

ns

a-

-

The Fourier amplitudes of the field induced by the latti
vibrations can be expressed asE52F̂(A12A2)/q,with op-
eratorF̂ defined as follows:

F̂~k,v!5
4pq2

a3
•

v2Î2c2k ^ k

v22c2k2

5
4pq2

a3 S P̂i1
v2

v22c2k2
P̂'D , ~7!

where Î is the unit tensor,Pi
ab5kakb /k2 and P'

ab5dab

2kakb /k2 are the longitudinal and transverse projectors,
spectively.

The dynamical matrices given by Eqs.~6!, ~68! are of a
general type and solutions of Eq.~5!, in general, do not split
into longitudinal and transverse modes. However, consid
ing long-wave excitations in weakly anisotropic crystals, w
can make use of the isotropic approximation for the dyna
cal matrices:

D̂~k!5g i~k!P̂i1g'~k!P̂' , ~8!

D̂8~k!5g i8~k!P̂i1g'8 ~k!P̂' , ~88!

where scalar functions,gs(k) andgs8 (k), can be expressed
in terms of frequencies of longitudinal and transver
phonons. In a crystal of cubic symmetry the dynamical m
trices become trivial at the center of the Brillouin zone:

D̂~0!52D̂8~0!5(
s

b8~Rs8!

Rs8
2 (

Rs8
Rs8^ Rs8

5
1

3
Î (

s
b8~Rs8!Zs8, ~9!

whereZs8 denotes a total number of ions in thes shell and we

make use of the identity,(R
s8
Rs8^Rs85 ÎZs8Rs8

2/3, valid in

crystals with cubic symmetry. Equation~9! sets a condition
for parameters in Eqs.~8!, so that allgs(0) and2gs8 (0) are
equal to a positive constantg51/3(sb8(Rs8)Zs8 .

In the isotopic approximation all normal modes of a cry
tal become either longitudinal or transverse,A6

(s)(k)
5es(k)A6

(s)(k), wherees(k) are longitudinal or transvers
unit polarization vectors,s is a polarization index. Equation
~5!, ~8! give the following relation between the Fourier am
plitudes of displacements in different sublattices:

A1
~s!5

f s2gs8

gs1 f s2v2m1

A2
~s! . ~10!

For longitudinal modesf i54pq2/a35 f . The corresponding
dispersion equation,

S g i1 f i

m1
2v2D S g i1 f i

m2
2v2D2

~g i82 f i!
2

m1m2

5~v22v1i
2 !~v22v2i

2 !50, ~11!
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defines acousticv i
2(k) and opticalV i

2(k) branches of longi-
tudinal phonons. For transverse modesf'5 f v2/(v2

2c2k2), therefore, the dispersion equation,

S g'1 f'

m1
2v2D S g'1 f'

m2
2v2D2

~g'8 2 f'!2

m1m2

5
~v22v'

2 !~v22V1
2 !~v22V2

2 !

v22c2k2
50, ~12!

gives one acousticv'
2 (k) and two polariton V6

2 (k)
branches.

Neglecting the field effects and solving Eqs.~11!, ~12! in
the long-wavelength limit one can obtain expressions
gs(k) andgs8 (k) in terms of conventional parameters:

gs~k!'g1mk2~vs
22vs8

2!, ~13!

gs8 ~k!'2g1mk2Fvs8
21vs

2 S M

2m
21D G , ~138!

wherem andM are reduced and total masses of ions with
the elementary cell, respectively,vs andvs8 are the velocities
of acoustic and optical phonons with a given polarization

Equations~11!, ~12! show that the internal field affect
dispersion relations of all lattice excitations. However, t
physical effects of the photon-phonon interaction are s
stantial in the vicinity of the polariton resonance which tak
place in the long-wavelength region. It is straightforward
show that the acoustic branches,

vs
2~k!'2

gs1gs8

M
'vs

2k2, ~14!

are unaffected by the field, whereas, the interaction with
field results in the uniform up-shift of the longitudina
optical branch,

v25V i
2~k!1d2, ~15!

FIG. 1. Elementary cell of a body-centered-cubic lattice. Hera
is a lattice parameter, indexess,s8 numerate ions within the near
neighbor shell,6ns are radius vectors of the ions.
r

-
s

e

and leads to the well-known polariton dispersion relation
optical-transverse excitations,6,8

@v22V'
2 ~k!#@v22c2k2#5d2v2. ~16!

Equation~16! describes two polariton branchesV6(k) with
corresponding dispersion laws:

V6
2 ~k!51/4$A@V'~k!1ck#21d26A@V'~k!2ck#21d2%2,

~17!

where V' and V i are frequencies of the transverse- a
longitudinal-optical phonons, respectively,

Vs
2~k!'

gs

m
22

gs1gs8

M
'v0

22vs8
2k2, ~18!

a phonon-photon coupling parameter, d25 f /m
54pq2/ma3, is the ionic ‘‘plasma frequency’’ andv0

2

5g/m is the optical activation frequency.
Analysis of Eqs.~14!, ~15!, ~17! shows that the lower

polariton branchV2
2 (k) has a zero activation frequency an

extends over both acoustic bands, whereas, the longitud
optical branch,V i

2(k)1d2, overlaps with the top part of the
polariton gap. Therefore, a truly forbidden gap, with n
modes of any kind inside, may exist only between the low
boundary of the polariton gap and the bottom of the longi
dinal band~Fig. 1!. When the dispersion of optical phonon

FIG. 2. Phonon-polariton dispersion curves in the isotropic
proximation. Here linesv5V6(k) present the lower and uppe
polariton branches,V'(k) and v1i(k) are transverse- and
longitudinal-optical phonon branches,v'(k) and v2i(k) are the
transverse- and longitudinal-acoustic phonon branches, res
tively. The horizontal linesv0 and v3 are the upper and lowe
boundaries of the transverse-optical phonon band,Av0

21d2 andv2

are the upper and lower boundaries of the longitudinal-optical p
non band, respectively. The polariton gap is bounded by linesv1

andv2 . The wave numberk0 corresponds to the maximum of th
lower polariton branch. The figure presents qualitative features
phonon-polariton spectra in the long-wavelength region and d
not reflect an actual scale of wave velocities.
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57 5171LOCAL POLARITON STATES IN IMPURE IONIC CRYSTALS
is neglected, both polariton branches are monotonic and
spectral gap is between the transverse and longitudinal
quencies,v0

2 andv0
21d2.

It turns out that accounting for the phonon dispers
causes aqualitative change of this picture. First, the upp
boundary of the frequency gapv2

2 is now set by the bottom
of the optical-longitudinal band. Second, the lower polarit
branch in the case of a negative dispersion becomes
monotonic and gains a maximum at somek5k0 , close to the
center of the Brillouin zone~Fig. 1!. Calculations in the
long-wavelength approximation givek0

2'2v0d/v'8 c and a
new lower boundary of the gap,v1

25V2
2 (k0)'v0

2

22v'8 v0d/c. Since 2v'8 v0d/c'v'8
2k0

2!v0
2 , the result is

consistent with the approximation. However, becausec2k0
2

'2cv0d/v'8 @v0
2 , the maximum ofV2

2 (k) is far away from
the very narrow~due toc@v'8 ) polariton resonance region
SinceV2

2 (k) reaches its maximum at the surface of a fin
area inside the Brillouin zone, the density of polariton sta
diverges at the gap’s lower boundary. As we show later
causes an absence of a lower threshold for local polar
states.

III. POLARITON LOCAL STATES

When a host ion at the siter50 of the positive sublattice
is replaced by an impurity ion with the same charge,
causes a local deviation of the crystal density and a lo
change of elastic constants. To account for these facts
need to add extra forces to the right-hand side of Eq.~1!. For
positive and negative sublattices, respectively, these fo
are

df1~r !5H v2dmU1~0!2
db

n2 (n
n@n•U1~0!

2n•U2~n!#J d r 0 ~19!

and

df2~r !52
db

n2 (n
n@n•U1~0!2n•U2~n!#d r n , ~198!

wheredm is the difference between the masses of an im
rity and a host ion,db is a shift in the elastic constant in th
impurity’s near-neighbor shell, and vectorsn denote radius
vectors of the impurity’s nearest neighbors.

The dynamic equation~5! is now modified:

S D̂~k!1F̂~k!2v2m1 D̂~k!2F̂~k!

D̂~k!2F̂~k! D̂~k!1F̂~k!2v2m2

D S A1~k!

A2~k!
D

5
1

NS B1

B2
D , ~20!

whereN is the number of ions in one sublattice and

B15v2dmU12
db

n2 (n
n@n•U12Un#, ~21!
he
e-

n
n-

s
it
n

t
al
e

es

-

B25
db

n2 (n
n@n•U12Un#e2 ik•n. ~218!

Here U15U1(0) and all U2(n) appear only in combina-
tions Un5n•U2(n), because ion-ion forces are central.

Let us denote the matrix in the left-hand side of Eq.~20!
as L . It acts on Cartesian (a) and sublattice («) indices of
the amplitudesA«

a . In the isotropic approximation this ma

trix can be decomposed,L5L i ^ P̂i1L' ^ P̂' , where 232
matricesLs , operating on sublattice indexes only, are d
fined as follows:

Ls5S l s
1 l s8

l s8 l s
2D 5S gs1 f s2v2m1 gs82 f s

gs82 f s gs1 f s2v2m2
D .

~22!

The inverse matrix,L215L i
21

^ P̂i1L'
21

^ P̂'5G5Gi ^ P̂i

1G' ^ P̂' , where

Gs5S gs
1 gs8

gs8 gs
2D 5

1

m1m2
F S gs1 f s

m1
2v2D S gs1 f s

m2
2v2D

2
~gs82 f s!2

m1m2
G21S l s

2 2 l s8

2 l s8 l s
1 D , ~23!

is the Green’s function of the system in the momentum r
resentation. In accordance with a general property of Gree
functions, poles of its matrix elements,gs(v,k), coincide
with eigenfrequencies of a pure crystal,

gi~v!}~v22v i
2!21~v22V i

22d2!21,

g'~v!}~v22v'
2 !21~v22V1

2 !21~v22V2
2 !21,

as it follows from Eqs.~11!, ~12!.
Solving Eq.~20! with the help of Eqs.~22!, ~23!, one can

obtain Fourier amplitudes of the ion displacements,A1(k)
andA2(k), and the displacements themselves:

U1~r !5(
s

E
~k!

eik•r es~k! ^ es~k!~gs
1B11gs8B2 ,!,

~24!

U2~r !5(
s

E
~k!

eik•r es~k! ^ es~k!~gs8B11gs
2B2 ,!,

~248!

where the symbol* (k) denotes (1/N)(k'(a/2p)3*dk, with
wave vectors taken from the first Brillouin zone only.

Substitution ofB1 andB2 , given by Eqs.~21,21’!, into
Eqs.~24! allows one to express all displacements in terms
U1 and Un only, and then obtain a closed system of equ
tions for these variables. In the case of anisotope impurity,
considered earlier in the scalar model of Ref. 7, we
db50 and this system ofspectral equationsreads

U15v2dm(
s

E
~k!

gs
1 es~k! ^ es~k!U1 . ~25!

In a cubic crystal, vectorU1 can be arbitrary~Appendix A!,
whereas frequencies of excitations are defined by the e
tion:
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15
v2dm

3 E
~k!

~gi
112g'

1!5dmv2I ~v2!, ~26!

which generalizes Eq.~10! obtained in Ref. 7.
All solutions of these equations can be divided into tw

classes: extended and local states. Since an impurity des
the translational symmetry of the crystal, any state is no
superposition of all normal modes available in the first B
louin zone. For extended states, corresponding to scatte
states with well-defined wave vectors, frequencies fall i
the bands of a pure crystal. Local states, dependent upon
value of the parameterdm in Eq. ~26!, may arise outside o
the bands. From the structure ofgs(v,k) it might seem that
when a frequency is close to a particular band, the mo
from it dominate in the corresponding state. However,
cause contributions of the near and distant bands could
weakened or strengthened by the low or high density
states in them, direct calculations are required here.

As we already mentioned, the functionV2
2 (k) reaches its

maximum valuev1
2 at k5k0 , close to the center of the Bril

louin zone. Its expansion aroundk0 does not contain a linea
term:

V2
2 ~k!5v1

22n2a2~k2k0!21O@a3~k2k0!3#. ~27!

It immediately shows that the integral in the left-hand side
Eq. ~26! diverges atv5v1 due to a contribution from the
lower polaritons branch. Therefore, consideringv in the fre-
quency gap close to its lower boundary we can omitgi

1 from
Eq. ~26! and rewrite * (k)g'

1 using the density of states
r2(«), in the lower polaritons band:

I 1~v2!5E
~k!

2g'
1

3

5S a

2p D 3E 2~v22c2k2!~g'1 f'2v2m2!dk

3m1m2@v22v'
2 #@v22V1

2 #@v22V2
2 #

5
2

3EC

F~k!r2~«!d«

v22«
, ~28!

where F(k) denotes all factors ofg'
1 , other than (v2

2V2
2 )21 and the last integration is performed on a comp

« plane~Appendix B!.
Near the bottom of the polariton band, for small«, the

density of states have the usual Kohn shape,r2(«)}A«.
The asymptote ofr2(«) near the top of the band, for sma
z5v1

22«, can be found with the help of Eq.~27!:

r2~«!5S a

2p D 3E ds

u¹V2
2 ~k!u

'S a

2p D 2 ~k01z1/2/an!21~k02z1/2/an!2

nz1/2

5
~ak0!2

2p2nz1/2
, ~29!

where all omitted terms are regular atz50.
ys
a

ng
o
the

es
-
be
f

f

x

Since forv→v110 the divergent part ofI 1(v2) is pro-
vided by a region of smallz, in Eq. ~28! we can replace the
exact density of states with the found asymptote. Consid
ing v22v1

2!v1
2 it allows us to calculate the leading part o

I 1(v2) and transform the spectral equation~26! into the
form ~Appendix B!:

m1

dm
'2

2~ak0!2v0
2

3pnAv22v1
2

m2

M
. ~30!

Using estimates made in Sec. II and recalling thatan5v'8 ,
we obtain

dm

m
52

3pcv'8
2Av22v1

2

a3v0
3d

. ~31!

This result recovers Eq.~14! of Ref. 7 obtained in the scala
model and supports the conclusion of the absence of
lower localization threshold for light isotope impurities.

In a general case ofnonisotopeimpurity the spectral sys-
tem is of the 11th rank with 11 variables,U15U1(0), Un
5n•U2(n). The system can be further simplified with th
help of the crystal symmetry. The exact point group of
cubic crystal includes the space inversion. Therefore, all
citations can be classified by their spatial parity.

For theodd states, whereU6(2r )52U6(r ) , one can
see that bothU1 andB1 are equal to zero and the rank of th
spectral system reduces from 11 to 4. Considering the
placements of four negative ions at corners of one face of
bcc-lattice elementary cell~see Fig. 2! as independent vari
ables, from Eqs.~24! we obtain the following system:

(
s851

4

Mss8Us852
n2

2db
Us , ~32!

where indexs numerates the chosen ions, their radius vect
are denoted asns and Us5Uns

5ns•U2(ns). The matrix

Mss8 here is given by the equation

Mss85M ~ns,ns8!5(
s

E
~k!

gs
2~es•ns!

3~es•ns8!sin~k•ns!sin~k•ns8!. ~33!

Using transformation properties of the integrand one c
show that the matrixMss8 remains invariant,M (Q̂n,Q̂n8)
5M (n,n8), under any point transformationQ̂. Therefore,
the elements of the symmetric matrixMss8 are equal for
equivalent pairs of ions:M115M225M335M44, then M12
5M235M34 and M135M24. After finding eigenvalues of
this matrix we obtain three spectral equations:

2
n2

2db
5m05M112M13, ~34!

2
n2

2db
5m65M111M1162M12. ~348!

The structure of the eigenvectors shows that the states
responding tom1 andm2 represent ‘‘rhombic’’ and ‘‘tetrag-
onal’’ oscillations localized around the stationary impurit
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57 5173LOCAL POLARITON STATES IN IMPURE IONIC CRYSTALS
whereas, the states corresponding tom0 involve both types of
deformations of the elementary cell~Appendix C!.

Near the lower boundary of the gap the arguments use
evaluation of Eq.~26! are also applicable. Retaining the lea
ing terms in Eq.~33! and using symmetry properties of th
arising expressions~Appendix C!, we obtain the following
expressions:

m0'
1

5
@n42~n1•n3!2#E

~k!
k2g'

2 , ~35!

m6'
1

5H ~n1•n3!21
n4

3
62F ~n1•n2!22

n4

3 G J E
~k!

k2g'
2 .

~35’!

From the geometry of the elementary cell it follows th
(n1•n2)52(n1•n3)5n2/35a2/4 and, therefore,m05m2

5(a4/10)* (k)k
2g'

2 . It leads to the unique spectral equatio
for all ‘‘tetragonal’’ modes~Appendix B!:

db

g
'

15pnAv22v1
2

4~ak0!4v0
2 S M

m1
D 2

. ~36!

This result shows that the odd local states arise upon
infinitesimally small strengthening of local bonds associa
with the impurity,db>10. This effect, similar to the iso
tope impurity case, is due to a singularity of the density
states in the lower polariton band. Equation~36!, compared
to Eq.~30!, has an additional small factor, (ak0)2. Therefore,
for the same relative deviations,db/b and dm/m, the odd
states lie much closer to the gap’s boundary than the st
associated with an isotope impurity. Moreover, these st
are much less sensitive to variations of parameters than
isotope-induced local states. This fact reveals itself in
extreme form for ‘‘rhombic’’ modes corresponding tom1 .
Equation ~358! gives m150 which means that within the
approximations used these states appear right at the g
bottom for any value ofdb. Accounting for the higher-orde
terms in expansions of the sin functions in Eq.~31! will
separate these modes from the gap’s boundary but the s
ration,Av22v1

2}db(ak0)6, remains the smallest among a
considered local states.

For theeven states, whereU6(2r )5U6(r ) , the spectral
system contains seven independent variables. Those
components of the impurity displacementU1 and radial pro-
jections of the displacements of four chosen neighbor
ions Us . The elements of the matrix in the correspondi
spectral system can be written as integrals of the Gree
function elements, similar to Eq.~33!. Considering local
states near the gap’s bottom, we again can retain in th
integrals only transverse terms and use the power expans
of nonsingular factors of the integrands. As it was sho
above,* (k)(ak)2g'

2!* (k)g'
2 due to the dominant contribu

tion of the small-k region in these integrals. Therefore, sin
the local states near the gap’s bottom are, roughly, ‘‘mad
of long-wavelength polaritons, we can disregard the ex
nential factors in the matrix elements of the spectral sys
@exp(6ik–n)'1# and neglect in Eqs.~21! differences be-
tween displacements of identical ions within the element
cell, U2'U2(n). These approximations lead to the follow
ing spectral system for even states:
in

t

n
d

f

es
es
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n

p’s

pa-

are

g

s-
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n
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m

y

S U1

U2
D'S I 1 I 8

I 8 I 2D S v2dm28db/3 8db/3

8db/3 28db/3D S U1

U2
D .

~37!

The corresponding spectral equation reads

8db

3
~ I 11I 222I 8!2v2dmI111

5
8v2dbdm

3
~ I 1I 22I 82!, ~38!

where all I factors are straightforward to evaluate near t
gap’s bottom~Appendix B!:

I 6~v2!5
2

3E~k!
g'

6'
2~ak0!2

3pnAv22v1
2

m2m7

m1m2
, ~39!

I 8~v2!5
2

3E~k!
g'8 '

2~ak0!2

3pnAv22v1
2

m

m1m2
. ~398!

The right-hand side of Eq.~38! is proportional to a determi-
nant of a degenerate operator, the transverse propagator
it must be equal to zero identically. Substitution of Eqs.~39!,
~398! into Eq. ~38! shows this explicitly and transforms th
spectral equation of the even states into the following on

2~ak0!2

3pnmAv22v1
2F8db

3
2v0

2dmS m2

M D 2G51. ~40!

One can check that here ion displacements satisfy the r
tionship,m2

2 U11m1
2 U250, corresponding to optical vibra

tions.
If we set db50 in Eq. ~40! it reproduces Eq.~30! ob-

tained earlier for an isotope impurity. That equation ha
solution only whendm,0. In a general case even loc
states exist only if variations of parameters satisfy the
equality:

db2
3

8
v0

2dmS m2

M D 2

.0. ~41!

Equations~36!, ~40! allow us to outline regions of the
local states~Fig. 3! on a plane of impurity parameters
dm,db. Taking into account obvious physical limitation
dm>2m1 , db>2b, one can see that odd states appea
the right upper quadrant bounded by the linesdm5
2m1 , db50. The region of even states is to the right
dm52m1 and above the critical line, db5(3/8)
3(m2 /M )2v0

2dm. All other areas of (dm,db) plane are
blocked for the polariton localization.

Since we deal with local states near the gap’s bottom,
analysis is valid in a vicinity of the critical line for eve
states, and close to thedm axis for odd states. When th
impurity parameters move outside these regions the frequ
cies of the corresponding local states move away from
gap’s bottom. The lines where the frequencies approach
top of the gap establish the outer boundaries of the local
tion regions. Unlike the situation near the gap’s bottom,
terms of all spectral equations remain finite whenv tends to
v2 , which guarantees an existence of limited localizati
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regions. On the other hand, this makes it impossible to
any rigorous analytical calculations. However, using
density-of-states representation of the spectral equati
analogous to Eq.~28!, and utilizing some trial functions to
simulate densities of states in all bands, one can obtain q
tatively reliable results. Our preliminary estimates show t
near the upper boundary of the gap local states are sub
tially composed of transverse and longitudinal phonons. T
balance between them depends on widths of the corresp
ing bands and the polariton gap. The contribution of
long-wavelength transverse polaritons into these state
proportional to (v/c)3 and is negligible. Roughly, it is
caused by the fact that the density of states is inversely
portional tov3 for phonons and tocv2 for long-wavelength
polaritons. A more detailed analysis of states located
away from the gap’s bottom will be presented elsewhere

IV. DISCUSSION AND CONCLUSIONS

We have considered local polariton states in bcc io
crystals. It was assumed that the crystal anisotropy is w
and can be neglected in the long-wavelength limit. This
proximation was proved to be self-consistent for states
cated near the bottom of the polariton gap. We found t
series of local states, different in parity. The new states
pear right at the bottom of the polariton gap upon infinite
mally small variations of an impurity parameters. This is
contrast with 3D phonon systems where a lower thresh
for local states always exists.1,2,9 In Ref. 9 the general theo
rem regarding the presence of the threshold for arising lo
states in bandgaps of periodic systems were given. Howe
the proof assumed the finite values of density of states in
entire band of the pure system. We show that the singula
in the density of states in the lower polariton band causes
absence of this threshold. This singularity also provides
the states near the gap’s bottom are formed mostly by lo
wavelength transverse polaritons. The local states move

FIG. 3. Regions of existence of local polariton states.dm is the
difference between masses of the impurity and a host atom,db is
the impurity-induced deviation of the elastic constant within t
near-neighbor shell,m1 is the mass of a host ion in the ‘‘positive’
sublattice,b is the elastic constant of a near-neighbor interaction
a perfect crystal. Odd local polariton states exist in the region bo
by the solid linesdm52m1 , db50. The region of even loca
states is to the right of the solid linedm52m1 , and above the
dashed linedb5(3/8)(m2 /M )2v0

2dm.
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ward the upper boundary of the gap upon increase of im
rity parametersdm and/ordb.

We have outlined regions of new local polariton states
a plane of impurity parameters. In a region where both ty
of states coexist, the odd states precede the even ones.
appear first at the gap’s bottom and remain near it when
impurity parameters vary much longer than the even sta
Local states are a mixture of transverse phonons and p
tons. Comparing amplitudes of the fieldE and the crystal
polarizationP one can make an estimate of the energy p
titions of local polariton states. Because the characteri
momentumk0 happened to be away from the polariton res
nance region, the ratioE/P turns out to be of the order o
v'8 /c. An account for the electronic polarization of ion
renormalizesc and increases this ratio. A more detaile
analysis of these aspects of the polariton local states wil
done elsewhere. Condition~41! can help in a search for com
pounds where local polariton states can be observed.

The results of this paper were obtained within the h
monic approximation of crystal dynamics. Phonon-phon
interaction caused by a lattice anharmonism will affect t
picture. Phonon-phonon scattering causes damping of al
ementary excitations and the local states as well. It leads
broadening of all spectral lines and it also washes out
sharp boundaries in the initial excitation spectra. Howeve
seems physically evident that the scale of this broadenin
far below the typical width of phonon bands and cann
change the topology of the initial band structure, or close
polariton gap. If we dress up the elementary excitations
renormalize their spectra, the maximum of the density
states in the lower polariton band and the corresponding
gularity will persist after the renormalization since it has
topological origin. That, in turn, guarantees the absence
threshold for local states near the~renormalized! gap’s bot-
tom at zero temperature. However, at nonzero tempera
thermal broadening of spectral lines will set a finite thresh
for local states.

Another factor that leads to a threshold is crystal anis
ropy. It provides a difference between maxima ofV2

2 (k) in
different directions that causes the density of states in
lower polariton branch to be finite everywhere. It should
emphasized, however, that properties of the local polar
states remain quite different from the corresponding prop
ties of purely phonon local states. Particularly, one can
from our results, that eigenfrequencies of local polaritons
much more sensible to the crystal structure of the host
terials.
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APPENDIX A

It is known that under any point transformationQ̂ the
frequency of any normal mode remains invariant,v2(Q̂k)
5v2(k), and the corresponding polarization vector tran
forms as follows:e(Q̂k)5Q̂21e(k). Because the Brillouin
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zone also maps exactly into itself, one can see that

T̂5E
~k!

g@v2~k!# e~k! ^ e~k!5E
~Q̂k!

g@v2~Q̂k!# e~Q̂k!

^ e~Q̂k!5Q̂21T̂Q̂. ~A1!

Therefore, any tensor of this type is an invariant of the po
group of a crystal. In the cubic system any group-invari
operator must be trivial,T̂5t Î , since the group contains
noncollinear axis of different order. Calculating the trace
the operator, one can find

T̂51/3E
~k!

g@v2~k!#@e~k!•e~k!# Î , ~A2!

where Î is the identity operator.

APPENDIX B

The density of states in the lower polariton bandr2(«) is
defined at the complex« plane, cut from 0 tov1

2 . The con-
tour of integrationC in Eq. ~26! runs along the upper side o
the cut ~it corresponds to integration overk,k0), turns
around its right edge and then, for the integration ovek
.k0 , returns along the lower side of the cut to some po
v18

2 , fixed by the bottom of the optical photon band.
As it was discussed in the text, the leading part ofI (v2)

at D(v)5v22v1
2!v1

2 , comes from the region close to th
right edge of the cut,«5v1

2 . Therefore, evaluating Eq.~26!,
we can use there the asymptote of the density of states g
by Eq. ~27!. In addition, as it follows from Eq.~25!, k2k0
57z1/2/an near the right edge of the cut at its upper a
lower sides, respectively. Taking this into account when
-

c

ns
t
t

f

t

en

-

pandingF(k) aroundk0 in Eq. ~26!, we obtain

I 1~v2!5E
0

v1
2 2@F02F08Az/an1•••#dz

3Az~D1z!

1E
0

v1
2
2v18

2 2@F01F08Az/an1•••#dz

3Az~D1z!
.

~B1!

A rescalingz→zD shows that contributions inI 1(v2) from
all terms of expansion ofF(k) tend to zero in the limit
D→10, except for the first two terms. Further elementa
integration gives the singular part of the considered integ

I 1~v2!5
2~ak0!2F~k0!

3pnD1/2

5
2~ak0!2

3pnD1/2

~v22c2k0
2!@g'~k0!1 f'~k0!2m2v2#

m1m2@v22V1
2 ~k0!#@v22v'

2 ~k0!#
.

~B2!

This result is asymptotically exact since all omitted terms
regular atD→10. Using estimations made in Sec. II an
taking into account conditionsak0!1, v'8

2k0
2!v0

2 , c2k0
2

@v0
2, andv'v1'v0 , it is straightforward to obtain

I 1~v2!'2
2~ak0!2

3pnAv22v1
2

m2

Mm1
, ~B3!

which immediately leads to Eq.~28!.
In a similar way one can obtain Eqs.~37!, as well as,

calculate the integral in Eqs.~33!:
E
~k!

~ak!2g'
25

2~ak0!4

3pnD1/2

~v22c2k0
2!@g'~k0!1 f'~k0!2m1v2#

m1m2@v22V1
2 ~k0!#@v22v'

2 ~k0!#
'2

2~ak0!4v0
2

3pnAv22v1
2

m1

Mm2
. ~B4!

APPENDIX C

Equation~30! with the matrixMss8 defined by Eq.~31! can be rewritten as follows:

S M112M132m 0 0 0

0 M112M132m 0 0

M13 M12 M111M132m 2M12

M12 M13 2M12 M111M132m

D S U1

U2

U32U1

U42U2

D 50, ~C1!
se

of
which has three eigenvalues given by Eqs.~32!.
For m5m6 this equation givesU15U250 and U35

6U4 . Recalling thatUs5n•U(ns) and the states we con
sider here are antisymmetric, one can see that in them1

mode the elementary cell enclosing a defect experien
‘‘rhombic’’ deformations. In them2 mode, since the ion
motion is antiphased, it produces ‘‘tetragonal’’ deformatio
For m5m0 Eq. ~C1! leaves U1 and U2 independent,
es

.

whereas,U35U1/2 and U45U2/2. It results in combined,
‘‘tetrarhombic’’deformations of the elementary cell in the
modes.

To obtain the explicit expressions of the eigenvaluesm,
we have to calculate the matrix elementsMss8. When the
frequency of the considered states is close tov1 we can
retain only first terms in expansions of sin factors in Eq.~29!.
This approximation is self-consistent, because the region
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small wave vectors is the major contribution in Eq.~29!.
Carrying out the calculations, one needs to know tensor
two types:*k f (k)kakb and*k f (k)kakbkskb, where f (k) is
an arbitrary invariant function. From Appendix A it immed
ately follows that,*k f (k)kakb5(1/3)dab*k f (k)k2. The sec-
ond tensor is obviously totally symmetric, therefore,

E
k
f ~k!kakbkskb5I ~dabdsb1dasdbb1dabdbs!E

k
f ~k!k4,

~C2!
a,
on
of
where summation overa5b ands5b defines the numeri-
cal factor,I 51/15. Using these results inMss8 and retaining
there the transverse terms only, we obtain

Mss8'
1

3H ~nsns8!
22

n412~nsns8!
2

5 J E
~k!

k2g'
2 , ~C3!

that, in turn, leads to Eqs.~33!.
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