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Diffusion of waves in absorbing random media with microstructure is studied. A resonant correction to the
transport mean free pathl T is calculated. It is shown that in the certain range of wavelengths this correction
leads to a growth of thel T compared to its nonresonant value. Significant changes in the transport velocity, the
transport mean free path, and the diffusion constant caused by absorption are also found. In addition, we show
that the use of the on-shell transfer matrix can lead to erroneous results.@S0163-1829~96!03922-7#

I. INTRODUCTION

In a medium with randomly positioned anisotropic scat-
terers a wave propagates a distance of the order of the trans-
port mean free pathl T before it forgets completely about its
initial direction of propagation. In the weakly scattering re-
gime, when the wavelength is much smaller thanl T , wave
intensity satisfies the diffusion equation with the rate of flow
given by the diffusion coefficientD. At the same time the
‘‘energy’’ flux spreads through the medium with a transport
velocity nE . These three parameters fully characterize wave
transport through a random medium and are interconnected
by the relationD5 l TnE/3.

1–3 If scatterers are treated as
pointlike, one finds thatnE is equal to the phase velocitycp
and l T5 l sc/~12^cosu&!, wherel sc5(ns)21 is the scattering
mean free path,n is a density of scatterers,s is a scattering
cross section andu is a scattering angle. Properties of the
transport parameters may be notably changed by an account
for the microstructure of the medium. It has been shown by
the Amsterdam group4–7 ~AG! that when scatterers of a finite
size are considerednE is no longer equal to the phase veloc-
ity and depends upon the wave vector of the incident wave
k0. They find that in the low-density limitnE'cp/[1
1na(k0)]. The correctiona(k0) exhibits strong resonant
structure being studied as a function ofk0, and leads to the
renormalization of the diffusion constant. It has been de-
ducted by the AG that these resonances in the correction to
nE result from Mie resonances8 in the transfer matrix of
waves scattered by finite-size scatterers. Analogous correc-
tions have been obtained by Cwilich and Fu9 and by Kogan
and Kaveh.10

In the present paper we show that there is another source
of the renormalization ofD. Microstructure resonances lead
not only to the correction to the transport velocity but to the
correction to the transport mean free path as well. It is intu-
itively clear that such a correction tol T should occur, since
Mie resonances provide an additional anisotropy of the scat-
tering matrix and, therefore, should modifŷcosu&. We
would like to outline here why this correction has never been
accounted for. The transport mean free path can be found

once the diffusion constant and the energy velocity are
known. The diffusion constant can be evaluated from the
diffusive pole of the average intensity of wavesI ~q,v! where
q andv are the transferred momentum and frequency, re-
spectively.I ~q,v! itself is calculated from the Bethe-Salpeter
~BS! equation. To find a diffusion constant one has to per-
form an expansion in the BS equation up to the lowest order
of q and v, since in the diffusion approximationq,v→0.
Then, terms collected near the lowest order ofv provide the
correctiona(k0). It has, however, been concluded by AG
that all terms inq expansion cancel after an application of
the energy conservation law in the form of the Ward identity
~WI!. In the present study we explicitly show that WI cannot
be used to cancel terms near the lowest order ofq. We iden-
tify these terms as a correction to the transport mean free
path.

The effect of absorption on resonant corrections to the
diffusion constant is another important issue of the present
study. Since in most experiments absorption is weak, it has
been usually neglected.4–7,9–14However, the underestimation
of the role of absorption may be misleading. We show, that
even weak absorption leads to significant changes in the
functional behavior of both corrections.

We also argue that the application of the on-shell approxi-
mation for a transfer matrix of an individual scatterer can
lead to physically incorrect results. The correctiona(k0)
contains partial derivatives of the transfer matrixtkk8(E)
with respect to frequencyE, while the correction tol T has
analogous derivatives but with respect tok. Both derivatives
are evaluated on the energy ‘‘shell’’uku5uk0u5E/cp . Since
the density of scatterers is low, the substitution
]/]E']/(cp]k)1O(n) is usually made4–7,9–13 and, thus,
the on-shell transfer matrix is used in calculations. However,
we have recently argued that this assumption is incorrect.14

For example, we show below that within the on-shell ap-
proximation absorption can lead to the growth of the diffu-
sion constant that can become larger than its nonresonant
value. This effect increases with increasing of absorption in
the medium. Such unphysical prediction does not occur
when the off-shell approximation is applied.
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II. DERIVATION OF THE GENERAL EXPRESSION
FOR D

In the present section we outline a general method for
obtaining the diffusion constant of classical waves in random
media since it is important to understand from where differ-
ent terms in the expression forD come from. We consider
the Fourier transform of the scalar fieldc~r ,t! satisfying the
wave equation,

H ¹21SEc D 2e~r !J c~r ,E!50, ~1!

wherec is the wave speed in a space free of scatterers. The
wave propagates in an infinite absorbing random medium.

The dielectric constante~r ! comprises the properties of indi-
vidual scatterers randomly distributed inside the medium.
The statistical properties of the dielectric constant as a func-
tion of the position vectorr will be specified later in this
section. Field generated at any pointr in space by the point
source located atr0 can be expressed in terms of the Green
function of Eq.~1!, c~r ,t!5G~r ,r0,t!. As a result of macro-
scopic homogeneity, the functionuG~r ,r 8,t!u2 averaged over
disorder has translational invariance, i.e., it depends upon
ur2r 8u only, and^uG~r ,r 8,t!u2& is the wave intensityI ~r2r 8,t!
due to a point source atr 8. In the weakly scattering regime
the space-time Fourier transform of the disorder averaged
intensity I ~q,v!, defined as
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Fk~q,v;E!, ~2!

must have a diffusive pole asv,q→0 „e.g.,
I ~q,v!}@2iv1Dq2#21

…. In Eq. ~2! the notationsk65k6q/2
andE65E6v/26 i0 were introduced. From this pole one
can evaluate the diffusion constant. The quantity of our pri-
mary interest, however, is notI ~q,v! but rather the function
Fk~q,v;E!, which on one hand, inherits all the analytical
properties ofI ~q,v! including the diffusive pole, and, on the
other, an exact form of the equation it satisfies is known.

The functionFk~q,v;E! can be expressed in terms of the
Fourier transform of the averaged one-field Green function
via the BS equation1,2

F2
2Ev

c2
12q•kGFk~q,v;E!

5DGk~q,v!1E
k8
Ukk8~q,v!Fk8~q,v!, ~3!

where disorder averagedretarded Gk
2 , andadvanced Gk

1 ,
Green functions have the form

Gk
6~E6![^Gk,k8

6
~E6!&

5d~k2k8!F SE6

c D 22k22Sk
6~E6!G21

. ~4!

Here Sk
6 is a self-energy and we denote*k5~2p!23*dk,

DGk(q,v;E)[Gk1
1(E1)2Gk2

2(E2). All possible scat-
tering processes are included in the kernelUkk8(q,v), which
has the following form:

Ukk8~q,v!5DGk~q,v!Kkk8~q,v!2DSk~q,v!dk,k8 , ~5!

with DSk5Dk1(E
1)2Sk2(E

2). In the case of classical
waves the irreducible vertex functionKkk8 is related to the
self-energySk by thegeneralizedWard identity15

2
2vE

c2
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k8
Uk8k~q,v! ~6!

with
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c2
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3@Gk
18
~E1!1Gk

28
~E2!#J . ~7!

It is easy to see that forq,v50, Eq.~6! reduces to the optical
theorem for monochromatic light.1,2

The structure of the BS equation suggests that the func-
tion Fk~q,v;E! should have isotropic and anisotropic parts.
Based on this, it is convenient to start the solution of the BS
equation with the definition of a function

PE~q,v!5(
k

Fk~q,v;E!, ~8!

which is isotropic and may be regarded as the Fourier trans-
form of the ‘‘E component’’ of the averaged intensity ex-
cited atr 8 at t50. The anisotropic properties of the average
intensity can be described by the ‘‘correlation current’’
JE~q,v!

JE~q,v!5(
k

~k•q!Fk~q,v;E!. ~9!

The next step is to derive a system of equations that would
relate these two functions and then solve forPE . After inte-
gration of the Eq.~3! and application of the WI in the form
of Eq. ~4! we obtain the continuity equation
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ik0
4p

,

~10!

where we have used the fact that*kDGk52ik0/2p. In order
to deal with the integral in the left-hand side of Eq.~10! we
can make use of the diffusion approximation~q→0! and ex-
pandFk~q,v;E! to the first order inq

Fk~q,v;E!5DGk~0,0!@Ak1~k•q!Bk#. ~11!

Integration of Eq.~11! with respect tok yields the ‘‘isotro-
pic’’ coefficientsAk . Multiplying both sides of Eq.~11! by
~k•q! and then integrating with respect tok gives the ‘‘an-
isotropic’’ coefficientBk

Ak5
2p i

k0
DGk~0,0!PE ;

Bk5
2p i

k0
S 3k•qk2q2 DDGk~0,0!JE . ~12!

Combining Eqs.~12! with Eq. ~11! gives

Fk~q,v;E!5
2p i

k0
DGk~0,0!H PE1

3k•q

k2q2
JEJ . ~13!

Substituting Eq.~13! back into Eq.~10! and expanding all
terms in powers ofv andq up to the lowest order, we find
the continuity equation

JE2
Ev

c2
@11a~E!#PE52

ik0
4p

, ~14!

where the functiona(E) represents a correction to the wave
velocity found by AG.4–7 It is defined as

a~E!52
2p icp
E E

k
Ak~0,0!DGk~0,0!. ~15!

Here the phase velocity in the medium is equal tocp
5c(12ReSk

1/k0)
21/2. We now have to derive an equation

for the currentJE . We multiply Eq.~3! by k•q and integrate
it with respect tok using the relation~11! to obtain

JE
6p i

k0
E
k
E
k8

~k•q!~k8•q!

k82q2
Ukk8~0,0!DGk8~0,0!

5PEH 23 k0
2q22

2p i

k0
E
k
E
k8

~k•q!Ukk8~q,0!DGk8~0,0!J .
~16!

The second term on the right-hand side of Eq.~16! is impor-
tant in the calculation of the diffusion constant. It has been
concluded by the Amsterdam group4–7 and Barabanenkov
and Ozrin11,15 that after application of the generalized WI in
Eq. ~16! this term isexactlyequal to zero. If it would have
the form *k*k8(k•q)Ukk8(q,0)DGk8(q,0) the statement
made in Refs. 4–7, 11, and 15 would be correct. It is, how-
ever, impossibleto use WI in the second term of the right-
hand side of the Eq.~16! due to appearance ofDGk~0,0!

instead of DGk~q,0! in it. Instead, one can expand
Ukk8(q,0) up to the lowest power ofq and then solve Eqs.
~14! and ~16! for PE yielding

PE5
c2

4pcp@11a~E!#

1

2 iv1Dq2
, ~17!

where the diffusion coefficient has the form

D5D0S ccpD
2 11D~E!

11a~E!
, ~18!

and the bare diffusion constantD0 is given by

D05
1

3
cpH 3p

k0
2 E

k
E
k8
Kk,k8~0,0!DGk~0,0!DGk8~0,0!

3
~k•q!~k8•q!

k2
@12dk,k8#J 21

. ~19!

The expression is curly brackets in Eq.~19! represents a
conventional transport mean free pathl T .

16 D(E) is an addi-
tional correction to the diffusion constant. It can be written
as

D~E!52
3p i

k0
E
k
E
k8

~k•q!

k0
2q2 S ]Uk,k8~q8,0!

]q8
U
q850

•qD
3DGk8~0,0!. ~20!

An analogous renormalization factor for electrons has been
found by Burin.17 The interpretation of the Eq.~18! is trans-
parent enough. The diffusion coefficient for waves in any
kind of random medium can be expressed asD5nEl /3,
where l is a general form of a transport mean free path,
different from the conventionall T given by Eq.~19!. La-
gendijk and van Tiggelen4–7 have shown that the speednE in
the case of classical waves is equal to

nE~E!5
c2

cp

1

11a~E!
. ~21!

The correctionD(E) then provides a renormalization of the
transport mean free path,

l ~E!5 l T@11D~E!#. ~22!

III. RESULTS AND DISCUSSION

In order to perform detailed investigations of the diffusion
coefficient in the form of Eq.~18! an exact analytical form of
the kernelUkk8(q,0) must be known. The limit of low den-
sities of scatterers is a good approximation to use to find
Ukk8(q,0), since it is realized in most experimental
setups.4,18 In this approximation the self-energy and the irre-
ducible vertex are expressed in terms of the scattering matrix
for individual scatterer tkk8 and density of scatterers
n as (6(k6 ,v;E6)5ntk6,k86(E

6) and Kkk8(q,v)
5ntk1,k81(E

1)tk82,k2(E
2). The density of scatterersn

must be small enough to allow the weak scattering approxi-
mation to be valid. Then, the expressions for corrections
a(E) andD(E) in the low-density limit are
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D~E!5n
] Retk,k

]k2
1n

iE

4pcp
^~11m!K~k,k8!&m ,

a~E!5n
]Re tk,k

]E2 2 in(
k8

DGk8utk,k8u
2

]fk,k8
]E2 ~23!

with

K~k,k8!5 i ImH F]tk,k8]k2
1
12m

k2
]tk,k8
]m G tk,k8* J , ~24!

wherem[k•k8/k2 is a cosine of the scattering angle. In de-
riving these equations it has been taken into account that in

the case of elastic collision, the scattering matrixtk,k8 de-
pends on the modulus of the momentauku25uk8u2 and on the
cosine of the scattering anglem5k•k8/k2 only. We have also
denoted the phase shift of the scattering matrix asfk,k8(E)
according to tk,k8(E

1)5utk,k8uexp(ifk,k8). In the low-
density approximation bothD(E) anda(E) become true cor-
rections of the order ofn to D0. SinceD(E) anda(E) con-
tain partial derivatives with respect tok andE, respectively,
theoff-shelltransfer matrix has to be used in calculations. An
exact form of the off-shell transfer matrix for a dielectric
sphere of the index of refractionM and radiusR is given in
Ref. 14,

tk,k8~E
6!5

4pR2 j 1~ uk2k8u!~12M2!j6
2 ~j6

2 2k2!

uk2k8u~M2j6
2 2k82!

1
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2 ~j6
2 2k2!

~M2j6
2 2k82!~M2j6

2 2k2!

3(
l

~2l11!
j l8~kR!hl

~7 !~j6R!2 j l~kR!hl
~7 !8~j6R!

M j l8~Mj6R!hl
~7 !~j6R!2 j l~Mj6R!hl

~7 !8~j6R!
Pl~cosu!@Mj6 j l11~Mj6R! j l~kR!

2k j l~Mj6R! j l11~kR!#1
4pR2~M221!j6

2

~M2j6
2 2k82! (

l

M j l~kR! j l8~Mj6R!2 j l8~kR! j l~Mj6R!

M j l8~Mj6R!hl
~7 !~j6R!2 j l~Mj6R!hl

~7 !8~j6R!

3~2l11!Pl~cosu!@j6hl11
~7 ! ~j6R! j l~kR!2khl

~7 !~j6R! j l11~kR!#, ~25!

wherej65E6/cp , j l(x) are spherical Bessel functions of the
l th order,h l

(1)(x) andh l
(1)(x) are spherical Neumann func-

tions of the first and second kind, respectively,Pl~m! are
Legendre polynomials of thel th order, and j l8(x)
5d j l(x)/dx. A conventionalon-shell t matrix can be ob-
tained from Eq.~25! by making the substitutionk5k85j6 ,

tk,k8~E
1!52

2p i

E (
l

~2l11!Pl~m!bl* ~E!, ~26!

wherebl(x) is a Van de Hulst coefficient for the TE mode of
the vector Mie sphere.19

Equations~23!–~26! give the analytical form of the cor-
rections to the diffusion coefficient. Now we can study the
functional behavior ofD as a function of a dimensionless
size parameterx5k0R ~below the value ofR51 cm is used!.
Absorption in the medium can be introduced as an imaginary
part of the complex index of refractionM5Mr2 iM i . The
range of values ofMi which can be used in calculations is,
however, limited. Eq.~18! for the diffusion constant is ob-
tained within the diffusion approximation which implies that
l T/ l a!1, where l a5(2MrMik0)

21, otherwise conventional
diffusion would break down. Thus, we obtain a condition
Mi!R/(2Mrl Tx). A minor inconvenience hidden here is
that the transport mean free path itself is a function of a size
parameter. Thus, for different values ofx we obtain different
values ofMi satisfying the validity condition. Using the fact
that the scattering mean free path is not changed significantly
by absorption we have estimated the value ofR/(2Mrl Tx) as
a function ofx for M5Mr and then have used the largest
value ofMi that does not violate the above condition. In
order to be able to make a comparison with previously ob-

tained results4–7,9 we useMr52.73 in the evaluations. The
appropriate value ofMi that covers the range of the size
parameter values 0<x<5 isMi50.005. Our goal, however,
is not limited to the study of the effect of absorption on
resonances. A demonstration of necessity of the use of the
off-shell approximation for thet matrix is an equally impor-
tant issue. For this reason we show our results for both ap-
proximations.

We plot the on-shell and off-shell versions of the total
correction to the diffusion constant, given in the case of low
density by (D2D0)/D0'2a(x)1D(x), in Figs. 1 and 2
respectively, for the relative index of refractionM52.73
2 i0.005~thick lines!. The figures also show the correspond-
ing correction in the absence of absorptionM52.73 ~thin
lines!. We would like to stress here that we consider very
weak absorption and even in this case we find significant
changes in the corrections to the diffusion constant. The pro-
found difference between two approximations fort matrix
can be seen from these graphs. The most striking changes
occur in the on-shell correction: it becomes positive at values
of the size parameterx'2, 2.5, 3, 3.5, 4, 4.5, and 5, which
correspond to the principal Mie resonances. On the other
hand, even such weak absorption substantially washes off
resonances in the off-shell version of the total correction,
which, however, remains negative for the whole range of
values of the size parameter. In order to understand which
correction leads to these changes we will look at properties
of a(x) andD(x) separately.

We plot the on-shell version of the correctiona(x) in Fig.
3 and the off-shell version ofa(x) in Fig. 4 for M52.73
2 i0.005 ~thick lines! and M52.73 ~thin lines!. It can be
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seen, that the effect of absorption on resonances is similar in
both cases. Even weak absorption decreases the magnitude
of resonances at least by 10–25 times. On the other hand, the
value ofa(x) remains positive definite in agreement with the
statement of Ref. 7 that the quantityk 0

2a(E) represents posi-
tive definite ‘‘potential energy’’ inside the scatterers.

The effect of absorption on the on-shell~Fig. 5! and off-
shell ~Fig. 6! versions of the correctionD(x) is different.
Special attention has to be paid to the off-shell version of
D(x) in the absence of absorption.D(x) is positive for the
wide range of values ofx, thus leading to the growth of the
transport mean free path. These changes occur in the vicinity
of the first five principal Mie resonances located at values of
x'1, 1.5, 2, 2.5, and 3. These peculiarities can be understood
if we look at properties of Mie resonances. The transport
mean free path given by Eq.~19! can be rewritten in its

traditional forml T5 l sc/~12^m&!, wherel sc is scattering mean
free path. It is known that in the vicinity of principal Mie
resonances scattering is primarily in the forward direction.19

Thus, the average cosine of the scattering angle increases
leading to the growth of the transport mean free path. Analo-
gous features cannot be found in the on-shell version of
D(x). It is always negative and it basically replicates features
of a(x) shown by a thin line in Fig. 3. When absorption is
introduced in the medium, resonances are washed out in the
case of the off-shell version ofD(x), which becomes now
negative for values ofx52.5 and 3. The functional behavior
of the on-shell version ofD(x) is altered much more seri-
ously. It becomes positive due to inversion of the principal
Mie resonances that is shown in Fig. 6, while the rest of it is
hardly affected by absorption.

Let us return to the total correction to the diffusion con-
stant. In the on-shell approximation absorption ‘‘stimulates’’
diffusion since the renormalized value ofD becomes greater
thanD0. This result, however, can be hardly justified physi-
cally. Contrary, the growth of the transport mean free path in

FIG. 1. The total correction to the diffusion constant,D(x)
2a(x), calculated within theon-shell approximation, with and
without absorption as a function of the size parameter. The thin line
corresponds to the value ofM52.73, the thick line corresponds to
the value ofM52.732 i0.005. In order to preserve the details of
resonances in the presence of absorption we shorten the vertical
scale of this and other figures. The magnitude of peaks left out on
the figure can be as large as 600. The total correction becomes
positive in the presence of absorption for the values ofx'1.5, 2,
and 2.5.

FIG. 2. The same as in Fig. 1 but the total correction is calcu-
lated within theoff-shellapproximation. The total correction stays
negative in both cases.

FIG. 3. The correction to the transport velocitya(x) calculated
within theon-shellapproximation for the same values ofM as in all
previous figures,M52.732 i0.005 ~thick line! andM52.73 ~thin
line!.

FIG. 4. The correction to the transport velocitya(x) calculated
within theoff-shellapproximation for the same values ofM as in all
previous figures,M52.732 i0.005 ~thick line! andM52.73 ~thin
line!. As in the on-shell case of the magnitude of resonances is
significantly decreased.
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the case of the off-shellt matrix is not strong enough to
stimulate diffusion in the medium, sinceD(x) is always less
thana(x). Even in the presence of absorption, whena(x) is
strongly decreased,D(x) is decreased as well, thus keeping
the total correction toD negative. It, therefore, supports our-
suggestion that it is incorrect to use the on-shellt matrix in
the evaluation of the diffusion constant.
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calculated within theon-shellapproximation for the same values of
M as in all previous figures,M52.732 i0.005 ~thick line! and
M52.73 ~thin line!. The principal Mie resonances are inverted by
absorption.

FIG. 6. The correction to the transport mean free pathD(x)
calculated within theoff-shellapproximation for the same values of
M as in all previous figures,M52.732 i0.005 ~thick line! and
M52.73 ~thin line!. This correction is positive even in the absence
of absorption. In this case absorption decreases the magnitude of
resonances.
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