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In surface-enhanced Raman-scattering experiments that use plasmonic nanostructures as substrates, the scat-
tering spectrum contains a broad background usually associated with photoluminescence. This background exists
above and below the frequency of the incident wave. The low-frequency part of this background is similar to
the scattering spectrum of a plasmon nanoparticle, while the high-frequency part follows the Gibbs distribution.
We develop a theory that explains experimentally observed features in both the high- and low-frequency parts of
the photoluminescence spectrum from a unified point of view. We show that photoluminescence is attributed to
the cascade Brillouin scattering of the incident wave by metal phonons under the plasmon resonance conditions.
The theory is in good agreement with our measurements over the entire frequency range of the background.
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I. INTRODUCTION

The term photoluminescence (PL) is commonly used for
all types of light scattering, for which spectrum is much
broader than the spectrum of incident radiation. PL of no-
ble metals was first discovered back in 1969 [1] and was
associated with a broad scattering spectrum resulting from
incident argon-ion laser light ranging from 457.9 to 514.5 nm
and from Hg-arc lamp light continuously ranging from 300 to
400 nm. The first phenomenological theory of PL of noble
metal nanostructures was put forward in Ref. [2] and subse-
quently developed in Refs. [3–5]. In this theory, it is assumed
that PL is associated with the radiative interband recombina-
tion of sp electrons and d holes. Before recombining with a d
hole, an sp electron may lose energy due to intraband transi-
tions. The mechanism is now referred to as Raman scattering
on electrons in metals.

Interest in PL has been boosted due to the widespread use
of surface-enhanced Raman spectroscopy (SERS). In SERS,
the analyte is on a noble metal substrate. The metal sub-
strates can be made as an assembly of individual particles
or as granular or corrugated surfaces. Special studies of such
structures [6,7] show that the reflection spectrum of both a
single particle [8,9] and a substrate made of granular plas-
monic nanostructures [1,2] have a broad frequency line. The
broad frequency line is observed both below and above the
frequency of the incident wave and is also referred to as PL.
The integrated intensity of nanostructure photoluminescence
(NSPL) strongly depends on the geometry of the plasmon
nanostructure. For smooth metal surfaces, the NSPL intensity

is extremely small. It is on the order of 10−10 smaller than
the intensity of incident radiation. For granular substrates con-
sisting of subwavelength spherical particles, this ratio is about
10−6, and for ellipsoid particles, it is on the order of 10−4

[2]. Since the Raman signal is very weak, NSPL may affect
the results of Raman-scattering measurements. The need to
separate these two effects has inspired the studies of PL of
nanostructures made of noble metals [8–10].

A detailed experimental study [2,6,7,9] has shown that
NSPL of noble metal structures differs from the usual PL
considered in Ref. [1]. First, in contrast to conventional lu-
minescence, NSPL is even observed when the frequency of
incident light, ω0, is lower than the frequencies of interband
electron transitions [2,9], which, according to Ref. [1], are
responsible for PL in metals. Second, the shapes of the NSPL
spectra, SNSPL(ω), are different above ω > ω0, and below ω <

ω0, the frequency of the incident wave. Specifically, above ω0,
the NSPL intensity decreases with an increasing frequency
ω according to the Gibbs distribution exp(−h̄(ω − ω0)/kBT )
[9]. Moreover, in the high-frequency part spectrum, the NSPL
intensity increases with temperature [9]. Below ω0, SNSPL(ω)
is close to the scattering spectrum for a plasmon nanostructure
(SSPNS), Sp(ω). This dependence arises when a plasmon
structure is illuminated by a wave having a continuous white
spectrum. The latter case was realized in Ref. [6], where
plasmon nanoparticles were illuminated by short pulses.

It is natural to connect NSPL with the plasmon resonance
of the roughness of a “smooth” surface of a nanostructure
[6,7,11–13]. The elastic scattering of the incident wave on
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a nanostructure is usual Rayleigh scattering, which spectrum
should coincide with the spectrum of incident radiation. How-
ever, NSPL excited by laser light has a broad spectrum whose
shape is close to the SSPNS of the nanostructure. In particular,
the NSPL spectrum has a maximum at the frequency close to
the plasmonic resonance frequency. Thus, NSPL cannot be
reduced to elastic scattering [9].

In Refs. [6,9], as an inelastic process, the intraband tran-
sitions of electrons inside the sp band is considered. Since
intraband dipole transitions are forbidden, the theory of
Ref. [9], similar to Raman scattering, introduces a virtual level
to which an electron can be excited by capturing a photon and
then returning back. The process is considered as a creation
of an electron-hole pair. To explain the Gibbs dependence of
the high-frequency part of the spectrum, the following process
has been employed. An electron thermally excited above the
Fermi level absorbs the incident photon and gets excited to a
virtual level. Then, this electron emits a plasmon and falls in
an empty state slightly below the Fermi level. Since the states
in the s band are not all filled, in contrast to the interband
transitions, where the hole energy is fixed, the electron has
the opportunity to relax into a state with higher or lower
energy, violating the elasticity of the process. The similarity
of NSPL and the SSPNS has been explained by the fact that
an excited electron-hole pair recombines emitting a plasmon.
This explanation is in qualitative agreement with experiment.
Also, the Gibbs distribution of the number of electrons above
the Fermi level explains the temperature dependence of the
NSPL intensity in the high-frequency spectrum.

Although the consideration, based on the intraband tran-
sitions in the sp band, qualitatively describes the plasmon
resonant shape, to describe the low-frequency part of the
NSPL spectrum and temperature dependence, an existence of
an artificial virtual level has to be assumed.

In this paper, we propose a mechanism for the NSPL spec-
trum formation that is not based on interband transitions. To
describe experiments, we use the recently developed approach
[14–16], which we have used to explain the inelastic Raman
scattering [16]. In this approach, the direct interaction of
driven oscillations of molecular electrons with vibrations of
nuclei in a molecule is taken into account [14–16]. We extend
this approach to the Brillouin scattering by taking into ac-
count the direct interaction of a driven oscillation of electrons
in a metallic nanoparticle with phonons. This interaction is
described by the optoacoustical Hamiltonian [14,17–19]. The
spontaneous Brillouin scattering of the electromagnetic (EM)
field caused by this oscillation excites an oscillation of the
EM field inside the nanoparticle at a shifted frequency (the
Stokes shift). The field at the shifted frequency also under-
goes Brillouin scattering launching the cascade of Brillouin
scattering processes of an EM field inside the nanoparticle.
The frequency of each new oscillation is shifted by the Stokes
shift. Such a cascade process continues as long as the fre-
quency of a new oscillation falls into the SSPNS. In the
Stokes part of the spectrum, the developed theory reproduces
the SSPNS. We also show that the Gibbs distribution of the
high-frequency intensity is due to the anti-Stokes Brillouin
scattering. All these effects are explained within a unified
approach, without separate considerations of high- and low-
frequency components. The theory is in good agreement with

our measurements made over the entire frequency range of the
background.

II. PHOTOLUMINESCENCE SPECTRA FROM AU
STOCHASTIC NANOSTRUCTURED FILMS: EXPERIMENT

To compare the results of the developed theory with exper-
iment, we obtain our own experimental data because, for the
same sample, measurements have mainly been obtained either
for the high- or low-frequency parts of the spectrum [7,9,10].
As far as we know, the only measurements for the whole
frequency range of the NSPL spectrum are only presented
in Refs. [9,20]. However, in Ref. [9], the frequency of the
incident EM field is exactly equal to the plasmon resonance
frequency. The spectra presented in Ref. [20] look qualita-
tively similar to ours. However, the experiment of Ref. [20]
and the theory developed in Refs. [20,21] are not devoted to
studying PL but to study the effect of electrons of a metal par-
ticle on the Raman spectrum of an analyte molecule adsorbed
by the particle. Therefore, the spectra obtained in the present
paper are more comprehensive, allowing for a more detailed
comparison with the theory.

In this section, we provide the results of the measurements
of PL of granular gold films. The results are obtained for the
entire spectrum of NSPL for different relations between the
incident field frequency and the plasmon resonance frequency
for the same nanoparticle. We use randomly nanostructured
Au film (MATO S, manufactured by AtoiID, Lithuania, http:
//atoid.com). The stochastic nanopattern of a 200-nm-thick
Au film is formed by magnetron sputtering of the metal to an
ultrashort laser pulse ablated soda-lime-silica glass substrate.
To demonstrate the random character of the surface structure,
scanning electron microscopy (SEM) images of two different
fragments of a Au film surface are presented in Fig. 1 with
the length scale indications of 500 nm and 5 μm. Features
from a few tens of nanometers to almost a micrometer in size
are observed. Atomic force microscope (AFM) pictures of
the surface show that its average roughness can be estimated
as 0.4 μm. The samples provide distinct surface plasmon
resonance characteristics for various excitation wavelengths.

To record PL spectra, a scanning confocal laser Raman mi-
crospectrometer (“Confotec CARS,” SOL Instruments Ltd.,
Belarus) was used. The system, operating in the Sector of
Raman Spectroscopy of Joint Institute for Nuclear Research
(Dubna, Russia), was described in detail in Ref. [22]. Briefly,
a 10-mW cw beam of 633-nm He-Ne excitation laser (05-
LHP-991, Melles-Griot) was focused onto the sample using an
inverted microscope with a 40×/0.6 numerical aperture lens
(the focal depth ∼1.6 μm), providing the focal spot of ≈1-μm
diameter. The scattered radiation, propagating in the backward
direction, was collected by the objective, spectrally filtered
within an appropriate range, and directed to the entrance slit of
a 520-mm focal length grating spectrograph (MS 5004i, Solar
TII, Belarus), with a 150 grooves/mm grating in the first order
(the dispersion 12.6 nm/mm enables one to cover the Raman
shift range of ≈±3000 cm−1). The spectra were recorded by
a cooled 2048 × 122-elements, 12 μm × 12 μm each, 16-bit
analog to digital converter charge-coupled device (CCD) array
photodetector (HS 101H, PROSCAN, Belarus) working in
the “full vertical binning” mode, i.e., as a linear array. The
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FIG. 1. SEM images of the Au film surface area fragments of different scales. The black circles show 1-μm excitation laser beam spots at
the surface.

radiation was accumulated by the CCD array during the preset
exposure time of 3 s. To record the spectra simultaneously in
both Stokes and anti-Stokes regions, a notch filter (StopLine
single-notch filter, Semrock) was used to suppress the excita-
tion radiation with the coefficient of suppression >106.

In Fig. 2, the thin blue lines represent PL spectra recorded
from an ∼1 μm spatial point of the nanostructured Au sur-
face at three different excitation intensities: 39, 75, and
150 μW/μm2. One can clearly see the dip of ∼600-cm−1

width, provided by the notch filter near the excitation wave-
length. Here, the spectral profiles are corrected for the
detection system spectral efficiency, evaluated using the trans-
mission curves of the optical elements, the grating diffraction
efficiency, and the CCD quantum efficiency. These profiles
represent the relative flux of scattered radiation I in photons/s.
The position of the broad peak in the Stokes region varies
within the range of about 500 cm−1. The anti-Stokes part of
the spectrum is approximated as I ∼ exp(−h(ω − ω0)/kBT ),
with the temperature T ≈ 330 K.

III. QUALITATIVE DESCRIPTION OF THE CASCADE
BRILLOUIN PROCESS

In the external EM field, electrons and phonons form a
closed quantum system without dissipation. In such a system,
the incident field leads to the emergence of complex dynamics
of the energy exchange inside but cannot cause radiation.
Therefore, to describe light emission, we must take into ac-
count the interaction of the closed system with a reservoir of
free-space modes [23–25].

Below, we solve the problem of PL from plasmonic nanos-
tructures in two stages. First, we introduce the dissipation
terms corresponding to the interaction of the system with
an unperturbed reservoir of free-space modes [26] and find
the behavior of the system and then determine the changes
in the reservoir states caused by this behavior. Second, in
the framework of the dipole approximation of the classical
electrodynamics [27] (see also Appendix D), we consider the
interaction of the quasiparticles with the reservoir of free-
space modes.

As an inelastic mechanism leading to NSPL, we consider
Brillouin scattering. A laser beam induces an EM field inside
a plasmonic nanoparticle. We assume that the size of the
nanoparticle is smaller than the skin depth. Consequently, the
driven oscillations of the electric field inside the particle are
uniform. Due to Brillouin scattering of this field, the EM field
at the Stokes frequency appears. The frequency of this field
is shifted by the phonon frequency. Because the latter is small
compared to the width of SSPNS, the frequency of this excited
field lies within the SSPNS.

The oscillations of the EM field caused by the incident
wave and the scattered field cause the oscillations of electron
density in metal and, consequently, the oscillations of the
metal nuclei. Since the beat frequency of these fields coincides
with the phonon frequency, the number of phonons resonantly
increases, causing the increase in Brillouin scattering and in
the intensity of the Stokes field. An increase in the number
of quanta in the Stokes field, n(ωSt ), is determined by two
processes. The first one is the stimulated excitation like that
in the stimulated Raman scattering (SRS) [28], which is equal
to G↓n(ωSt )n(ω0). Here G↓ denotes the rate of the increase in
the intensity of the Stokes component (the symbol ↓ indicates
the process in which the EM field with the lower frequency
is excited by the field with the higher frequency–the Stokes
process). The second process is the spontaneous Brillouin
scattering, caused by vacuum zero-point vibrations with the
Stokes frequency. This process is analogous to the excitation
of the Stokes field in the Raman laser operating below the
threshold. The rate of this process is G↓n(ω0) [28]. Thus, the
incident wave pumps the oscillation at the Stokes frequency,
and the energy is accumulated in the EM field at the Stokes
frequency. The dynamics of the Stokes intensity may be de-
scribed by the rate equation

ṅ(ωSt ) = −γrad(ωSt )n(ωSt ) + G↓n(ω0)(n(ωSt ) + 1) (1)

where γrad(ωSt ) is the rate of losses determining the width of
the SSPNS. We can estimate the stationary value of n(ωSt )
as n(ωSt ) ∼ G↓n(ω0)/γrad(ωSt ) � 1. Since n(ωSt ) � 1, the
process of the spontaneous Brillouin scattering is much more
intense than the stimulated emission.
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FIG. 2. The dependence of the intensity of scattered light (in
arbitrary units) on the wavelength at pump rates of (a) 39 μW, (b)
75 μW, and (c) 150 μW. The experimental results are shown by the
thin blue lines; the theoretical curves shown by the thick red lines
are obtained by numerical calculations of Eqs. (2)–(4) and (12). Zero
on the horizontal axis corresponds to the wavelength of the incident
light (633 nm).

The term G↓n(ωSt )n(ω0) can be expressed in a more stan-
dard form by using nonlinear susceptibility χ (3). Namely,
if instead of the number of quanta n(ωSt ), we consider the
dynamics of the intensity of the field at the Stokes frequency,
I (ωSt ), then the rate of the stimulated Brillouin scattering has

FIG. 3. The schematic of the interaction between the driven
oscillations of the electric field at various frequencies inside the
nanoparticle. The k th driven oscillation dissipates with the rate
∼γ (ωk )n(ωk ) (wavy green lines) and exchanges the energy with the
nearby driven oscillation at higher (blue lines) at lower (red lines)
frequencies. The rates of corresponding exchanges of the energy are
G↑n(ωk )[1 + n(ωk+1)] and G↓n(ωk )[1 + n(ωk−1)], respectively.

the form ∼Imχ (3)I (ωSt )I (ω0). The constants G↓ and χ (3) are
related by G↓ ≈ Imχ (3)h̄ω2/V .

As we see, the spontaneous Brillouin scattering gives the
main contribution to the process of PL. For this reason, we
use the notation G↓ instead of χ (3) to avoid the misleading
association of PL with the stimulated process.

As we show, NSPL occurs due to a cascade of driven
oscillations of the EM field inside the nanoparticle at different
frequencies. Thus, we consider the nanoparticle as a resonator
having the same line function shape as the SSPNS. Therefore,
the incident field causes a driven oscillation of the field inside
the nanoparticle with the frequency of the incident wave, ω0,
and is accompanied by the oscillation of the dipole moment
of the nanoparticle. That leads to Rayleigh scattering of the
incident wave.

In Brillouin scattering, the Stokes shift is usually much
smaller than the plasmon resonance linewidth. A single
process, therefore, cannot explain the shape of the NSPL spec-
trum. To understand where the broad shape of NSPL comes
from, one should take into account that the stationary Stokes
field excites the next oscillations at the frequencies displaced
by the same Stokes shift, ωph, with respect to the Stokes
frequency ω0 − ωph. In turn, the EM field at the frequency
ω0 − ωph excites the field at the frequency ω0 − 2ωph, which
then excites the field at the frequency ω0 − 3ωph, and so on.
These processes form a cascade of oscillations at frequencies
inside the SSPNS (indicated by red arrows in Fig. 3, in which
the cascade process is shown schematically).

We enumerate oscillations with the subscript k. The fre-
quencies of single anti-Stokes and Stokes shifts are ω1 ≡
ωaSt = ω0 + ωph and ω−1 ≡ ωSt = ω0 − ωph, respectively, the
frequencies of double anti-Stokes and Stokes shifts are ω2 ≡
ωaSt + ωph = ω0 + 2ωph and ω−2 ≡ ωSt − ωph = ω0 − 2ωph,
respectively, and so on. Thus, the frequency ωk of the k th
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FIG. 4. The frequency dependencies of the quasiparticle popu-
lation of the mode nst

n (blue circles) and the quasiparticle radiation
rate γrad(ωk ) (solid green line) on the mode number. Red circles
represent the dependence of the spectrum S(ωn) on the frequencies
ωn. System parameters are ω0 = 633 nm, T = 300 K, γ /ω0 = 0.01,
G↓/ω0 = 0.3, G↑ = G↓ exp(−�ω/T ) = 0.3G↓, and P/ω0 = 0.017.

oscillation is ω0 + kωph. The number of quanta in the k th
oscillation is denoted by n(ωk ).

The radiated intensity is proportional to the product of
the squared dipole moment and the number of quanta. The
dependence of n(ωk ) on ωk (Fig. 4, blue circles) is obtained
as a solution of generalized Eq. (1) extended on all energy
exchanges shown in Fig. 3. The dependence of the dipole
susceptibility of the nanoparticle on the frequency is deter-
mined by the plasmon resonance and has the Lorentzian shape
(Fig. 4, green line). Therefore, the amplitude of the emission
spectrum (Fig. 4, red circles) differs from the amplitude of the
number of oscillation quanta (Fig. 4, blue circles) by the cor-
responding values of the green line. Taking into account the
decay of oscillations and the dispersion factor with a resonant
frequency dependence, we obtain the radiation spectrum with
the maximum shifted toward the incident radiation frequency
(the difference between the red circles and the green line in
Fig. 4). This shift is observed in experiment [8].

Along with the excitation of the EM field at the Stokes
frequency, the field is also excited at the anti-Stokes frequency
(blue arrows in Fig. 3). This results in the energy flow from the
field at the frequency ωk to the field at the frequency ωk + ωph.

The qualitative description of the mechanism for NSPL of
metals presented above does not take into account the cascade
of anti-Stokes scatterings. Consequently, it does not describe
the shape of the spectrum above the frequency of the incident
EM field, resulting from such a cascade. For its description,

a consistent quantum-mechanical approach is necessary. This
description is developed in the next section.

IV. QUANTUM-MECHANICAL EQUATIONS DESCRIBING
CASCADE BRILLOUIN PROCESS

As we discussed in the previous section, the driven oscil-
lation excited by the external field with the frequency ω0 is
amplified due to the closeness of ω0 to ωpl. Due to the nonlin-
ear Brillouin scattering, the EM field of this driven oscillation
with the frequency ω0 induces the next driven oscillation with
the frequency ω0 − ωph. We denote the complex amplitude of
a driven oscillation at the frequency ωk as a(ωk, t ).

Brillouin scattering also contributes to the fields at anti-
Stokes frequencies. Thus, there is a process of energy
redistribution among the driven oscillations. To describe the
dynamics of the cascade Brillouin energy transport in NSPL,
we should consider the quantum properties of the phenomena.

For this purpose, we use the procedure of macroscopic
quantization [29,30] that includes quantization of the EM field
and collective electron oscillations in the plasmon structure,
as well as the modes of reservoirs with which these elec-
trons interact. Such reservoirs can be phonons, impurities,
etc. This theory relies only on the general linear properties
of the medium (the linear permittivity) and does not require
complicated first-principle calculations. A detailed derivation
of the system Hamiltonian is given in Appendix A. The
eigenmodes of such a system are collective oscillation states
of electrons and reservoir modes. The eigenmodes (quasi-
particles) can be found by using the Fano diagonalization
procedure [26,29,30]. For each quasiparticle at the frequency
ωk , we introduce annihilation and creation operators, â(ωk, t )
and â†(ωk, t ). The mean values of these operators have the
meaning of dimensionless complex amplitude of oscillations
of eigensolution at the frequency ωk . The operator of the
number of quasiparticles is determined in the usual way as
n̂(ωk, t ) = â†(ωk, t )â(ωk, t ). The mean value of this operator
has the meaning of the dimensionless energy of oscillations.
The closer the frequency of a quasiparticle to the plasmon
resonance frequency, the greater the dipole moment of this
quasiparticle. As shown in Appendix A, the frequency de-
pendence of the squared dipole moment of the quasiparticle
coincides with the SSPNS. Since it is the squared dipole mo-
ment that determines the ability of the quasiparticle to radiate,
we can consider only quasiparticles which frequencies belong
to the SSPNS.

In Appendix B, we show that the equations of motion
for the expected values of operators 〈â(ω0, t )〉 ≡ a(ω0, t ),
〈â(ωk, t )〉 ≡ a(ωk, t ), and 〈n̂(ωk, t )〉 ≡ n(ωk, t ) have the form
of the rate equations [24]:

da(ω0, t )

dt
= (−iω0 − γrad(ω0)/2)a(ω0, t ) − i�ex exp (−iω0t ) + a(ω0, t )

2

∑
m 
=0

{
Gωm,ω0 n(ωm, t ) − Gω0,ωm [n(ωm, t ) + 1]

}
, (2)

da(ωk, t )

dt
= (−iωk − γrad(ωk )/2)a(ωk, t ) + a(ωk, t )

2

∑
m 
=k

{
Gωm,ωk n(ωm, t ) − Gωk ,ωm [n(ωm, t ) + 1]

}
, k 
= 0, (3)

dn(ωk, t )

dt
= −γrad(ωk )n(ωk, t ) +

∑
m

{
n(ωm, t )[n(ωk, t ) + 1]Gωm,ωk − n(ωk, t )[n(ωm, t ) + 1]Gωk ,ωm

}
, k 
= 0, (4)
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where γrad(ωk ) is the rate of radiative losses of the quasi-
particle with the eigenfrequency ωk , �ex = −d(ω0) · E0/h̄ is
the interaction constant between the external field with the
amplitude E0 and the quasiparticle with the frequency ω0 and
the dipole moment d(ω0). For the nanoparticle of the radius
R, the dipole moment of the k th quasiparticle is determined
as

d(ω) = 4πR3

√
�ωh̄ε0

πR3

√
Imε

(lin)
M (ω)∣∣ε̂(lin)

M (ω) + 2
∣∣ed ,

where ed is the unit vector in the direction of the dipole mo-
ment, and ε̂

(lin)
M (ω) = Reε(lin)

M (ω) + iImε
(lin)
M (ω) is the linear

part of metal permittivity.
Equations (2)–(4) have clear physical meaning. According

to Eq. (2), the quasiparticle with the frequency ω0 is excited
by the coherent external field with the same frequency and by
incoherent fields of the other quasiparticles with frequencies
ωm, m 
= 0. A quasiparticle with the frequency ωk 
=0 is only
excited by incoherent fields of the other quasiparticles with
frequencies ωm 
=k , Eq. (3). The number of quasiparticles with
ωk is governed by rate equation (4). The quantity n(ωk, t ) up
to the factor h̄ωk determines the total energy (coherent and
incoherent) in the corresponding mode. Note that if in Eq. (4)
we put ωk = ωSt, then in the sum, only the term with m = 0
remains; then, replacing Gω0,ωSt by G↓, we obtain Eq. (1).

Equation (3) has a trivial stationary solution, a(ωk, t ) =
0, k 
= 0. This solution indicates that quasiparticles with
the frequencies ωk 
= ω0 are incoherent. When the condi-
tion

∑
m {Gωm,ωk n(ωm, t ) − Gωk ,ωm (n(ωm, t ) + 1)} = γrad(ωk )

is fulfilled, there also may be a nontrivial stationary solution
a(ωk, t ) ∼ ast (ωk ) exp(−iωkt ) with a(ωk ) 
= 0, k 
= 0. This
solution corresponds to the beginning of self-oscillations,
which occur in a Raman laser with a high-Q resonator [31,32].
When a plasmonic nanoparticle plays the role of the resonator,
the beginning of self-oscillations only occurs at high-power
pulse pumping [18]. Here, we do not consider such a situation
and only deal with the case a(ωk, t ) = 0, k 
= 0, which is
relevant to our experiment.

The values Gωm,ωk are the rates of scattering of a quasi-
particle from the state with the frequency ωk to the state
with the frequency ωm. The term ∼Gωm,ωk n(ωm, t )n(ωk, t )
describes the process of the stimulated Brillouin excitation
(like in SRS), while ∼Gωm,ωk n(ωm, t ) describes the process
of spontaneous excitation.

As mentioned in the Introduction, the intensity of Brillouin
scattering on a metal surface is smaller by order of magnitude
as compared to PL from a nanoparticle. The model developed
in this section is quite general; it can be applied to Brillouin
scattering on a metal surface. As it follows from Eqs. (A13)
and (B6), the difference between scatterings from a surface
and a nanoparticle is in the interaction constants, which is
determined by the square of the overlapping integral of the
electric-field distribution inside the metal, �(0)

m (r), and the
distribution of the phonon displacement, C∗

l (r),

Gωm,ωn ∼ (wnml )
2 =

(
w̃l

∫
V

d3r�(0)∗
n (r)�(0)

m (r)C∗
l (r)

)2

.

Since due to the normalization, both �(0)
m (r) and Cl (r)

are inversely proportional to
√

V , from Eq. (A13) it follows
that wnml ∼ 1/

√
V . If the nanoparticle’s size R is much less

than both skin depth δ and the phonon coherence length
Lcoh (R � δ, Lcoh), then the field and phonon distributions
overlap in the entire volume of the nanoparticle, and the in-
teraction constant Gωm,ωn does not depend on the skin depth
and Lcoh. A different dependence arises when we consider
Brillouin scattering on the metal surface. In this case, the
field penetrates the metal within the skin depth δ ∼ 30 nm
while phonons are coherent over the length Lcoh ∼ 10 μm,
which is much less than the total volume of the metal. As
a result, in the case of Brillouin scattering on a metal sur-
face, the interaction between the electric-field modes Gωm,ωn

differs by the factor (wnml )2 ∼ (δ/Lcoh )2 ∼ 10−3 from Bril-
louin scattering in metal nanoparticles. This estimation can
explain why the background of Brillouin scattering on a metal
nanoparticle is much larger than that on the metal surface
[9].

V. PHOTOLUMINESCENCE SPECTRUM

Now we are ready to calculate the whole emission
spectrum, S(ω), which includes both the NSPL spectrum,
SNSPL(ω), and Rayleigh scattering, SR(ω), of a plasmon
nanoparticle. As mentioned in Sec. III, we consider the forma-
tion of the PL background as a two-step process. At the first
step, we suppose that the external field creates the stationary
value of the number of quasiparticles. At the second step, we
find the spectrum created by radiation of dipole moments of
quasiparticles, which are in their stationary state. In Appendix
D, we show that the spectrum can be expressed in the form
(see also Refs. [25,33])

S(ω) = 1

π
h̄ωt

∑
k

γrad(ωk )
∫ +∞

−∞
dτ 〈â†(ωk, tst )â(ωk, tst + τ )〉 exp (iωτ ). (5)

Now, we need to find two-time correlators 〈â†(ω0, t )â(ω0, t + τ )〉 and 〈â†(ωk, tst )â(ωk, tst + τ )〉. To do this, we use the
quantum regression theorem [25], which states that two-time correlators of an operator are described by the same equations as
the one-time correlator. In our case, these correlators are governed by Eqs. (2) and (3), respectively. Assuming that n(ωk, t ) � 1
and γrad(ω0) � Gωk ,ωm we obtain

d

dτ
〈â†(ω0, t )â(ω0, t + τ )〉 = (−iω0 − γrad(ω0))〈â†(ω0, t )â(ω0, t + τ )〉 − i|a(ω0, tst )|2�ex exp (−iω0τ ), (6)

d

dτ
〈â†(ωk, t )â(ωk, t + τ )〉 = (−iωk − γrad(ωk ))〈â†(ωk, t )â(ωk, t + τ )〉, k 
= 0. (7)
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The solutions to Eqs. (6) and (7) for t → +∞ are

〈â†(ω0, tst )â(ω0, tst + τ )〉 = −i�ex|a(ω0, tst )|2
γrad(ω0)

exp (−iω0τ ), (8)

〈â†(ωk, tst )â(ωk, tst + τ )〉 = n(ωk, tst ) exp [(−iωk − γrad(ωk ))τ ], k 
= 0. (9)

To complete the calculations, we need to find a(ω0, tst ) and n(ωk, tst ). To calculate these quantities, we note that the energy
transfer coefficient, Gωm,ωk , is rather small, and we can assume that n(ωk ) � n(ω0) for any k 
= 0. For the stationary process
when t � tst, we can neglect time derivatives in the left-hand side of Eqs. (2)–(4). Then, we find the equations for the stationary
values of a(ω0, tst ) and n(ωk ):

a(ω0, tst ) = −i�ex exp (−iω0t )

γrad(ω0) + ∑
m Gωm,ω0

, (10)

−γrad(ωk )n(ωk, tst ) +
∑

m

{
Gωk ,ωm n(ωm, tst )[1 + n(ωk, tst )] − Gωk ,ωm n(ωk, tst )[1 + n(ωm, tst )]

} = 0, k 
= 0. (11)

Equation (10) and the solution of Eq. (11) should be sub-
stituted to Eqs. (8) and (9), respectively.

Equation (7) contains both contributions of Rayleigh scat-
tering, SR(ω), [see Eq. (8)] and of PL, SNSPL(ω), [see Eq. (9)].
Combining Eqs. (5) and (9) one can find the NSPL spectrum
SNSPL(ω):

SNSPL(ω) = 1

π
t
∑
k 
=0

h̄ωkγrad(ωk )

γ 2
rad(ωk ) + (ωk − ω)2 n(ωk, tst ). (12)

In Eq. (12), the multiplier h̄ωkγrad(ωk ) indicates how effi-
ciently the quasiparticle shines at the frequency ωk . As noted
above, γrad(ωk ) ∝ 1/|εM(ωk ) + 2|2, that is, the modes whose
frequencies are located near the plasmon resonance frequency
ωpl shine most efficiently.

VI. RADIATION SPECTRUM IN EXACT MODEL

To find the spectrum of NSPL, we solve the complete sys-
tem of equations using computer simulation of Eqs. (2)–(4).
In numerical modeling, a solution to Eqs. (2)–(4) is found for
a discrete finite set of frequencies {ωk}. This set is defined
according to the formula

ωk = ωmin + k − 1

N − 1
(ωmax − ωmin), k = 1, ..., N, (13)

where to compare to the experiment, we consider the fre-
quency region that covers the plasmon resonance line with
the minimum and maximum frequencies ωmin = 1.5 eV and
ωmax = 2.4 eV, 12 100 cm−1, respectively, and the total num-
ber of frequencies is N = 400. The frequency of the plasmon
resonance is taken from the experimental data shown in Sec. II
(Fig. 2, blue line), ωpl = 1.75 eV. It is assumed that the
external EM field has the frequency ω0 = 1.96 eV, and the
radius of the nanoparticle R = 50 nm. Once nst

k are found, we
substitute nst

k into Eq. (12) and define the spectrum of NSPL.
The results of computer simulation give the mode occupation
numbers nst

k . To determine the NSPL spectrum, Spl(ω), these
numbers are substituted into Eq. (12). Note that in noble
metals, the phonon frequencies forming the allowed band lie
inside the region between 0 and ωmax

ph , which is about several
THz [34,35]; therefore, driven oscillations inside the inter-
val (ωex − ωmax

ph , ωex + ωmax
ph ) may be excited. Consequently,

instead of a discrete spectrum, we obtain a continuous one,
shown in Fig. 2 by the red line.

This spectrum reproduces the main characteristics ob-
served in the experiment: the shape of the plasmon resonance
in the low-frequency region and the Gibbs distribution in
the high-frequency region. It also reproduces the shape of
the SSPNS in the low-frequency region and the Gibbs dis-
tribution in the high-frequency region. Note that a direct
consequence of Eqs. (2)–(4) is an increase in the intensity of
the high-frequency part of the PL spectrum with increasing
temperature (see Fig. 5). Such an increase has been observed
in experiment [9].

Let us compare experimental and theoretical results. In
numerical simulation, we use the constant G0 from Eq. (B9) of
Appendix B as a fitting parameter. The best fit shown in Fig. 2
is obtained for G0 = 10−8 s−1. One can see that our model
correctly describes both the decrease of the amplitude of the
high-frequency part of NSPL spectra that changes according
to the Gibbs distribution, ∼exp(−h(ω − ω0)/kBT ), and the
maximum in the low-frequency part of NSPL spectra at the
frequency of the plasmon resonance. Note that in experiment,

FIG. 5. The high-frequency part of the luminescence spectrum
at temperatures 100 K (solid red line), 200 K (dotted blue line),
300 K (dashed green line), and 400 K (dot–dashed black line). For
all temperatures, S(ω) falls off exponentially in agreement with the
Gibbs distribution.
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the Rayleigh peak in the lower part of the spectrum is usually
cut out by a filter, and only the background is visible.

VII. CONCLUSIONS

The proposed mechanism for PL of nanostructures made
of noble metals correctly describes the spectrum for the entire
range of frequencies. NSPL is attributed to the cascade Bril-
louin scattering of the incident wave by metal phonons under
the plasmon resonance conditions. The mechanism consists
of the cascade Brillouin scattering of the driven oscillation of
the electric field inside the SSPNS. The spontaneous Brillouin
scattering of the incident EM field excites an oscillation of
the EM field inside the nanoparticle at a shifted frequency
(the Stokes shift). In turn, the field at the shifted frequency
also undergoes Brillouin scattering exciting another oscilla-
tion with a lower frequency. This process continues launching
a cascade of Brillouin scattering processes of an EM field
inside the nanoparticle. The cascade process continues as long
as frequencies of new oscillations fall into the SSPNS. In the
Stokes part of the spectrum, the developed theory reproduces
the SSPNS. We also show that the Gibbs distribution of the
high-frequency intensity is due to the anti-Stokes Brillouin
scattering. Thus, Brillouin scattering is the inelastic process,
the necessity of which has been indicated in Ref. [9]

The developed theory is in good agreement with the experi-
mentally observed NSPL, both below and above the frequency
of the incident field. The theory explains the Gibbs distri-
bution of the anti-Stokes component of the NSPL spectrum,
which is observed in our experiment. It also describes the
increase in the integrated intensity of the anti-Stokes compo-
nent of the spectrum with increasing metal temperature. In the
lower-frequency part of the spectrum, the developed theory
reproduces the plasmon resonance line when the plasmon
resonance frequency lies below the frequency of the excitation
field. In addition, the developed theory reproduces the shift
of the maximum of the NSPL spectrum with respect to the
plasmon resonant frequency.

NSPL accompanies SERS measurements manifesting itself
in the scattering spectrum as a background. This back-
ground is superimposed on the SERS signal from the studied
molecules, limiting the sensitivity of SERS. The proposed
mechanism for NSPL and the microscopic theory of this
phenomenon developed in this work show that attempts to
increase the SERS accuracy by redesigning substrates by re-
ducing the size of the parts that form hot spots (points of the
high-field concentration) should also lead to an increase in the
background, which degrades the properties of the substrates.
This fact should be taken into account when designing sub-
strates.
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APPENDIX A: HAMILTONIAN OF THE SYSTEM

To quantitatively describe the PL spectrum, we quantize
the EM field of a plasmon nanoparticle at each frequency of
the SSPNS. For this purpose, we use the procedure of macro-
scopic quantization of EM fields that has been developed for
linear media [29,30]. To avoid complicated first-principle cal-
culations [36], the macroscopic quantization does not take into
account a complex structure of a medium but only considers
the macroscopic response of the medium to an electromag-
netic field. This makes it possible to model the medium as a
set of elastic quantum dipoles representing oscillation states
of electrons [36]. It is assumed that the dipoles interact with
the modes of a reservoir. Such a reservoir can be phonons,
impurities, etc. The eigenmodes of such a system are the cou-
pled elastic dipoles and reservoir modes. The eigenmodes are
found by using the Fano diagonalization procedure [26,30].
The frequencies of these eigenmodes are real, and they dif-
fer from the plasmon resonance frequency. The closer the
eigenmode frequency to the plasmon resonance frequency, the
greater the contribution of the plasmon structure mode into
this eigenmode.

At the same time, such a model allows for obtaining per-
mittivity of the medium. The coupling constant between the
quantum dipoles with a reservoir is still an unknown free
parameter. This parameter can be determined by equating the
obtained permittivity to the known permittivity, εlin

M , of the
metal.

As a result of applying the macroscopic quantization pro-
cedure to a metal nanoparticle, it turns out that the eigenmode
frequencies fill the SSPNS. The Hamiltonian of such eigen-
modes has the form

Ĥpl =
∑

k

h̄ωkâ†
k âk, (A1)

where âk ≡ â(ωk ) and â†
k ≡ â†(ωk ) are the operators of anni-

hilation and creation of the eigenmode with the frequency ωk .
These operators satisfy the Bose commutation relations:

[âk, â†
k′ ] = δkk′ . (A2)

Below, for brevity, we use the designation âk instead of
â(ωk ). The eigenmodes obtained after the Fano diagonaliza-
tion are the quasiparticles considered in Refs. [26,30]. The
eigenmode is a dressed state consisting of driven oscillations
of the field in the nanoparticle and the reservoir modes. The
reservoir is responsible for the imaginary part of permittivity
or the electron conductivity. For linear phenomena that we
consider, this reservoir describes scattering of electrons on
impurities in metal and on electrons moving with velocities,
which do not contribute to the plasma oscillations.

The operator of the electric near field of the eigenmodes is
expressed through the operators âk and â†

k according to

E(r, t ) =
∑

k

�k (r)
(
â†

k (t ) + âk (t )
)
, (A3)

where �k (r) are the functions that determine the distribution
of the near field created by the eigenmode with the frequency
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ωk . For example, in the dipole approximation, for a spherical
subwavelength plasmon particle with the radius R in a vac-
uum, the function �k (r) has the form [26]

�k (r) =
√

h̄�ω

πR3ε0

√
Imε

(lin)
M (ωk )∣∣ε(lin)

M (ωk ) + 2
∣∣

× ez

{
grad[(r/R)/2

√
π ], r < R,

grad[3(R/r)2 cos θ/2
√

π ], r > R,

where ε0 is the dielectric constant of vacuum, �ω is the
sampling frequency of the SSPNS, the radius-vector r is ex-
pressed in terms of polar, θ , and azimuthal, ϕ, angles as r =
[r sin θ cos ϕ, r sin θ sin ϕ, r cos θ ], and ez is the unit vector
in the z direction. Consequently, the dipole moment is directed
along the z axis. We emphasize that only the linear part of
permittivity ε

(lin)
M (ωn) is used in the expression for the plasmon

electric-field operator. Below, we take into account that the
electric field per one quantum, �k (r), is inversely proportional
to the volume of the nanoparticle, �k (r) ∼ 1/

√
R3 ∼ 1/

√
V .

Let us consider the interaction of the nanoparticle with
an external monochromatic wave having the frequency ω0.
Due to the monochromatic character of the external field
and linearity of the medium, the excited quasiparticle also
has the frequency ω0. This interaction is described by the
Hamiltonian Ĥex:

Ĥex = −d̂0 · E(rpl ) cos (ω0t ) = h̄�exâ†
0e−iω0t + H.c., (A4)

where d̂0 = d0(â†
0 + â0) is the operator of the dipole mo-

ment of a quasiparticle with the frequency ω0, �ex = −d0 ·
E(rpl )/h̄ is the Rabi constant of the interaction of the quasipar-
ticle with the external field. The value of the dipole moment
d0 ≡ d(ω0) is determined by the geometry and permittivity of
the nanoparticle.

All quasiparticle dipole moments have the same depen-
dence on the frequency and the nanoparticle radius. For
example, the dipole moment, d(ω), of a spherical subwave-
length plasmon nanoparticle of the radius R in vacuum is
determined by the expression [26]

d(ω) = 4πR3

√
�ωh̄ε0

πR3

√
Imε

(lin)
M (ω)∣∣ε(lin)

M (ω) + 2
∣∣ed . (A5)

Below, we consider the radiated intensity of a quasipar-
ticle (see Appendix C). The dipole moment is determined
by Eq. (A5), and the radiated intensity is proportional to
the square of this dipole moment. In the neighborhood
of the plasmon resonance, ω ≈ ωpl, permittivity is pro-
portional to ∼((ω − ωpl )2 + γ 2

pl )
−2, where we denote γpl =

Imε
(lin)
M (ωpl )/(∂Reε(lin)

M (ωpl )/∂ω). This quantity γpl has the
meaning of the width of the SSPNS.

Next, we find the Hamiltonian of the interaction of quasi-
particles with phonons in metal, which gives an additional
nonlinear part in ImεM(ωpl ). The electric field inside the
medium induces polarization caused by the displacement of
electrons from the equilibrium positions. In turn, the elec-
trons’ displacement leads to a displacement of nuclei of the
crystal lattice. Displaced nuclei excite phonons, which result
in the changing local density of the medium. This changing, in

turn, affects the dielectric constant of metal [37]. Suppose that
at the point r, a nucleus deviates from the equilibrium position
by q(r). We assume that this deviation is small, allowing one
to expand the dielectric constant of the metal in the series over
q(r). Retaining the zeroth and the first terms, we obtain

ε(r, ω) = ε(0)(r, ω) + wi(ω)qi(r), (A6)

where coefficients wi(ω) determine the change in the dielec-
tric constant of the metal at the point r due to the deviation of
the nucleus. Substituting Eqs. (A6) and (A3) into the expres-
sion for the EM field energy

1

8π

∫
V

dV [∂ (Re(ε)ω)/∂ω]|E(r)|2

and retaining the terms proportional to the first order of the
nucleus displacement, qi(r), we obtain the expression for the
additional energy of the electric field:

�Ŵ = 1

8π

∫
V

d3rw̃iqi(r)
(
�(0)∗

n (r)â†
n + �(0)

n (r)ân
)

× (
�(0)∗

m (r)â†
m + �(0)

m (r)âm
)
, (A7)

where w̃i = ∂ (ωwi)/∂ω. For simplicity, we suppose that w̃i

does not depend on i, w̃i = w̃.
According to the general theory of phonons in metals [37],

the operator of the deviation of the i th nucleus from the equi-
librium position, q̂i, can be expressed in terms of operators of
annihilation, b̂k , and creation, b̂†

k , of the k th phonon mode in
the following way:

q̂i(r) =
∑

l

(C∗
l (r)b̂†

l + Cl (r)b̂l ), (A8)

where operators b̂l and b̂†
l obey the commutation relations:

[b̂l , b̂†
l ′ ] = δl,l ′ . (A9)

Functions Cl (r) describe the distribution of the lth phonon
mode. They satisfy the normalization condition:∫

V
d3r|Cl (r)|2 = 1. (A10)

The phonon dynamics is described by the Hamiltonian

Ĥphon =
∑

l

h̄ω
ph
l b̂†

l b̂l . (A11)

Substituting Eq. (A8) into Eq. (A7) and discarding the
terms proportional to â†

nâ†
n′ and ânân′ , we reduce the expres-

sion for the interaction Hamiltonian of plasmons and phonons
to the optomechanical Hamiltonian [28]:

Ĥpl-phon =
∑

l

∑
n,m

wnml (C
∗
l (r)b̂†

l + Cl (r)b̂l )â
†
nâm, (A12)

where wnml are the interaction constants of phonons and plas-
mons having the form

wnml = w̃

∫
V

d3r�(0)∗
n (r)�(0)

m (r)C∗
l (r). (A13)

To describe the radiation of the dipole eigenmodes, it is
necessary to consider their interaction with free-space modes.
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For this purpose, the Hamiltonian of the EM field of a free-
space mode is usually introduced:

Ĥrad =
∑

μ=1,2

∫
d3k h̄ωk f̂ †(μ, k) f̂ (μ, k). (A14)

Here ωk = c|k|, f̂ (μ, k) and f̂ †(μ, k) are annihilation and
creation operators of the EM field of the free-space mode
with the polarization μ and the wave vector k, satisfying the
following commutation relations:

[ f̂ (μ, k), f̂ †(μ′, k′)] = δμμ′δ(k − k′). (A15)

The interaction between the dipole moments of the eigen-
modes of a nanoparticle and the electric field of the free-space
modes has the form

Ĥpl-rad =
∑

n

−d̂n · Ên

=
∑

μ=1,2

∫
d3k

∑
n

h̄�n(μ, k)â†
n f̂ (μ, k) + H.c.

(A16)

Here �n(μ, k) = −dn · Eμ,k(r)/h̄ is the Rabi constant of
the interaction of the electric field of the free-space mode with
the polarization μ and the wave vector k with the eigenmode
of the plasmon particle.

Thus, the described system includes plasmons of a sub-
wavelength metal nanoparticle, the external EM wave incident
on the nanoparticle, free-space photons, and phonons of the
metal nanoparticle. The Hamiltonian of this system is the sum
of the Hamiltonians (A1), (A4), (A11)–(A14), and (A16):

Ĥ = Ĥpl + Ĥphot + Ĥpl-phot + Ĥex + Ĥphon + Ĥpl-phon.

(A17)

APPENDIX B: ELIMINATION OF PHONON DEGREES OF
FREEDOM IN THE MARKOV APPROXIMATION

Due to the large number of degrees of freedom described
by Hamiltonian (A17), it is difficult to find the system
eigenmodes even numerically. We, therefore, should make
some simplifications. We exclude the degrees of freedom
of phonons in metal and free-space photons. After this, in-
stead of considering a closed quantum system, which includes
photons, phonons, and EM modes of a sphere excited by
an external field, we have to deal with an open quantum
system, which only includes the plasmon-polariton modes.
Consequently, instead of the Schrödinger equation, it is

more convenient to use the master equation for the density
matrix.

To obtain the master equation, it is necessary to exclude
the photon and phonon subsystems sequentially. Using the
standard procedure for excluding the reservoir of free-space
modes [33], we obtain the Lindblad superoperator L̂photon(ρ̂),
describing the relaxation of the plasmon density matrix ρ̂ [33]:

L̂photon(ρ̂) =
∑

n

1

2
γrad(ωn){2ânρ̂â†

n − ρ̂â†
nân − â†

nânρ̂},
(B1)

where the decay rate γrad(ωn) of the quasiparticle at the fre-
quency ωn is determined according to Fermi’s golden rule
[33]:

γrad(ωn) = π
∑

μ=1,2

∫
d3k|�n(μ, k)|2δ(ωn − c|k|). (B2)

The rate of quasiparticle energy loss at the frequency ωn is
determined by the dipole moment of the quasiparticle and is
proportional to γrad(ωn) ∝ 1|εM(ωn) + 2|2 [26]. The Lindblad
superoperator (B1) describes the process of quasiparticle en-
ergy loss due to radiation into free space [38]. As a result, the
term corresponding to the free-space modes is excluded from
the Hamiltonian of the whole closed system, but Lindbladian
(B1) appears in the master equation:

∂ρ̂

∂t
= i

h̄
[ρ̂, Ĥpl + Ĥex + Ĥphon + Ĥpl-phon] + L̂photon[ρ̂].

(B3)
Now, we can exclude the phonon subsystem. For this pur-

pose, we assume that phonons are in a state of thermodynamic
equilibrium with fixed temperature T at any moment of time.
For convenience, in Hamiltonian (A13), we switch to the
interaction representation:

Ĥpl-phon =
∑

l

∑
n,m

wnml
(
C∗

l (r)b̂†
l eiωph

l t + Cl (r)b̂l e
−iωph

l t
)

× â†
neiωnt âme−iωmt . (B4)

The interaction Hamiltonian of phonons and quasiparticles,
Eq. (B4), describes the inelastic process of phonons’ absorp-
tion/emission. In this process, the energy is transferred from
the quasiparticle with the frequency ωn to the one with the
frequency ωm. This is the process of Brillouin scattering.

Next, following the standard procedure of the reservoir
exclusion [33], in which the phonon subsystem with Hamil-
tonian (A11) serves as a reservoir, we obtain the Lindblad
relaxation superoperator L̂phonons(ρ̂) that describes the relax-
ation of the density matrix of the plasmon subsystem ρ̂:

L̂phonon(ρ̂) =
∑

n

∑
m

Gωm,ωn{2â†
nâmρ̂â†

mân − ρ̂â†
mânâ†

nâm − â†
mânâ†

nâmρ̂}. (B5)

In Eq. (B5), the function G(ωn − ωm) is the rate of the relaxation processes, which is determined from Fermi’s golden rule
[33]:

Gωm,ωn =
{

π
∑

l |wnml |2
(
1 + N

(
ω

ph
l

))
δ
(
ωn − ωm − ω

ph
l

)
, ωn − ωm > 0,

π
∑

l |wnml |2N
(
ω

ph
l

)
δ
(
ωm − ωn − ω

ph
l

)
, ωn − ωm < 0.

(B6)
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The function Gωm,ωn has two important features. First, since
above the frequency ω

ph
max the density of states of phonons is

zero, then

Gωm,ωn = 0, when ωm − ωn > ωph
max (B7)

Second, since phonons are in thermodynamic equilibrium
with temperature T , one obtains

Gωm,ωn ∝ exp (−h̄(ωm − ωn)/kBT )Gωn,ωm . (B8)

The relaxation operator (B5) reflects the structure of ex-
cluded Hamiltonian (A12) and describes Brillouin scattering,
in which the quasiparticle with the frequency ωn turns into the
quasiparticle with the frequency ωm due to scattering on the
phonon with the frequency ωn − ωm. If ωn − ωm > 0, then the
process corresponds to the Stokes scattering, and the energy
is absorbed by the phonon reservoir. In the opposite case,

ωn − ωm < 0, this is the anti-Stokes scattering, in which the
energy of a quasiparticle increases by h̄(ωm − ωn). This en-
ergy is drawn from the thermal energy of the phonon reservoir.
From Eq. (B8) it follows that the speed of the first process
is greater than the speed of the second one by the factor of
(1 + N (ωph

k ))/N (ωph
k ) = exp(h̄�ω/kBT ), so that we have a

more intensive excitation of the low-frequency modes.
In Eq. (B6), using the phonon density of states, D(ωph),

the sum over phonon wave vectors can be replaced by the
integral over frequencies ω

ph
l as

∑
l = ∫

dωphD(ωph ). To ad-
vance further, we assume that in the frequency range from 0 to
ω

ph
max, phonons have the linear dispersion, ωph = u|k|, where

u is the speed of sound. In this case, for the density of states,
we have D(ωph) = 3V (ωph)2/2π2u3 [39]. Then, performing
the integration in Eq. (B6) and using the expression for the
function wnml , Eq. (A13), we obtain

Gωm,ωn = |wnm(ωn − ωm)|2h̄3ωnωm

2πMc3
ph

(ωn − ωm)(1 + N (ωn − ωm))

×
(

sin

(
(ωn − ωm)R

vs

)
− (ωn − ωm)R

vs
cos

(
(ωn − ωm)R

vs

))2(
V k3

l

)−2

= G0(ωn − ωm)(1 + N (ωn − ωm))

(
sin

(
(ωn − ωm)R

vs

)
− (ωn − ωm)R

vs
cos

(
(ωn − ωm)R

vs

))2(
V k3

l

)−2
, (B9)

where 0 � ωn − ωm � ω
ph
max and we denote G0 = (|wnm(ωn − ωm)|2h̄3ωnωm)/(2πMc3

ph ). In numerical simulation, we use the
parameter G0 as a fitting parameter.

Now, we obtain the master equation, from which phonon Hamiltonians (A11) and (B4) are excluded, and which contains a
dissipative operator L̂phonon(ρ̂):

∂ρ̂

∂t
= i

h̄
[ρ̂, Ĥpl + Ĥex] + L̂photon(ρ̂ ). (B10)

Finally, using the identities 〈 ˙̂ak〉 = Tr( ˙̂ρâk ) ≡ ak and 〈 ˙̂nk〉 = Tr( ˙̂ρn̂k ) = nk , commutation relation (A2), and the master
equation for the density matrix, Eq. (B10), we arrive at the equation for the expected value ak of operators âk and n̂k . For
ak we obtain

dak

dt
= i

h̄
Tr

(
âk

[∑
n

h̄ωnâ†
nâ + h̄�exâ†

0e−iω0t + h̄�exâ†
0e−iω0t , ρ̂

])

+ Tr

(
ak

∑
n

∑
m

Gωm,ωn

{
2â†

nâmρ̂â†
mân − ρ̂â†

mânâ†
nâm − â†

mânâ†
nâmρ̂

})+Tr

(
ak

∑
n

1

2
γrad(ωn)

{
2ânρ̂â†

n − ρ̂â†
nân − â†

nânρ̂
})

= (−iωk )Tr(âk ρ̂) − i�exe−iω0tδk,0Tr(ρ̂ ) +
∑

m

Gωm,ωk Tr(âk n̂mρ̂)

− Gωk ,ωm Tr(âk (n̂m + 1)ρ̂) − Gωk ,ωk Tr(âk ρ̂ ) − 1

2
γrad(ωk )Tr(âk ρ̂ )

=
(

−iωk − 1

2
γrad(ωk ) − Gωk ,ωk

)
ak − i�exe−iω0tδk,0 +

∑
m

{Gωm,ωk 〈âk n̂m〉 − Gωk ,ωm [〈âk n̂m〉 + 〈âk〉]} (B11)

Further, we take into account that Gωk ,ωk = 0 [see Eq. (B9)], and in the mean-field approximation, we uncouple the
correlations 〈âk n̂m〉 = 〈âk〉〈n̂m〉. As a result, we have

dak

dt
=

(
−iωk − 1

2
γrad(ωk )

)
ak − i�exe−iω0tδk,0 + ak

∑
m

{
Gωm,ωk nm − Gωk ,ωm (nm + 1)

}
. (B12)
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These are Eqs. (2) and (3) from the main text. Similarly, we obtain Eq. (4) for nk, k 
= 0:

dnk

dt
= i

h̄
Tr

(
nk

[∑
n

h̄ωnâ†
nâ + h̄�exâ†

0e−iω0t + h̄�exâ†
0e−iω0t , ρ̂

])

+ Tr

(
nk

∑
n

∑
m

Gωm,ωn

{
2â†

nâmρ̂â†
mân − ρ̂â†

mânâ†
nâm − â†

mânâ†
nâmρ̂

})

+ Tr

(
nk

∑
n

1

2
γrad(ωn)

{
2ânρ̂â†

n − ρ̂â†
nân − â†

nânρ̂
})

=
∑

m

Gωm,ωk Tr((1 + n̂k )n̂mρ̂) − Gωk ,ωm Tr(n̂k (n̂m + 1)ρ̂) − γrad(ωk )Tr(n̂k ρ̂ )

≈ −γrad(ωk )nk + 2
∑

m

{
Gωm,ωk nm[1 + nk] − Gωk ,ωm nk[1 + nm]

}
. (B13)

APPENDIX C: RELATION BETWEEN NUMBERS OF QUASIPARTICLES AND EMITTED PHOTONS

As mentioned in Sec. III, we calculate the PL background as a two-step process. At the first step, we find the number of
quasiparticles excited during the cascade process by the external field. The detail of calculations demanded in the first step are
described in Appendix B. Here we discuss the second step, in which the number of photons emitted by the given number of
quasiparticles is determined.

To find the number of emitted photons, N (μ, k, t ) = f̂ †(μ, k) f̂ (μ, k), with the wave vector k and the polarization μ, we
assume that the amplitude am is determined by the system of Eq. (B12). Using Hamiltonians (A14) and (A16), we can write the
Heisenberg equation for the annihilation operator f̂ (μ, k):

˙̂f (μ, k, t ) = i

h̄
[Ĥrad + Ĥpl-rad, f̂ (μ, k, t )]

= −iωk f̂ (μ, k) − i
∑

m

�m(μ, k)âm(t ) (C1)

In Eq. (C1), we assume that the initial moment of time is tst, i.e., the time for which the number of quasiparticle reaches its
stationary value, is determined by Eq. (B12). The integration of Eq. (C1) gives

f̂ (μ, k, t ) = f̂ (μ, k, tst ) exp (−iωkτ ) − i
∑

m

�m(μ, k)
∫ t

0
dτ âm(tst + τ ) exp (−iωkτ ), (C2)

where t is counted from tst. The mean value of the photon number in each EM free-space mode is

N (μ, k, t ) = 〈 f̂ †(μ, k, t ) f̂ (μ, k, t )〉

= 〈 f̂ †(μ, k, tst ) f̂ (μ, k, tst )〉 +
∑

m

(
−i�m(μ, k)

∫ t

0
dτ 〈 f̂ †(μ, k, tst )âm(tst + τ )〉eiωkτ + h.c.

)

+
∑

m1,m2

�m1 (μ, k)�∗
m2

(μ, k)
∫ t

0
dτ2

∫ t

0
dτ1

〈
â†

m2
(tst + τ2)âm1 (tst + τ1)

〉
exp (iωk(τ1 − τ2)). (C3)

In the right-hand part of Eq. (C3), the first term is the number of thermal photons, 〈 f̂ †(μ, k, tst ) f̂ (μ, k, tst )〉 ≈ exp(−h̄ωk/kT ).
At optical frequencies and room temperature, this contribution is much less than unity; below, we neglect it. To evaluate
the second term, we use the mean-field approximation, in which the operators of a quasiparticle and free-space photons are
uncorrelated, as 〈 f̂ †(μ, k, tst )âm(τ )〉 ≈ 〈 f̂ †(μ, k, tst )〉〈âm(τ )〉. Because f̂ †(μ, k, tst ) is the operator of thermal photons, which are
incoherent, we have 〈 f̂ †(μ, k, tst )〉 = 0. Thus, the second term is zero. To calculate the third term, we substitute the integration
variable, τ1, with τ = τ1 − τ2, and obtain

N (μ, k, t ) =
∑

m1,m2

�m1 (μ, k)�∗
m2

(μ, k)
∫ t

0
dτ2

∫ t−τ2

−τ2

dτ 〈â†
m2

(tst + τ2)âm1 (tst + τ2 + τ )〉 exp (iωkτ ). (C4)
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In Eq. (C4), due to the exponential factor exp(iωkτ ), the main contribution to the integral over τ comes from the region near
τ = 0. Therefore, we can expand the limits of integration to infinity:

N (μ, k, t ) ≈
∑

m1,m2

�m1 (μ, k)�∗
m2

(μ, k)
∫ t

0
dτ2

∫ ∞

−∞
dτ

〈
â†

m2
(tst + τ2)âm1 (tst + τ2 + τ )

〉
exp (iωkτ ). (C5)

Further, since we assume that the value of â†
m2

reaches its stationary state at the time tst, then at the time tst + τ2 � tst, the
value â†

m2
(tst + τ2) is also equal to its stationary state. Therefore, â†

m2
(tst + τ2) = â†

m2
(tst ). Thus, from Eq. (C5) we have

N (μ, k, t ) =
∑

m1,m2

�m1 (μ, k)�∗
m2

(μ, k)
∫ t

0
dτ2

∫ ∞

−∞
dτ

〈
â†

m2
(tst )âm1 (tst + τ )

〉
exp (iωkτ )

= t
∑

m1,m2

�m1 (μ, k)�∗
m2

(μ, k)
∫ ∞

−∞
dτ

〈
â†

m2
(tst )âm1 (tst + τ )

〉
exp (iωkτ ). (C6)

In the mean-field approximation, it is implied that the oper-
ators of quasiparticles at different frequencies do not correlate
〈â†

m2
(tst )âm1 (tst + τ )〉 ≈ 〈â†

m2
(tst )〉〈âm1 (tst + τ )〉 for m1 
= m2.

Since excitations of quasiparticles arise due to incoherent
Brillouin scattering, 〈â†

m2
(tst )〉 = 0. Therefore, in Eq. (C6),

only the terms with m1 = m2 give nonzero contributions:

N (μ, k, t ) = t
∑

m

|�m(μ, k)|2
∫ ∞

−∞
dτ 〈â†

m(tst )âm(tst + τ )〉

× exp (iωkτ ). (C7)

To obtain the radiation spectrum, i.e., the energy emitted at
the frequency ω, it is necessary to sum N (μ, k, t ) over wave
vectors and the polarizations for which |k| = ω/c:

S(ω) = h̄ω
∑

μ,k,

|k|=ω/c

N (μ, k, t )

= h̄ωt
∑

m

∫ ∞

−∞
dτ

〈
â†

m(tst )âm(tst + τ )
〉
exp (iωτ )

×
∑

μ,k,

|k|=ω/c

|�m(μ, k)|2. (C8)

According to Fermi’s golden rule, the value∑
μ,k,

|k|=ω/c
|�m(μ, k)|2 is equal to γrad(ωm)/π , where γrad(ωm)

is the rate of radiation losses of the quasiparticle with the

frequency ωm. Thus, we arrive at the equation

S(ω) = 1

π
h̄ωt

∑
m

γrad(ωm)
∫ ∞

−∞
dτ 〈â†

m(tst )âm(tst + τ )〉

× exp (iωτ ), (C9)

which is equivalent to Eq. (5) from the main text.
Equation (C9) can be expressed through the dipole mo-

ment of a nanoparticle. To do this, we return to Eq. (C8),
keeping in mind that the Rabi constant of the interaction
between a quasiparticle and a free-space photon is equal to
�m(μ, k) = −dm · Eμ,k(r)/h̄. Here dm is the matrix element
of the quasiparticle dipole moment at the frequency ωm and
Eμ,k(r) = √

2π h̄ωk/V eμ,k exp(ikrNP) is the vacuum electric
field at the nanoparticle location rNP. The substitution of these
expressions in Eq. (C8) gives

S(ω) = h̄ωt
∑

m

∑
μ,k,

|k|=ω/c

∣∣∣∣∣
√

2πωk

V h̄
eμ,k · dm

∣∣∣∣∣
2

×
∫ ∞

−∞
dτ 〈â†

m(tst )âm(tst + τ )〉 exp (iωτ ). (C10)

Thus, the radiation spectrum is proportional to the square
of the quasiparticle dipole moment.
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