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Local polariton states in impure ionic crystals
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We consider the dynamics of an ionic crystal with a single impurity in the vicinity of the polariton reso-
nance. We show that if the polariton spectrum of the host crystal allows for a gap between polariton branches,
the defect gives rise to local states with frequencies within the gap. Despite the atomic size of the impurity we
find that the in-gap local states are predominated by long-wavelength polaritons. The properties of these states
are shown to be different from the properties of the well-known vibrational local states. The difference is due
to the singular behavior of the density of states of polaritons near the low-frequency boundary of the polariton
gap. Assuming cubic symmetry of the defect site we consider a complete set of the local states arising near the
bottom of the polariton gagS0163-182608)05909-9

[. INTRODUCTION count for a vector nature of the excitations. Moreover, the
analysis of nonisotope impurities, affecting the elastic bonds
The existence of local excitations caused by crystal dearound a defect, is not consistent within the scalar model.
fects is a well-known phenomenon in solid-state physfcs. In the present paper we take into account the vector nature
A single pointlike defect can give rise to new states localizecPf electromagnetic waves interacting with vibrations in crys-
in the vicinity of a defect with frequencies outside the bandgals with cubic symmetry. We assumed that an impurity atom
of extended states of a host crystal. These states and théi} addition to having a different mass can locally change
interaction with electromagnetic wavéiR absorption, Ra-  elastic constants. The anisotropy of the crystal is assumed to
man scatteringhave been extensively studied since the earlye Weak and is neglected in the long-wavelength limit. We
1940's following the pioneering works of Lifshitz® In all obtained two series of local states which differ in parity. In
these studies the electromagnetic field was considered as agreement with the results of Ref. 7, all these states appear
external field, which excites the vibrational states. The feedfirst at the bottom of the polariton gap for infinitesimally
back effect of the vibrations upon the electromagnetic fiel®mall variations of impurity parameters. This is shown to be
was neglected. However, in ionic crystals in the region ofcaused by a singularity of the density of states in the lower
frequencies close to the Crossing point of phonon and photoﬁOlariton band. This Singularity also prOVides that the local-
dispersion curves one has to take this effect into accourization of transverse polaritons is most effective near the
because the coupling between electromagnetic waves and Jwer boundary of the gap. We show that the local polariton
brations becomes so strong that a different kind ofstates, unlike usual transverse extended states are affected by
excitation—polaritons—emerges. In this situation the analythe interaction with the longitudinal phonon modes. This in-
ses of local vibrations and their interaction with electromag-téraction narrows the frequency range available for the local
netic field has to be done more carefully with taking thePolariton states.
polariton effects into account. Such a consideration was car-
ried out in Ref. 7 where a new kind of local excitation was Il. POLARITONS IN A PURE CRYSTAL:
discovered. It was shown in Ref. 7 that if the polariton spec- ISOTROPIC APPROXIMATION
trum of a crystal exhibits a gap between polariton branches, ) ) ) )
where the density of states of a host material is equal to zero, W€ consider below a body-centered-cutiic dielectric
a defect embedded in the crystal gives rise to local stateg’YStal with two oppositely charged ions per each elementary
with frequencies within the gap. These states are a mix of th&€!l- The interaction between ions is assumed to be a central
electromagnetic field and excitations of a host material. TheiP€- Denoting masses of the positive and negative ions as
properties appeared to be quite different from those off'+ andm., respectively, and their displacementsas(r),
known local phonon states. Unlike pure phonon systems, i/herer belongs to the positive or negative sublattice, we can
the case of isotropic materials there is no minimum criticalVrit¢ down the equations of stationary lattice vibrations
value of the “strength” of the impurity for local polariton Coupled to a coherent electric fielel(r):
states to appear. This feature was shown to be caused by a
negative.dispersio_n of optica! phonons resulting in a non- minUt(r)in(r)z—z 2 f(rRS)+2 f'(rR.) |,
monotonic dispersion of polaritons. s | Rg R
A general analysis made in Ref. 7 refers to arbitrary “po- ° (1)
larization waves.” It is applicable to a variety of excitations,
such as phonon-polaritons, exciton-polaritons, etc. Concerrwhereq denotes an ion charge andis the frequency.
ing a particular case of phonon polaritons the model of a The right-hand side of Eq1) presents all elastic forces
dipole interaction between scalar electromagnetic and polagcting on the ion hosted at the site VectorsRg and R,
ization waves, used in Ref. 7, needs to be extended to adenote radius vectors of neighboring ions in thehell
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spheres of the original and alternative sublattice, respec- The Fourier amplitudes of the field induced by the lattice

tively. In the case of a central interaction the elastic forcesjiprations can be expressedis —F(A, —A_)/q,with op-
within one sublattice have the form: eratorE defined as follows:

B(Ry) 2 ot
f(IRg) =~ > RYRy [U-(N—U=(r+RJ]} (2 By HTE o - Ckek
Rs ! a3 w2_ CZkZ
and forces between ions from different sublattices are 2 P
4me?| pt+—2 p 7)
= [ L
o, B(RH_, , a® | w?-cke
f (rRs):_ 12 RS{RS'[Ui(r)_UI(r_l—RS)]}’ "
Rs . wherel is the unit tensorPf*=kkg/k? and P{#=3,,
@) - kakﬁ/k2 are the longitudinal and transverse projectors, re-

where the elastic constants of intra- and intersublattice interSPeCtively. _ _ ,
action,8(R) andg’ (R'), depend on a distance between ions 1he dynamical matrices given by Ed$), (6') are of a

only. general type and solutions of E@), in general, do not split
A coherent electric field induced by the ionic vibrations into longitudinal and transverse modes. However, consider-
E(r) invokes an additional pair of equations: ing long-wave excitations in weakly anisotropic crystals, we
can make use of the isotropic approximation for the dynami-
cal matrices:
V-E(r)=—4mq>, [U.(1)-VS(r—1)
| A A A
D(k) =y (K)Pj+ vy (KP,, ®)
—U_(I+b)-V&(r—I1-b)], (3
D’ (k)= [ (K P+ ¥ (WP, , )
2 4 2
w TQw
VX[VXE(r)]+ gE(r)z e EI: [Us(hé(r—1) where scalar functionsy,(k) and y/(k), can be expressed

in terms of frequencies of longitudinal and transverse

—U_(I+b)s(r—1—b)], (4  Phonons. In a crystal of cubic symmetry the dynamical ma-
trices become trivial at the center of the Brillouin zone:
where vectord denote lattice vectord is the basis vector,
andc is the speed of light. A . B'(RY)
The lattice normal modes arise as simultaneous solutions D(0)=-D'(0=2> —5-> Ri®R!
of Eqgs. (1), (3), (4). Fourier transformation of this system s R Rq
gives the dynamic equations in the momentum representa-

. 1.
tion: =3 > B'(RHZL, 9
S
R N N
D(k3+F(k)A @My A D (lf) F(k) (A+(k)) whereZ denotes a total number of ions in thehell and we
D'(k) —F(k) D(k)+F(k)—w?m_ | \A-(K) make use of the identityZRéRg@)Rg:fZéRg2/3, valid in

=0. (5) crystals with cubic symmetry. Equatidf) sets a condition
for parameters in Eq$8), so that ally,(0) and— vy, (0) are
HereA. (k) denotes the Fourier amplitudes of the displace-equal to a positive constant=1/3%,8' (R.)Z..
ments,f)(k) is the dynamical matrix of the intrasublattice  In the isotopic approximation all normal modes of a crys-
interaction tal become either longitudinal or transversé”(k)
= U(k)A(i”)(k), wheree, (k) are longitudinal or transverse
. R . unit polarization vectorsy is a polarization index. Equations
D(k)=2>, al S)E Re®Ry(1—e'* ) (5), (%) give the foIIowiﬁg rela?ion between the Foﬂrier am-

2
SRR plitudes of displacements in different sublattices:
B'(R)
+ > RI®R!, (6) fooy
R & ° 7 A= Yo pio), (10

Yot fo— @w?m,

andD’ (k) is the dynamical matrix of the intersublattice in- For longitudinal modesﬁH=47rq2/a3=f. The corresponding

teraction dispersion equation,
i , R, - , ’_ 2
Br=-3 2 ZS)E R, @R/, (6 W) () AT
s RS R! m, m- m.m_

whereR®R denotes the direct products of two vectors. =(w?— 0’ (0?~w?)=0, (11)
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FIG. 1. Elementary cell of a body-centered-cubic lattice. Here / o

is a lattice parameter, indexess’ numerate ions within the near-
neighbor shell£ng are radius vectors of the ions.

FIG. 2. Phonon-polariton dispersion curves in the isotropic ap-
defines aCOUStiG)ﬁ(k) and opticalQﬁ(k) branches of longi-  proximation. Here linesv=. (k) present the lower and upper
tudinal phonons. For transverse modds =fw?/(w?  polariton branches,Q, (k) and w, (k) are transverse- and
—c?k?), therefore, the dispersion equation, longitudinal-optical phonon branches, (k) and w_(k) are the

transverse- and longitudinal-acoustic phonon branches, respec-
tively. The horizontal linesw, and w; are the upper and lower

1 £ 32
( vitf wz) ( vitf w?| - (v —f1) boundaries of the transverse-optical phonon bafwf+d? andw,
m, m_ m,ym_ are the upper and lower boundaries of the longitudinal-optical pho-

5 2 5 2 5 9 non band, respectively. The polariton gap is bounded by lings
_ (0"~ o) (0= Q1) (0= 07) -0 12 and w,. The wave numbek, corresponds to the maximum of the
- 02— c2K2 o (12 lower polariton branch. The figure presents qualitative features of
phonon-polariton spectra in the long-wavelength region and does
gives one acoustijf(k) and two polariton in(k) not reflect an actual scale of wave velocities.
branches.
Neglecting the field effects and solving Eqs1), (12) in  and leads to the well-known polariton dispersion relation for
the long-wavelength limit one can obtain expressions foloptical-transverse excitatiofi$,
v+(k) and y, (k) in terms of conventional parameters:

[w?— Q2 (k) ][ w?— c?k?]=d?w?. (16)
YolK)=y+ pk?(v3—v.?), (13 . . . _
Equation(16) describes two polariton branchgs. (k) with
corresponding dispersion laws:
(K~ =yt k] 072402 g (13)
Yo YT M I o\ 2u ,

0% (k)= V[ Q, (k) +ck?+d?= [Q, (k) —ck]®+d?}?,
wherey andM are reduced and total masses of ions within 17)
the elementary cell, respectively, andv are the velocities
of acoustic and optical phonons with a given polarization.

Equations(11), (12) show that the internal field affects
dispersion relations of all lattice excitations. However, the

where (), and ) are frequencies of the transverse- and
longitudinal-optical phonons, respectively,

physical effects of the photon-phonon interaction are sub- ) Yo _YotVi 2 2o

stantial in the vicinity of the polariton resonance which takes Q5(k)~ W 22— e K (18
place in the long-wavelength region. It is straightforward to

show that the acoustic branches, a phonon-photon  coupling  parameter,d?=f/u

=47q% ua, is the ionic “plasma frequency” andv?
= vl u is the optical activation frequency.

v2k?, (14) Analysis of Egs.(14), (15), (17) shows that the lower
polariton branch)? (k) has a zero activation frequency and

are unaffected by the field, whereas, the interaction with th&xt€nds over both acoustic bands, whereas, the longitudinal-

field results in the uniform up-shift of the longitudinal- optical branchQf(k)+d?, overlaps with the top part of the
optical branch, polariton gap. Therefore, a truly forbidden gap, with no

modes of any kind inside, may exist only between the lower
s 2 ) boundary of the polariton gap and the bottom of the longitu-
o= Qf(k)+d%, (19 dinal band(Fig. 1). When the dispersion of optical phonons

Yo Vo

wi(k)=2 v
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is neglected, both polariton branches are monotonic and the 5B _
spectral gap is between the transverse and longitudinal fre- B,=—22 n[n-U,—U,Je " (21)
quencies w3 and w3+ d2. n=n

It turns out that accounting for the phonon dispersionyere U, =U, (0) and all U_(n) appear only in combina-
causes ajualitative change of this picture. First, the upper tjions U,=n-U_(n), because ion-ion forces are central.
boundary of the frequency gap3 is now set by the bottom | et us denote the matrix in the left-hand side of E20)
of the optical-longitudinal band. Second, the lower polaritonas . It acts on Cartesiana) and sublattice £) indices of
branch in the case of a negative dispersion becomes noghe amplitudesA? . In the isotropic approximation this ma-
monotonic and gains a maximum at sokeky, close to the trix can be decomposed,= '—H®'5H+ L, ®P, , where 22

center of the Brillouin ;one(Flg. .l)' Calculatlo,ns in the matricesL ,, operating on sublattice indexes only, are de-
long-wavelength approximation g|vle§%2w0d/vlc and a fined as follows:

new lower boundary of the gapwi=Q2(ky)~wj

—2v! wed/c. Since 2| wod/c~v!*ki<wj, the result is (A Yot fo— w?m, yl—f,
consistent with the approximation. However, becau%k% L,= T Y —f yo+f —w?m |
~2cwod/v| > wj, the maximum of2 (k) is far away from 7 7 7 22

the very narrom(due toc>wv ) polariton resonance region. . . ~
Since2 (k) reaches its maximum at the surface of a finite The inverse matrix “'=L; ‘@ Pj+L; '®P, =G=G|®P
area inside the Brillouin zone, the density of polariton states+ G, ®P, , where

diverges at the gap’s lower boundary. As we show later, it

causes an absence of a lower threshold for local polariton g9, 9, 1 [ y(,+f(,_w2 7"+f”—w2
States g g:;— g; m+m7[ m+ m_
lll. POLARITON LOCAL STATES (7= f,)? l( l, —UT) 23
T T M ' + |
When a host ion at the site= 0 of the positive sublattice m.m- —l. s

is replaced by an impurity ion with the same charge, itis the Green’s function of the system in the momentum rep-
causes a local deviation of the crystal density and a localesentation. In accordance with a general property of Green’s

change of elastic constants. Tq account fpr these facts Wginctions, poles of its matrix elementg, (w,k), coincide
need to add extra forces to the right-hand side of(Bf.For  ith eigenfrequencies of a pure crystal,

positive and negative sublattices, respectively, these forces
are gj(w)*(w?—of) " Hw?-0f-d?) 1,

9, (0)*x(0?—0?) Hw?-035) Hw?-0%) Y

as it follows from Eqs(11), (12).

Solving Eq.(20) with the help of Eqs(22), (23), one can
obtain Fourier amplitudes of the ion displacememrts,(k)
andA_(k), and the displacements themselves:

é‘f+(r)=[w25mu+(0)—5—§2 n[n-U,(0)
n n

_n'U—(n)]]5rO (19

and U.(n=> J(k)e‘“ e, (k) @e,(k) (g} B, +g,B_,),

St (r)=— i—f; A[n-U(0)—n-U_(n)]3n, (19) 4

— ik-r ’ -
where ém is the difference between the masses of an impu- u-m ; f(k)e e (k)@ e, (k)(g,B.+g,B-.),
rity and a host iongg is a shift in the elastic constant in the (24')

impurity’s near_-neighbor shell, and _vectonsdenote radius where the symboJ . denotes (M)~ (a/27) %[ dk, with
Ve(f;ﬁ;s dOfnter\]r?wiI(;ngul:g)t/ic?(E)e g?}%ﬁﬂ%ﬁ?ﬁé;: wave vectors taken from the first Brillouin zone only.

y q : Substitution ofB, andB_, given by Eqs(21,21), into
Egs.(24) allows one to express all displacements in terms of

D(k)+ F(k) - w?m, D(k) —F(k) <A+(k)> U, andU, only, and then obtain a closed system of equa-
D(k) — F(k) D(k) +F(k) — w?m_ ] \ A-(K) tions for these variables. In the case ofiaotope impurity
considered earlier in the scalar model of Ref. 7, we set
1/B: 6B=0 and this system ddpectral equationseads
N N( B ) 20

— 02 +

whereN is the number of ions in one sublattice and Ui=o 5m§ J(k)g" e(kj@e (kU . (25

58 In a cubic crystal, vectod, can be arbitraryAppendix A),

B, =w?émU, — _22 nfn-U,—U,], (21  Whereas frequencies of excitations are defined by the equa-
n tion:
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w28 . . o Since foro— w,+0 the divergent part of " (w?) is pro-
3 f(k)(g +29,)=émel(w), (26)  vided by a region of smalt, in Eq.(28) we can replace the
exact density of states with the found asymptote. Consider-

which generalizes Eq10) obtained in Ref. 7. ing w?— w?<w? it allows us to calculate the leading part of
All solutions of these equations can be divided into twol " (»?) and transform the spectral equati¢®6) into the

classes: extended and local states. Since an impurity destrof@m (Appendix B:

the translational symmetry of the crystal, any state is now a

superposition of all normal modes available in the first Bril- m.. 2(aky)’wi m_

louin zone. For extended states, corresponding to scattering m a2 2 M (30

states with well-defined wave vectors, frequencies fall into

the bands of a pure crystal. Local states, dependent upon thgsing estimates made in Sec. Il and recalling that v,

value of the parametefm in Eq. (26), may arise outside of we obtain

the bands. From the structure @f(w,k) it might seem that

1=

when a frequency is close to a particular band, the modes sm 37TcUi2\/w2—w§
from it dominate in the corresponding state. However, be- ™o 3,2 . (31
cause contributions of the near and distant bands could be a’wo

weakened or strengthened by the low or high density offhjs result recovers Eq14) of Ref. 7 obtained in the scalar

states in them, direct calculations are required here. model and supports the conclusion of the absence of the
As we already mentioned, the functiélt (k) reaches its  |ower localization threshold for light isotope impurities.
maximum valuew? atk=k,, close to the center of the Bril- In a general case afonisotopempurity the spectral sys-
louin zone. Its expansion aroukg does not contain a linear tem is of the 11th rank with 11 variabled, =U_(0), U,
term: =n-U_(n). The system can be further simplified with the

help of the crystal symmetry. The exact point group of a
02 (k)=wi—v?a%(k—ko)?+O[a%(k—kg)®]. (27)  cubic crystal includes the space inversion. Therefore, all ex-
_ ) . . ) citations can be classified by their spatial parity.
Itimmediately shows that the integral in the left-hand side of Fq; the odd stateswhereU..(—r)=—U.(r) , one can
Eq. (26) diverges atw=w; due to a contribution from the gee that bottu, andB, are equal to zero and the rank of the
lower polaritons branch. Therefore, considerign the fre-  gpectral system reduces from 11 to 4. Considering the dis-
quency gap close to its lower boundary we can agfiifrom placements of four negative ions at corners of one face of the
Eq. (26) and rewrite [,yg, using the density of states, bcc-lattice elementary celsee Fig. 2 as independent vari-

p—(&), in the lower polaritons band: ables, from Eqs(24) we obtain the following system:
297 4 n2
I 2=f— MsgUg=— 55 Us, 32
(@) ® 3 s’§=:1 ss' Vs 258 s (32
a3 2(w?—c?k?)(y, +f, — w?m_)dk where indexs numerates the chosen ions, their radius vectors
iy fsm+m[wz—wf][wz—ﬂi][wz—ﬂz] are denoted a®g and Us=U, = ng-U_(ng). The matrix

Mgy here is given by the equation

_2[ F(k)p_(g)de 29
3Jc w’—¢ ’ Mss':M(ns-ns’):E f(k)g(r(eo'ns)
where F(k) denotes all factors ofy/ , other than (? X (&, Ng/)sin(k- ng)sin(k-ng,). (33)

—0?)~! and the last integration is performed on a complex ) ) )
¢ plane(Appendix B. Using transformation properties of the integrand one can

Near the bottom of the polariton band, for smajl the  show that the matridMy remains invariantM(Qn,Qn’)

density of states have the usual Kohn shape(e)= . =M(n,n’), under any point transformatio®. Therefore,
The asymptote op_(e) near the top of the band, for small the elements of the symmetric matridsy are equal for
z= wi—s, can be found with the help of EQ7): equivalent pairs of ionsM ;=M= Mz3=My,, thenM,

=My3=M3, and M13=M,,. After finding eigenvalues of

a)sd ds this matrix we obtain three spectral equations:
(e)=|5— f —_—
P 2m) | [vaZ k)| n2
_ﬁzﬂonll_Mlsy (34
a \2(ko+z¥¥av)?+ (kog— z¥%av)?
e vz n° M3+ Mg 2M (34)
T A e, M+ + + . !
(ako)2 268 M+ 11 11 12
- 22712’ (29 The structure of the eigenvectors shows that the states cor-

responding tqu . andw _ represent “rhombic” and “tetrag-
where all omitted terms are regular zt 0. onal” oscillations localized around the stationary impurity,
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whereas, the states correspondingctanvolve both types of U,
deformations of the elementary céfppendix Q. U )~
Near the lower boundary of the gap the arguments used in -
evaluation of Eq(26) are also applicable. Retaining the lead-
ing terms in Eq.(33) and using symmetry properties of the The corresponding spectral equation reads
arising expressiongAppendix Q, we obtain the following

[

w?ém—868p/3 85ﬁ/3)(U+)

"1 854/3 —-858/3/\U_

expressions: —Bzﬁ(|++|*—2|’)—w25ml*+l
Mo*i[nd'_(nl'ns)z]f kg, (395 8w?6Bm
5 & T =—F (M=, (38)
4 4
TS E[(nl~n3)2+ n_iz (ny-ny)2— n_”f k2g7 . where alll factors are straightforward to evaluate near the
S) 3 (k) gap’s bottom(Appendix B:
(35)
From the geometry of the elementary cell it follows that Ii(“’z):_J’ g~ 2(aky)?  p—ms (39)
(ny-ny)=—(n;-ng)=n?3=a?/4 and, thereforeuo=pu_ 3w~ 3mrwi-w? mim_’
=(a4/10)f(k)kzgi . It leads to the unique spectral equation
for all “tetragonal” modes(Appendix B: ,. 2 2(aky)? P
I'(w%)= —f |~ . (39
() 3 (k)gL 3771/\/(1)2—(1)12 m.m_ (39)

(36)

5B 15771;\/@2—(»5( M )2

m.,

v 4(ak0)4wc2) The right-hand side of Eq38) is proportional to a determi-
nant of a degenerate operator, the transverse propagator, and
This result shows that the odd local states arise upon aj must be equal to zero identically. Substitution of E@$),
infinitesimally small strengthening of local bonds associateq39') into Eq. (38) shows this explicitly and transforms the

with the impurity, 5=+ 0. This effect, similar to the iso- spectral equation of the even states into the following one:
tope impurity case, is due to a singularity of the density of

states in the lower polariton band. Equati@®), compared 2(aky)? (868  , [m. 2
to Eq.(30), has an additional small factoaky)?. Therefore, Jor—all 3 — Wy m(v)
for the same relative deviationsg/8 and Sm/m, the odd SmypN T 0

states lie much closer to the gap’s boundary than the stat€Sne can check that here ion displacements satisfy the rela-
associated with an isotope impurity. Moreover, these stategonship,m? U, +m2 U_ =0, corresponding to optical vibra-
are much less sensitive to variations of parameters than thgyns.

isotope-induced local states. This fact reveals itself in an |f e set =0 in Eq. (40) it reproduces Eq(30) ob-
extreme form for “rhombic” modes corresponding o, . tained earlier for an isotope impurity. That equation has a
Equation (35') gives u.. =0 which means that within the sojytion only whensm<0. In a general case even local

approximations used these states appear right at the gapsgates exist only if variations of parameters satisfy the in-
bottom for any value 063. Accounting for the higher-order equality:

terms in expansions of the sin functions in E§1) will

=1. (40

separate these modes from the gap’s boundary but the sepa- 3, m_\2
ration, Jw?— w2 8B(aky)®, remains the smallest among all op— §“’05m( w | =o (42)
considered local states.

For theeven statesvhereU. (—r)=U.(r) , the spectral Equations(36), (40) allow us to outline regions of the

system contains seven independent variables. Those alecal states(Fig. 3) on a plane of impurity parameters,
components of the impurity displacemdit and radial pro- ém,éB. Taking into account obvious physical limitations,
jections of the displacements of four chosen neighboringgm=—m_, §8=— 3, one can see that odd states appear in
ions Ug. The elements of the matrix in the correspondingthe right upper quadrant bounded by the linésm=
spectral system can be written as integrals of the Green’s=m,, §3=0. The region of even states is to the right of
function elements, similar to E¢33). Considering local ém=—-m, and above the critical line, 58=(3/8)
states near the gap’s bottom, we again can retain in thege(m,/M)ZwSa‘m. All other areas of §m,5B) plane are
integrals only transverse terms and use the power expansiob$ocked for the polariton localization.

of nonsingular factors of the integrands. As it was shown Since we deal with local states near the gap’s bottom, our
above,f(k)(ak)zgi<f(k)gi due to the dominant contribu- analysis is valid in a vicinity of the critical line for even
tion of the smallk region in these integrals. Therefore, sincestates, and close to thém axis for odd states. When the
the local states near the gap’s bottom are, roughly, “made’impurity parameters move outside these regions the frequen-
of long-wavelength polaritons, we can disregard the expoeies of the corresponding local states move away from the
nential factors in the matrix elements of the spectral systengap’s bottom. The lines where the frequencies approach the
[exp(xik-n)~1] and neglect in Eqs(21) differences be- top of the gap establish the outer boundaries of the localiza-
tween displacements of identical ions within the elementaryion regions. Unlike the situation near the gap’s bottom, all
cell, U_~U _(n). These approximations lead to the follow- terms of all spectral equations remain finite wherends to

ing spectral system for even states: w», Which guarantees an existence of limited localization
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3 A ward the upper boundary of the gap upon increase of impu-
rity parameterssm and/or §8.

e We have outlined regions of new local polariton states on
- a plane of impurity parameters. In a region where both types
s of states coexist, the odd states precede the even ones. They
s appear first at the gap’s bottom and remain near it when the
s impurity parameters vary much longer than the even states.

s Local states are a mixture of transverse phonons and pho-
s tons. Comparing amplitudes of the fiekl and the crystal
e 7 > polarizationP one can make an estimate of the energy par-
v titions of local polariton states. Because the characteristic
momentuk, happened to be away from the polariton reso-
nance region, the rati&/P turns out to be of the order of
v /c. An account for the electronic polarization of ions
renormalizesc and increases this ratio. A more detailed
analysis of these aspects of the polariton local states will be
done elsewhere. Conditigd1) can help in a search for com-
pounds where local polariton states can be observed.

FIG. 3. Regions of existence of local polariton stai#s.is the
difference between masses of the impurity and a host afigis
the impurity-induced deviation of the elastic constant within the

near'ne'ghb.or sheln.. IS the mass of a host lon n the_ positive™ The results of this paper were obtained within the har-
sublattice 3 is the elastic constant of a near-neighbor interaction in

a perfect crystal. Odd local polariton states exist in the region bounginonlc QpprOXImatlon of Crystal dynamlcsf' Phqnon-phonqn
by the solid linessm=—m, , 53=0. The region of even local interaction caused by a lattice anharmomsm WI||' affect this
states is to the right of the solid liném=—m, , and above the picture. Phon(_)n-_phonon scattering causes damping of all el-
dashed linesB=(3/8)(m_ /M)2w2sm. ementary excitations and the local states as well. It leads to a
broadening of all spectral lines and it also washes out all

regions. On the other hand, this makes it impossible to gsharp bound_aries in Fhe initial excitation spectra. However, i}
any rigorous analytical calculations. However, using theS€ems physically (lewden't that the scale of this broadening is
density-of-states representation of the spectral equationfr below the typical width of phonon bands and cannot

analogous to Eq(28), and utilizing some trial functions to change the topology of the initial band structure, or c_Iose the
simulate densities of states in all bands, one can obtain qualRolariton gap. If we dress up the elementary excitations and
tatively reliable results. Our preliminary estimates show thafénormalize their spectra, the maximum of the density of
near the upper boundary of the gap local states are substa®f&tes in the lower polariton band and the corresponding sin-
tially composed of transverse and longitudinal phonons. Th@ularity will persist after the renormalization since it has a

balance between them depends on widths of the corresponf2Pelogical origin. That, in turn, guarantees the absence of a
ing bands and the polariton gap. The contribution of thefhreshold for local states near thenormalizedi gap’s bot-

long-wavelength transverse polaritons into these states f9M at zero temperature. However, at nonzero temperature
proportional to ¢/c)® and is negligible. Roughly, it is thermal broadening of spectral lines will set a finite threshold

caused by the fact that the density of states is inversely prdor local states. _ _
portional tow® for phonons and taw? for long-wavelength Another factor that leads to a threshold is crystal anisot-
polaritons. A more detailed analysis of states located fafoPy- It provides a difference between maxima(bf (k) in

away from the gap’s bottom will be presented elsewhere. different directions that causes the density of states in the
lower polariton branch to be finite everywhere. It should be

emphasized, however, that properties of the local polariton

states remain quite different from the corresponding proper-
We have considered local polariton states in bcc ionidies of purely phonon local states. Particularly, one can see

crystals. It was assumed that the crystal anisotropy is weaftom our results, that eigenfrequencies of local polaritons are

and can be neglected in the long-wavelength limit. This apmuch more sensible to the crystal structure of the host ma-

proximation was proved to be self-consistent for states loterials.

cated near the bottom of the polariton gap. We found two

series of local states, different in parity. The new states ap- ACKNOWLEDGMENTS

pear right at the bottom of the polariton gap upon infinitesi-

mally small variations of an impurity parameters. This is in

contrast with 3D phonon systems where a lower threshol

for local states always exist$:® In Ref. 9 the general theo-

rem regarding the presence of the threshold for arising loc

states in bandgaps of periodic systems were given. However,

the proof assumed the finite values of density of states in the APPENDIX A

entire band of the pure system. We show that the singularit . . .~

in the density of strf\)tes in¥[he lower polariton band caugses th)é It is known that under any point t'ran§form'at|@1Athe

absence of this threshold. This singularity also provides thaifequency of any normal mode remains invariaaf(Qk)

the states near the gap’s bottom are formed mostly by long= (k). and the corresponding polarization vector trans-

wavelength transverse polaritons. The local states move tdorms as follows:e(Qk)=Q 'e(k). Because the Brillouin

IV. DISCUSSION AND CONCLUSIONS
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zone also maps exactly into itself, one can see that pandingF (k) aroundk, in Eq. (26), we obtain
- A A w2 2[Fo—Fgvyz/lav+---]dz
T=f olw?(K)] e(k) @ e(k) = f ol w?(OK)] &(QK) |+(wz):f ARy~ Fovelavt -]
(k) (Qk) 0 3\/E(A+z)
Ay A_1AA
2e(Qk)=Q ' TQ. (A1) o2 2[Fot Fizlav+ - - 1dz
Therefore, any tensor of this type is an invariant of the point "'f
) e Pt 0 3Vz(A+2)
group of a crystal. In the cubic system any group-invariant
operator must be trivialf =t I, since the group contains a (B1)
noncollinear axis of different order. Calculating the trace ofa rescalingz—zA shows that contributions ih" (w?) from
the operator, one can find all terms of expansion of (k) tend to zero in the limit
A—+0, except for the first two terms. Further elementary
-|‘-=1/3f gl w2(K)J[ek)-e(k) ]I, (A2)  integration gives the singular part of the considered integral:
(k)
R 2
wherel is the identity operator. 1 (w?)= M
3mvAl?
APPENDIX B

2(aky)? (@?=c?kG)[ 7. (ko) +f . (ko) —m_w?]
The density of states in the lower polariton band¢) is = 12 2 2 2 2 '
defined at the complex plane, cut from 0 tav2. The con- 3mvATE mem-[o”= 0 (ko) [l ~ i (ko)]
tour of integrationC in Eq. (26) runs along the upper side of (B2)
the cut (it corresponds to integration ovée<ko), tUrns  This result is asymptotically exact since all omitted terms are
around its right edge and then, for the integration oKer yeqyjar atA— +0. Using estimations made in Sec. Il and

>Kq, returns along the lower side of the cut to some pOimtaking into account conditionsiko<1, v/2k2<w?, c2K2
wiz, fixed by the bottom of the optical photon band. Lo Lo 0 0

As it was discussed in the text, the leading part @?)
at A(w)=w?— wi<w?, comes from the region close to the 2(ak)?  m
right edge of the cutz = w?. Therefore, evaluating EG26), I (0?)~~— —— )

; : 37TV\/w —w] Mm,
we can use there the asymptote of the density of states given
by Eq. (27). In addition, as it follows from Eq(25), k—kg  which immediately leads to Eq28).
=¥ z"%av near the right edge of the cut at its upper and In a similar way one can obtain Eq&7), as well as,
lower sides, respectively. Taking this into account when ex<alculate the integral in Eq$33):

>w§, andw~w;~wg, it is straightforward to obtain

(B3)

, _ 2(aky)* (@*=c?kG[yL (ko) +f.(Kg)—m, w?] 2(aky)*ws m,
f (ak)°g, = 172 2_02 2_ 2 ~- 7. 2 ' (B4)
(k) 37vAY? m,ym_[w?— Q2 (ko) [ w?— w? (k)] 3rvw?—w; MM
APPENDIX C

Equation(30) with the matrixM .y defined by Eq(31) can be rewritten as follows:

M=M= 0 0 0 U;
0 M= Mg~ 0 0 U
=0, (Cy
M3 My, Myt Mg~ 2M 1, Uz—U;
Mo M3 2M Myt Myg—p/ | Us—U;
|
which has three eigenvalues given by E@2). whereasUz=U4/2 andU,=U,/2. It results in combined,
For w=uw. this equation givedJ;=U,=0 and U;= “tetrarhombic”deformations of the elementary cell in these
+U,. Recalling thatUs=n-U(ny) and the states we con- modes.
sider here are antisymmetric, one can see that inithe To obtain the explicit expressions of the eigenvalues

mode the elementary cell enclosing a defect experiencese have to calculate the matrix elemeits,y. When the
“rhombic” deformations. In thex_ mode, since the ion frequency of the considered states is closewtowe can
motion is antiphased, it produces “tetragonal” deformations.retain only first terms in expansions of sin factors in £9).
For u=uo Eg. (C1) leaves U; and U, independent, This approximation is self-consistent, because the region of
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small wave vectors is the major contribution in EQ9).  where summation over= 8 and o= g defines the numeri-
Carrying out the calculations, one needs to know tensors aofal factor,| = 1/15. Using these results M.y and retaining

two types: [, f(k)k?k? and [ f(k)k“kPk?k?, wheref(k) is  there the transverse terms only, we obtain
an arbitrary invariant function. From Appendix A it immedi-

ately follows that  f (K)k®k?= (1/3)6*#[  f(k)k?. The sec-
ond tensor is obviously totally symmetric, therefore, 1 ) n*+2(ngng )2 ”

MSS,~§ (ngng/) S Lk)k g, (C3

ff(k)k“kﬁk”kﬁ=|(5"35"ﬁ+ 5% 5PP+ 5“/35'3")f f(k)k?,
k k

(C2  that, in turn, leads to Eq$33).
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