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Effects of resonant tunneling in electromagnetic wave propagation through a polariton gap
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We consider tunneling of electromagnetic waves through a polariton band gap of a one-dimensional chain of
atoms. We analytically show that a defect embedded in the structure gives rise to the resonance transmission
at the frequency of a local polariton state associated with the defect. Numerical Monte Carlo simulations are
used to examine properties of the electromagnetic band arising inside the polariton gap due to finite concen-
tration of defects.@S0163-1829~99!03418-9#
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I. INTRODUCTION

The resonant tunneling of electromagnetic waves thro
different types of optical barriers is a fast developing area
optical physics. This effect was considered for photo
crystals,1,2 where forbidden band gaps in the electromagne
spectrum form optical barriers. Macroscopic defects emb
ded in the photonic crystal give rise to local phot
modes,3–7 which induce the resonant transmission of elect
magnetic waves through the band gaps.

A different type of photonic band gaps arises in po
dielectrics, where a strong resonance interaction between
electromagnetic field and dipole active internal excitations
a dielectric brings about a gap between different branche
polaritons. Recently it was suggested that regular mic
scopic impurities embedded in such a dielectric give rise
local polariton states,8–10 where a photon is coupled to a
intrinsic excitation of a crystal, and both these compone
are localized in the vicinity of the defect.11 The main pecu-
liarity of the local polaritons is that their electromagne
component is bound by amicroscopicdefect whose size is
many order of magnitude smaller then the wavelengths
respective photons. Another important property of the
states is the absence of a threshold for their appearance
in three-dimensional~3D! isotropic systems, while for al
other known local states the ‘‘strength’’ of a defect mu
exceed a certain critical value before the state would split
a continous spectrum. The reason for this peculiar beha
is a strong van Hove singularity in the polariton density
states in the long-wave region, caused by a negative effec
mass of the polariton-forming excitations of a crystal.

The feasibility of resonant electromagnetic tunneling
duced by local polaritons, however, is not self-evident. T
idea of a microscopic defect affecting propagation of wa
with macroscopic wavelength seems to be in contradic
with common wisdom. Besides, it was found that the ene
of the electromagnetic component of local polaritons is v
small compared to the energy of its crystal counterpart. T
existence of the tunneling effect was first numerically de
onstrated in Ref. 9, where a 1D chain of dipoles interact
with a scalar field imitating transverse electromagne
waves was considered. It was found that a single defect
PRB 590163-1829/99/59~17!/11339~10!/$15.00
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bedded in such a chain results in near 100% transmissio
the frequency of local polaritons through a relatively sh
chain ~50 atoms!. The frequency profile of the transmissio
was found to be strongly assymetric, in contrast to the c
of electron tunneling.16

In most cases~at least for a small concentration of th
transmitting centers! one-dimensional models give a reliab
description of tunneling processes, because by virtue of
neling, a wave propagates along a chain of resonance
ters, for which a 1D topology has the highest probability
occurrence.17 In our situation, it is also important that th
local polariton states~transmitting centers! occur without a
threshold in 3D systems as well as in 1D systems. This
sures that the transmission resonances found in Ref. 9 ar
artifacts of the one-dimensional nature of the model, a
justifies a further development of the model. In the pres
paper we pursue this development in two interconnected
rections. First, we present an exact analytical solution of
transmission problem through the chain with a single defe
This solution explains the unusual asymmetric shape of
transmission profile found in numerical calculations9 and
provides insight into the phenomenon under considerat
Second, we carry out numerical Monte Carlo simulation
the electromagnetic transmission through a macroscopic
long chain with a finite concentration of defects, and stu
the development of a defect-induced electromagnetic p
band within the polariton band gap. The analytical soluti
of a single-defect model allows us to suggest a physical
terpretation for some of the peculiarities of the transmiss
found in numerical simulations. As a by product of our n
merical results we present an algorithm used for the com
tation of the transmission. This algorithm is based upon
blend of the transfer-matrix approach with ideas of t
invariant-embedding method,18 and proves to be extremel
stable even deep inside the band gap, where traditional m
ods would not work.

Though we consider the one-dimensional model, the
sults obtained are suggestive for experimental observatio
the predicted effects. Actually the damping of the elect
magnetic waves is more experimentally restrictive than
topology of the system. We, however, discuss the effects
to damping and come to the conclusion that the effects un
11 339 ©1999 The American Physical Society
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discussion can be observed in regular ionic crystals in
region of their phonon-polariton band gaps.

The paper is organized as follows. The Introduction
followed by an analytical solution of the transmission pro
lem in a single-impurity situation. The next section prese
results of Monte Carlo computer simulations. The algorith
used in numerical calculations is derived and discussed in
Appendix. The paper concludes with a discussion of the
sults.

II. DESCRIPTION OF THE MODEL AND ANALYTICAL
SOLUTION OF A SINGLE-DEFECT PROBLEM

A. The model

Our system consists of a chain of atoms interacting w
each other and with a scalar ‘‘electromagnetic’’ field. Atom
are represented by their dipole momentsPn , where the index
n represents the position of an atom in the chain. Dynam
of the atoms is described within the tight-binding appro
mation with an interaction between nearest neighbors on

~Vn
22v2!Pn1F~Pn111Pn21!5aE~xn!, ~1!

whereF is a parameter of the interaction, andVn
2 represents

the site energy. Impurities in the model differ from host
oms in this parameter only, so

Vn
25V0

2cn1V1
2~12cn!, ~2!

whereV0
2 is the site energy of a host atom,V1

2 describes an
impurity, cn is a random variable taking values 1 and 0 w
probabilities 12p and p, respectively. Parameterp, there-
fore, sets the concentration of the impurities in our syste
This choice of the dynamical equation corresponds to e
tonlike polarization waves. Phononlike waves can be p
sented in a form that is similar to Eq.~1! with Vn

25V0
2

1(12cn)(12Mdef/Mhost)v
2, where Mdef and Mhost are

masses of defects and host atoms, respectively.
Polaritons in the system arise as collective excitations

dipoles~polarization waves! coupled to the electromagnet
waveE(xn), by means of a coupling parametera. The elec-
tromagnetic subsystem is described by the following eq
tion of motion:
th
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v2

c2
E~x!1

d2E

dx2
524p

v2

c2 (
n

Pnd~na2x!, ~3!

where the right-hand side is the polarization density cau
by atomic dipole moments, andc is the speed of light in
vacuum. The coordinatex in Eq. ~3! is along the chain with
an interatomic distancea. Equations~1! and ~3! present a
microscopic description of the transverse electromagne
waves propagating along the chain in the sense that it d
not make use of the concept of the dielectric permeabil
and takes into account all modes of the field including tho
with wave numbers outside of the first Brillouin band.

This approach enables us to address several general q
tions. A local state is usually composed of states with
possible values of wave numberk. States with largek cannot
be considered within a macroscopic dielectric functi
theory, and attempts to do so lead to divergent integrals
need to be renormalized.15 In our approach, all expression
are well defined, so we can check whether a contribut
from largek is important, and if the long-wave approxima
tion gives reliable results. Calculation of the integrals a
pearing in the 3D theory requires detailed knowledge of
spectrum of excitations of a crystal throughout the en
Brillouin band. This makes analytical consideration prac
cally unfeasible. In our 1D model, we can carry out the c
culations analytically~in a single-impurity case! and exam-
ine the influence of different factors~and approximations!
upon the frequency of a local state and the transmission
efficient. Using caution, the results obtained can be use
assess approximations in 3D cases.

B. A single impurity problem

The equation for the frequency of the local polariton st
in the 1D chain has a form similar to that derived in Ref.

15DV2G~0!, ~4!

where, however, the expression for the polariton Gree
functionG(n2n0) responsible for the mechanical excitatio
of the system can be obtained in the explicit form
G~n2n0!5(
k

cos~ak!2cos~av/c!

@v22V0
222F cos~ka!#@cos~ak!2cos~av/c!#2

2pav

c
sin~av/c!

exp@ ik~n2n0!a#. ~5!
the
is,
If one neglects the term responsible for the coupling to
electromagnetic field, the Green’s functionG(n2n0) is re-
duced to that of the pure atomic system. This fact reflects
nature of the defect in our model: it only disturbs the m
chanical~not related to the interaction with the field! prop-
erties of the system. A solution of Eq.~4! can be real valued
only if it falls into the gap between the upper and low
e

e
-

polariton branches. This gap exists if the parameterF in the
dispersion equation of the polariton wave is positive, and
effective mass of the excitations in the long-wave limit
therefore, negative.

The diagonal elementG(0) of Green’s function~5! can
be calculated exactly. The dispersion equation~4! then takes
the following form:
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15DV2
1

2FD~v! F cos~av/c!2Q2~v!

AQ2
2~v!21

2
cos~av/c!2Q1~v!

AQ1
2~v!21

G , ~6!

whereQ1,2(v),

Q1,2~v!5
1

2 FcosS av

c D1
v22V0

2

2F G6
1

2
D~v!, ~7!

D~v!5AFcosS av

c D2
v22V0

2

2F G2

2
4pav

Fc
sinS av

c D
~8!

give the poles of the integrand in Eq.~5!. The bottom of the
polariton gap is determined by the conditionD(v)50, yield-
ing in the long-wave limit,av/c!1, for the corresponding
frequencyv l ,

v l
2.Ṽ0

222Ṽ0
2d

AFa

c
, ~9!

where we introduce parametersd254pa/a, Ṽ0
25V0

2

12F, and take into account that the bandwidth of the pol
ization wavesF obeys the inequalityAFa/c!1. The last
term in this expression is the correction to the bottom of
polariton gap due to the interaction with the transverse e
tromagnetic field. Usually this correction is small, but it h
an important theoretical, and, in the case of strong eno
spatial dispersion and oscillator strength, practi
significance.8 Because of this correction the polariton g
starts at a frequency, when the determinantD(v) becomes
imaginary, but functionsQ1,2(v) are still less than 1. This
leads to the divergence of the right-hand side of Eq.~6! asv
approachesv l , and, hence, to the absence of a threshold
the solution of this equation. This divergence is not a
effect since the same behavior is also found in 3D isotro
model.8,10 An asymptotic form for Eq.~6! when v→v l in
the 1D case reads

Av22v l
2;

DV2

AF
, ~10!

and differs from the 3D case by the factor of (dv la)/(cAF).
The upper boundary of the gapvup is determined by the
conditionQ1(v)50, leading to

vup
2 5Ṽ0

21d2, ~11!

Eq. ~6! also has a singularity asv→vup, but this singularity
is exclusively caused by the 1D nature of the system.
will discuss local states that are not too close to the up
boundary in order to avoid manifestations of purely 1D
fects.

For frequencies deeper inside the gap, Eq.~4! can be sim-
plified in the approximation of small spatial dispersio
AFa/c!1, to yield
-

e
c-

h
l
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v25Ṽ1
22DV2F 12A v22Ṽ0

2

v22Ṽ0
214F

G
2d2

va

2c

DV2

A~v22Ṽ0
2!~Ṽ0

21d22v2!
, ~12!

whereṼ1
25V1

212F is a fundamental (k50) frequency of a
chain composed of impurity atoms only. Two other terms
Eq. ~12! present corrections to this frequency due to the s
tial dispersion and the interaction with the electromagne
field, respectively. One can see that both corrections have
same sign and shift the local frequency into the region
tweenṼ0

2 and Ṽ1
2. As we see below, this fact is significan

for the transport properties of the chain.
Transmission through the system can be considered in

framework of the transfer matrix approach. This method w
adapted for the particular case of the system under cons
ation in Ref. 9. The state of the system is described by
vector vn , with components Pn , Pn11 , En , En8/kv ,
which obeys the following difference equation:

vn115Tnvn . ~13!

The transfer matrixTn describes the propagation of the ve
tor between adjacent sites:

Tn5S 0 1 0 0

21 2
Vn

22v2

F

a

F
coska

a

F
sinka

0 0 coska sinka

0 24pk 2sinka coska

D . ~14!

Analytical calculation of the transmission coefficient
the situation considered is not feasible even in the case
single impurity because the algebra is too cumbersome.
problem, however, can be simplified considerably if one
glects the spatial dispersion of the polarization waves. In
case theT matrix can be reduced to a 232 matrix of the
following form:

tn5S coska sinka

2sinka1bn coska coska1bn sinkaD , ~15!

where the parameterbn

bn5
4pav

c~v22Vn
2!

, ~16!

represents the polarizability of thenth atom due to its vibra-
tional motion. In this case the complex transmission coe
cient t can be easily expressed in terms of the elements of
resulting transfer matrix,T(N)5)1

Ntn ,

t5
2

~T11
(N)1T22

(N)!2 i ~T12
(N)2T21

(N)!
e2 ikL. ~17!

The problem is, therefore, reduced to the calculation ofT(N).
In the case of a single impurity, the product of the trans
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matrices,t, can be presented in the following form:

T(N)5tN2n03tdef3tn021, ~18!

where the matrixtdef describes the impurity atom withVn
a
io

a

o
to
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t,
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le
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th
5V1. The matrix product in Eq.~18! is conveniently calcu-
lated in the basis, where the matrixt is diagonal. After some
cumbersome algebra, one obtains for the complex trans
sion coefficient:
t5
2eikL exp~2kL !

@12 i /AR~22b cotka!#@~11«!#12i exp~2kL !G cosh@ka~N22n011!#
, ~19!
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where R5b214b cot(ak)24, G5«b/@sin(ka)AR#, k is
the imaginary wave number of the evanescent electrom
netic excitations, which determines the inverse localizat
length of the local state, and«5(bdef2b)/2AR. The last
parameter describes the difference between host atoms
the impurity, and is equal to

«5
2pa

cAR
v

~V1
22V0

2!

~v22V0
2!~v22V1

2!
. ~20!

We have also neglected here a contribution from the sec
eigenvalue of the transfer matrix, which is proportional
exp(22kL), and is exponentially small for sufficiently lon
chains. For«50, Eq.~19! gives the transmission coefficien
t0, of the pure system,

t05
2eikL exp~2kL !

12 i /AR~22b cotka!
, ~21!

exhibiting a regular exponential decay. At the lower boun
ary of the polariton gapV0, parametersb and k diverge,
leading to vanishing transmission at the gap edge regard
the length of the chain. It is instructive to rewrite Eq.~19! in
terms oft0:

t5
t0

~11«!1 i exp~2 ikL !Gt0 cosh@ka~N22n011!#
.

~22!

This expression describes the resonance tunneling of
electromagnetic waves through the chain with the def
The resonance occurs when

11«50, ~23!

the transmission in this case becomes independent of
system size. Substituting the definition of the paramete«
given by Eq.~20! into Eq. ~23!, one arrives at an equatio
identical to Eq.~12! for the frequency of the local polarito
state with the parameter of the spatial dispersionF being set
to zero. The transmission takes a maximum value when
defect is placed in the middle of the chain,N22n01150,
and in this case

utmaxu25
1

G2
<1. ~24!
g-
n

nd

nd

-

ss

he
t.

he

e

The width of the resonance is proportional toGt0 and de-
creases exponentially with an increase of the system’s s
In the long-wave limit,ak!1, Eq. ~24! can be rewritten in
the following form:

utmaxu2512S 122
v r

22V0
2

d2 D , ~25!

wherev r is the resonance frequency satisfying Eq.~23!. It is
interesting to note that the transmission coefficient becom
exactly equal to one if the resonance frequency happen
occur exactly in the center of the polariton gap. This fact h
a simple physical meaning. Forv r

25V0
21d2/2 the inverse

localization lengthk becomes equal to the wave numb
v r /c of the incoming radiation. Owing to this fact, the fie
and its derivative inside the chain exactly match the field a
the derivative of the incoming field as though the optic
properties of the chain are identical to those in vacuum. C
sequently, the field propagates through the chain without
flection.

Having solved the transmission problem we can find
magnitude of the field inside the chain in terms of the in
dent amplitudeEin at the resonance frequency. Spatial dist
bution of the field in the local polariton state can be found
have the formE5Ed exp(2un2n0uka). Matching this expres-
sion with the outcoming field equal toEint exp(ikL) one has
for the field amplitude at the defect atom,Ed ,

Ed5Eintexp~2 ikL ! exp@~N2n0!ka#. ~26!

For utu being of the order of one in the resonance this expr
sion describes the drastic exponential enhancement of
incident amplitude at the defect side due to the effect of
resonance tunneling.

Equations~22! and ~24! demonstrate that the resonan
tunneling via local polariton states is remarkably differe
from other types of resonance tunneling phenomena, suc
electron tunneling via an impurity state,16 or through a
double barrier. The most important fact is that the frequen
profile of the resonance does not have the typical symme
Lorentzian shape. Atv5V1 the parameter« diverges caus-
ing the transmission to vanish. At the same time the re
nance frequencyv r is very close toV1 as it follows from
Eq. ~12!. This results in strongly asymmetric frequency d
pendence of the transmission, which is skewed toward lo
frequencies.
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The transmission vanishes precisely at two frequencie
the low-frequency band edgeV0 and at the frequencyV1
associated with the vibrational motion of the defect atom.
the same time, the behavior of the transmission coefficien
the vicinities of these two frequencies is essentially differe
at the band edge it is (v22V0

2)2 exp(21/Av22V0
2), while

at the defect frequency the transmission goes to zero
(v22V1

2)2. These facts can be used to predict several effe
that would occur with the increase of the concentration of
defects. First, one can note that with the increase of con
tration of the impurities frequencyV1 becomes eventually
the boundary of the new polariton gap when all the origi
host atoms will be replaced by the defects atoms. One
conclude then that the zero of the transmission atV1 instead
of being washed out by the disorder, would actually beco
more singular. More exactly one should expect that the
quency dependence of the transmission in the vicinity ofV1
will exhibit a crossover from the simple power decrease
the behavior with exponential singularity associated with
band edge. Second, if one takes into account such facto
spatial dispersion or damping, which prevent transmiss
from exact vanishing, one should expect that the abo
mentioned crossover to the more singular behavior wo
manifest itself in the form of substantial decrease of
transmission in the vicinity ofV1 with an increase of the
concentration. Numerical calculations discussed in the n
section of the paper show that this effect does take p
even at rather small concentration of the defects.

Resonance tunneling is very sensitive to the presenc
relaxation, which phenomenologically can be accounted
by adding 2igv to the denominator of the polarizabilityb,
whereg is an effective relaxation parameter. This will ma
the parametere complex valued, leading to two importan
consequences. First, the resonance condition beco
Re(«)521, and it can be fulfilled only if the relaxation i
small enough. Second, the imaginary part of« will prevent
the exponential factort0 in Eq. ~22! from canceling out at the
resonance. This restricts the length of the system in wh
the resonance can occur and limit the enhancement of
field at the defect. These restrictions though are not spe
for the system under consideration and affect experime
manifestation of any type of resonant tunneling pheno
enon.

Since we are only concerned with a frequency region
the vicinity of V1, real«1 and imaginary«2 parts of« can be
approximately found as

«1.d2
V1a

2c
A DV2

d22DV2

v22V1
2

~v22V1
2!214g2v2

, ~27!

«2.
2gv

v22V1
2
«1 . ~28!

It follows from Eq. ~27! that the resonance occurs only
(4gc)/(ad2),1. This inequality has a simple physic
meaning: it ensures that the distance between the reson
frequencyv r andV1, where the transmission goes to zero,
greater than the relaxation parameter,g. This is a rather strict
condition that can only be satisfied for high-frequency os
lations with large oscillator strength in crystals with lar
at
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interatomic spacinga. The spatial dispersion, howeve
makes conditions for the resonant tunneling much less
strictive. In order to estimate the effect of the dissipation
the presence of the spatial dispersion one can rely upon
~22! assuming that the dispersion only modifies the para
eter «, but does not effect the general expression for
transmission. This assumption is justified by the numeri
results of Ref. 9 and the present paper, which show that
transmission properties in the presence of the spatial dis
sion do not differ significantly from the analytical calcula
tions performed for the chain of noninteracting dipoles. A
cording to Eq.~12!, the interatomic interaction moves th
resonance frequency further away fromV1 undermining the
influence of the damping and leading to a weaker inequa
(gV1)/F,1. This condition can be easily fulfilled, even fo
phonons with a relatively small negative spatial dispersi
For the imaginary part«2 at the resonance one can obta
from Eq. ~28! the following estimate:

«2;min@~4gc!/~ad2!,~gV1!/F#. ~29!

The requirement that«2 be much smaller thant0 leads to the
following restriction for the length of the systemL
!(1/k)u ln@«2#u, with «2 given above. The maximum value o
the field at the defect site attainable for the defect located
the center of the chain is then found asuEdu;uEinuutu/A«2.

III. ONE-DIMENSIONAL DIPOLE CHAIN WITH FINITE
CONCENTRATION OF IMPURITIES

In this section we present results of numerical Mon
Carlo simulations of the transport properties of the syst
under consideration in the case of randomly distributed id
tical defects. If spatial dispersion is taken into account
regular Maxwell boundary conditions must be comp
mented by additional boundary conditions regulating the
havior of polarizationP at the ends of the chain. In ou
previous paper9 we calculated the transmission for two typ
of boundary conditions:P05PN50, which corresponds to
the fixed ends of the chain, andP05P1 , PN215PN , which
corresponds to the relaxed ends. We reported in Ref. 9
the transmission is very sensitive to the boundary conditi
with fixed ends being much more favorable for the res
nance. Our present numerical results obtained with an
proved numerical procedure and the analytical calculati
do not confirm this dependence of the resonant tunne
upon the boundary conditions. In the case of a single im
rity we find that for both types of the boundary conditio
the transmission demonstrates sharp resonance similar to
found in Ref. 9 for fixed ends. Similarly, for a finite conce
tration of impurities we did not find any considerable diffe
ences in the transmission for both types of boundary con
tions. We conclude that the actual form of the bounda
conditions is not significant for the resonant tunneling.

The transfer matrix, Eq.~13!, along with the definition of
the transfer matrix, Eq.~14!, and the boundary condition
chosen in the form of fixed terminal points, provides a ba
for our computations. However, it turns out that straightfo
ward use of Eq.~13! in the gap region is not possible becau
of underflow errors arising when one pair of eigenvalues
the transfer matrix becomes exponentially greater than
second one. In order to overcome this problem we develo
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computational approach based upon the blend of the tran
matrix method with the invariant embedding ideas. The c
tral element of the method is a 434 matrix S(N) that de-
pends upon the system sizeN. The complex transmission
coefficient t is expressed in terms of the elements of t
matrix as

t52 exp~2 ikL !~S111S12!. ~30!

The matrixS(N) is determined by the following nonlinea
recursion:

S~N11!5TN3J~N!3S~N!, ~31!

where matrixJ(N) is given by

J~N!5$I 2S~N!3H3@ I 2T~N!#%21. ~32!

The initial condition to Eq.~31! is given by

S~0!5~G1H !21, ~33!

where matricesG andH are specified by the boundary co
ditions. The derivation of Eqs.~30!–~33! and more detailed
discussion of the method is given in the Appendix. The t
of the algorithm based upon recursion formula~31! proves
the method provides accurate results for transmission co
cients as small as 10215.

In our simulations we fix the concentration of the defe
and randomly distribute them among the host atoms.
total number of atoms in the chain is also fixed; the res
presented below are obtained for a chain consisting of 1
atoms. For the chosen defect frequency,V1.1.354V0, the
localization length of the local polariton statel ind is approxi-
mately equal to 150 interatomic distances. The transmis
coefficient is found to be extremely sensitive to a particu
arrangements of defects in a realization exhibiting stro
fluctuations from one realization to another. Therefore,
order to reveal the general features of the transmission in
pendent of particular positions of defects, we average
transmission over 1000 different realizations. We have a
calculated the averaged Lyapunov exponent~the inverse lo-
calization lengthl chain characterizing transport through th

FIG. 1. Frequency dependence of the averaged transmissio
efficient for small concentrations of the defects. The frequenc
normalized by the fundamental (k50) frequency of the pure chain
V0. The low-frequency boundary of the polariton gap is atv
'1.3 and is not shown here.
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entire chain! to verify that the averaged transmission reve
a reliable information about the transport properties of
system.

The results of the computations are presented in the
ures below. Figures 1 –3 show an evolution of the transm
sion with the increase of the concentration of the impuriti
In Fig. 1 one can see the change of the transport propertie
small concentrations up to 1%. The curve labeled~1! shows,
basically, the single impurity behavior averaged over rand
positions of the defect. With an increase of the concentra
there is a greater probability for two~or more! defects to
form a cluster resulting in splitting a single resonance f
quency in two or more frequencies. The double-peak str
ture of the curves~2! and ~3! reflects these cluster effects
With the further increase of the concentration the cluste
sizes grow on average leading to multiple resonances w
distances between adjacent resonance frequencies bein
small to be distinguished. Curve~5! in Fig. 1 reflects this
transformation, which marks a transition between individu
tunneling resonances and the defect-induced band. The
centrations in this transition region is such that an aver
distance between the defects is equal to the localiza
length of the individual local statesl ind . The collective lo-
calization length at the frequency of the transmission p
l chain
max becomes equal to the length of the chain at appro

mately the same concentration that allows us to sugge
simple linear relationships between the two lengths. The

co-
is

FIG. 2. The same as in Fig. 1 but for intermediate concen
tions.

FIG. 3. The same as in Fig. 1 but for large concentrations.
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merical results presented in Fig. 4 clearly demonstrate
linear concentration dependence ofl chain

max at small concentra-
tions. For larger concentrations one can see from Figs. 2
3 that the peak of the transmission coefficient develops in
broad structure. This marks further development of the
fect pass band. Curves in Fig. 2 show the transmission c
ficient at intermediate concentrations, where localizat
length l chain is bigger than the length of the system only in
small frequency region around the maximum of the transm
sion, and Fig. 3 presents a well developed pass band
multipeak structure resulting from geometrical resonance
the boundaries of the system.

These figures reveal an important feature of the de
polariton band: its right edge does not move with increase
the concentration. The frequency of this boundary is exa
equal to the defect frequencyV1 ~which is normalized byV0
in the figures!, and the entire band is developing to the left
V1 in complete agreement with the arguments based upo
analytical solution of the single-impurity problem. More
over, the magnitude of the transmission in the vicinity ofV1
decreases with an increase of the concentration also in ag
ment with our remarks at the end of the previous secti
Figure 5 presents the inverse localization lengthl chain, nor-
malized by the length of the chain for three different conc
trations. It can be seen thatl chain

21 (V1) significantly grows

FIG. 4. Concentration dependence of the collective localiza
length l chain normalized by the system’s sizeL.

FIG. 5. Frequency dependence of the Lyapunov exponent o
entire chain for several concentrations in the frequency region
the defect band.
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with an increase of the concentration, reaching the value
approximately 17/L at a concentration as small as 3%. Su
a small localization length corresponds to the transmissio
the order of magnitude of 10217, which is practically zero in
our computation. Further increase of the concentration d
not change the minimum localization length. These res
present an interesting example of the defects building u
boundary of the forbidden gap.

This figure also shows the development of the pass b
to the left ofV1 presented above in Figs. 1–3, but at a larg
scale. We cannot distinguish here the details of the freque
dependence, but the transition from the single resonance
havior to the pass band, marked by the significant flatten
of the curve, is clear.

Figure 6 presents the concentration dependence of
semiwidthdv of the defect band. The semiwidth is define
as the difference between the frequency of the maxim
transmission and the right edge of the band. One can see
all the points form a smooth line with no indication of
change of the dependence with the transition between dif
ent transport regimes. Attempts to fit this curve showed t
it is excellently fitted by the power lawdv}cn with n.0.8
in all studied concentration range. The reason for this beh
ior and why it is insensitive to the change of the characte
the transport requires further study.

IV. CONCLUSION

In this paper, we considered one-dimensional resona
tunneling of scalar ‘‘electromagnetic waves’’ through an o
tical barrier caused by a polariton gap. The tunneling is m
diated by local polariton states arising due to defect ato
embedded in an otherwise ideal periodic chain. We also
merically studied how a defect-induced propagating ba
emerges from these resonances when the concentratio
defects increases.

It is important to emphasize the difference between
situation considered in our paper and other types of tunne
phenomena discussed in the literature. The tunneling of e
tromagnetic waves through photonic crystals and elect
tunneling, despite all the difference between these phen
ena, share one common feature. In both cases, the reson

n

e
of

FIG. 6. Concentration dependence of the semiwidth of the
fect band. The solid line represents fit with power functioncn,
wheren'0.8.
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occurs due to defects that have dimensions comparable
wavelengths of the respective excitations~electrons interact
with atomic impurities, and long-wave electromagne
waves interact with macroscopic distortions of the photo
crystals!. In our case the wavelength of the propagating
citations is many orders of magnitude greater than dim
sions of the atomic defects responsible for the resona
The physical reason for such an unusual behavior lies in
nature of local polaritons. These states are formed owin
the presence of internal polariton-forming excitations. T
spatial extent of these states is much larger than the
metrical dimensions of atomic defects and is comparabl
the wavelength of the incident radiation.

We presented an exact analytical solution of the tunne
of electromagnetic waves through a chain of noninterac
atoms with a single defect. This solution provides insig
into the nature of the phenomenon under consideration
allows one to obtain an explicit expression for the magnitu
of the electromagnetic field at the defect site. The expres
derived demonstrates that the field is strongly enhance
the resonance with its magnitude growing exponentially w
an increase of the length of the system. This effect is
electromagnetic analog of the charge accumulation in
case of electron tunneling, where it is known to cause in
esting nonlinear phenomena.19–23

An analytical solution of the single-defect problem a
lowed us to make predictions regarding the transport pro
ties of the system with multiple randomly located defec
The most interesting of these is that the dynamical freque
of the defectsV1, sets a high-frequency boundary for th
defect-induced pass band, which does not move with incr
ing concentration of defects. Numerical Monte Carlo sim
lations confirmed this assumption and showed that the di
interaction between the atoms~spatial dispersion! does not
affect resonance tunneling considerably, though it adds in
esting features to it. One of them is the behavior of the tra
mission in the vicinity ofV1. In absence of the spatial dis
persion, the transmission at this point is exactly equal
zero, and remains small when the interaction is taken
account. The interesting fact revealed by the numer
analysis is that the transmission atV1 decreases with an
increase in the concentration of the defects and nearly
proaches zero at concentrations as small as 3%. This fac
be understood in light of the transfer-matrix approach: if
frequencyV1 corresponds to the eigenvalue of the defec
transfer matrix, which significantly differs from one, th
transmission will diminish strongly each time the wave e
counters a defect site, regardless the order in which the
fects are located. Numerical results also demonstrated a
sition between two transport regimes: one associated
resonance tunneling and the other occurring when the r
nances spatially overlap and a pass band of extended s
emerges. The transition occurs when the average dist
between the defects becomes equal to the localization le
of the single local state. At the same time the collect
localization length at the peak transmission frequency, ch
acterizing the transport properties of the entire chain,
comes equal to the total length of the system. This re
assumes the linear dependence of this collective localiza
length upon concentration, which we directly confirm f
small concentrations. Numerical results also showed that
ith
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width of the resonance, which develops into a pass band w
an increase in concentration, does not manifest any trans
mation when the character of transport changes. The con
tration dependence of the width was found to be extrem
well described by a power law with an exponent appro
mately equal to 0.8. The nature of this behavior awaits
explanation.

APPENDIX: INVARIANT EMBEDDING ALGORITHM
FOR THE TRANSFER-MATRIX EQUATION

In this appendix we develop an invariant embedding
proach to transfer-matrix equations of a general form a
deduce Eqs.~30!–~33! used for Monte Carlo calculations i
our paper. We consider a typical difference equation of
transfer-matrix method,

un115Tnun , ~A1!

with boundary conditions of a general form:

Gu01HuN5v. ~A2!

Hereun is a vector of an appropriate dimension that char
terizes the state of the system at thenth site,Tn is a respec-
tive transfer matrix;G and H are matrices of the same d
mension as the transfer matrix, together with the vectov
they specify boundary conditions at the left and right boun
aries of the system~cites 0 andN, respectively!. The regular
Maxwell boundary conditions and the fixed ends bound
condition for polarization can be presented in the form E
~A2! with the following matricesG,H, and vectorv:

G5S 1 2 i 0 0

1 2 i 0 0

0 0 1 0

0 0 1 0

D , H5S 1 i 0 0

21 2 i 0 0

0 0 0 1

0 0 0 21

D ,

v5S 2

2

0

0

D . ~A3!

These matrices are singular, but one should not worry ab
this, because we will only need to invert their sum, whi
has a nonzero determinant. In accordance with the idea
the invariant embedding method18 we consider the dynamic
vectorun as a function of the current siten, the length of the
systemN, and the boundary vectorv:

un[u~n,N,v ![S~n,N!v. ~A4!

In the last equation we use the linear nature of Eq.~A1! in
order to separate out the dependence upon the vectorv. Sub-
stituting Eq.~A4! into Eqs.~A1! and ~A2! we have the dy-
namical equation and boundary conditions for the matrixS:

S~n11,N!5Tn3S~n,N!, ~A5!

G3S~0,N!1H3S~N,N!5I , ~A6!
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whereI is a unit matrix. The matrixS(n,N11), which de-
scribes the system with one additional scatterer, obviou
satisfies the same equation~A5! as S(n,N). Relying again
upon the linearity of Eq.~A5! we conclude thatS(n,N) and
S(n,N11) can only differ by a constant~independent ofn)
matrix factorL(N):

S~n,N11!5S~n,N!3L~N!. ~A7!

In order to findL(N) we first substitute Eq.~A7! into bound-
ary conditions Eq.~A6! which yield

L~N!5G3S~0,N11!1H3S~N,N11!. ~A8!

Boundary conditions Eq.~A6! do not change ifN is replaced
by N11, therefore we can write down that

G3S~0,N11!5I 2H3S~N11,N11!. ~A9!

Substituting this expression into Eq.~A8! we have for the
matrix L(N):

L~N!5I 1H3@S~N,N11!2S~N11,N11!#.
~A10!

The quantity S(N11,N11) can be eliminated from this
equation by means of Eq. ~A1!: S(N11,N11)
5TN S(N,N11), and we have forL(N)

L~N!5I 1H3@ I 2T~N!#3S~N,N11!. ~A11!

Substituting this formula into Eq.~A7! we obtain the equa
tion that governs the evolution of the matrixS(n,N) with the
change of the parameterN:

S~n,N11!5S~n,N!1S~n,N!3H3@ I 2T~N!#

3S~N,N11!. ~A12!

This equation, however, is not closed because of an unkn
matrix S(N,N11). This matrix can be found by settingn
5N in Eq. ~A12!:

S~N,N11!5$I 2S~N,N!3H3@ I 2T~N!#%21S~N,N!.
~A13!
D.

,

po

ll,

B

ly

n

Introducing notation

J~N!5$I 2S~N,N!3H3@ I 2T~N!#%21 ~A14!

the previous expression can be rewritten in the followi
compact form:

S~N,N11!5J~N!3S~N,N!. ~A15!

Inserting Eq.~A15! into Eq. ~A12! we finally obtain

S~n,N11!5S~n,N!1S~n,N!3H3@ I 2T~N!#3J~N!

3S~N,N!. ~A16!

This equation still has an unknown quantityS(N,N) which
must be determined separately. We achieve this by com
ing the original transfer-matrix equation~A1! and Eq.~A15!
to obtain the following:

S~N11,N11!5TN3J~N!3S~N,N!. ~A17!

Equation~A17! is a nonlinear matrix equation with an initia
condition given by

~G1H !3S~0,0!5I . ~A18!

Equations~30!–~33! of the main body of the paper coincid
with Eqs.~A16!–~A18! with simplifyed notation for the ma-
trix S, where we dropped the second argument. They con
tute the complete set of embedding equations for
transfer-matrix problem. In order to find the transmissi
coefficient one has to multiply the matrixS(N,N) by the
boundary vectorv; the first component of the resulting vec
tor is equal totexp(ikL), wheret is the complex transmission
coefficient. If one is interested in the distribution of the sta
vectoru(n,N) throughout the entire system, one has to fi
S(N,N) and then to solve Eq.~A16!.

The presented algorithm was proved to be extrem
stable, it produced reliable results for transmission as sm
as 10217. This stability is due to the operation of inversio
involved in the calculations@see Eq.~A14!#. This operation
prevents elements of the matrixS to grow uncontrollably in
the course of the calculations.
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