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Transport properties of waves in absorbing random media with microstructure

D. Livdan
Department of Science, Borough of Manhattan Community College of the City University of New York, 199 Chambers Street,
New York, New York 10007

A. A. Lisyansky
Department of Physics, Queens College of the City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367
(Received 19 December 1995

Diffusion of waves in absorbing random media with microstructure is studied. A resonant correction to the
transport mean free path is calculated. It is shown that in the certain range of wavelengths this correction
leads to a growth of they compared to its nonresonant value. Significant changes in the transport velocity, the
transport mean free path, and the diffusion constant caused by absorption are also found. In addition, we show
that the use of the on-shell transfer matrix can lead to erroneous r¢Si63-18206)03922-1

I. INTRODUCTION once the diffusion constant and the energy velocity are
known. The diffusion constant can be evaluated from the

In a medium with randomly positioned anisotropic Scat'diffusive pole of the average intensity of waves,w) where

terers a wave propagates a Qistance of the order of the f[rana—and o are the transferred momentum and frequency, re-
port mean free pathy before it forgets completely about its spectively |l (q,w) itself is calculated from the Bethe-Salpeter

in_itial direction of propagation. In the weakly scattering re- (BS) equation. To find a diffusion constant one has to per-
gime, when the wavelength is much smaller thanwave  form an expansion in the BS equation up to the lowest order
intensity satisfies the diffusion equation with the rate of flow gy g and o, since in the diffusion approximatiog,w—0.
given by the diffusion coefficienb. At the same time the Then, terms collected near the lowest ordemgsrovide the
“energy” flux spreads through the medium with a transportcorrectiona(k,). It has, however, been concluded by AG
velocity 1 . These three parameters fully characterize wavehat all terms inq expansion cancel after an application of
transport through a random medium and are interconnectethie energy conservation law in the form of the Ward identity
by the relationD=1v¢/3173 If scatterers are treated as (WI). In the present study we explicitly show that WI cannot
pointlike, one finds thatg is equal to the phase velocity,  be used to cancel terms near the lowest ordey. aWe iden-
andlt=1,/(1—(cos®)), wherel ,=(no) ! is the scattering tify these terms as a correction to the transport mean free
mean free pathy is a density of scatterers; is a scattering path.
cross section and is a scattering angle. Properties of the The effect of absorption on resonant corrections to the
transport parameters may be notably changed by an accoudiffusion constant is another important issue of the present
for the microstructure of the medium. It has been shown bystudy. Since in most experiments absorption is weak, it has
the Amsterdam grodp’ (AG) that when scatterers of a finite been usually neglectéd’-°-**However, the underestimation
size are considereg: is no longer equal to the phase veloc- of the role of absorption may be misleading. We show, that
ity and depends upon the wave vector of the incident waveven weak absorption leads to significant changes in the
Ko. They find that in the low-density limitvg~c//[1  functional behavior of both corrections.
+na(ky)]. The correctiona(ky) exhibits strong resonant We also argue that the application of the on-shell approxi-
structure being studied as a functionlkgf, and leads to the mation for a transfer matrix of an individual scatterer can
renormalization of the diffusion constant. It has been dedead to physically incorrect results. The correctiafk,)
ducted by the AG that these resonances in the correction toontains partial derivatives of the transfer mattjx/(E)
v result from Mie resonancBsn the transfer matrix of with respect to frequenci, while the correction td; has
waves scattered by finite-size scatterers. Analogous correanalogous derivatives but with respectktoBoth derivatives
tions have been obtained by Cwilich and’rand by Kogan  are evaluated on the energy “shellk|=|ko|=E/c,. Since
and Kaveht?? the density of scatterers is low, the substitution
In the present paper we show that there is another sourc# JE~d/(c,dk)+O(n) is usually mad& " ***and, thus,
of the renormalization oD. Microstructure resonances lead the on-shell transfer matrix is used in calculations. However,
not only to the correction to the transport velocity but to thewe have recently argued that this assumption is incoffect.
correction to the transport mean free path as well. It is intufor example, we show below that within the on-shell ap-
itively clear that such a correction te should occur, since proximation absorption can lead to the growth of the diffu-
Mie resonances provide an additional anisotropy of the scasion constant that can become larger than its nonresonant
tering matrix and, therefore, should modifgosd). We  value. This effect increases with increasing of absorption in
would like to outline here why this correction has never beerthe medium. Such unphysical prediction does not occur
accounted for. The transport mean free path can be foundhen the off-shell approximation is applied.
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Il. DERIVATION OF THE GENERAL EXPRESSION The dielectric constard(r) comprises the properties of indi-
FOR D vidual scatterers randomly distributed inside the medium.

In the present section we outline a general method fo;I.'he statistical properties of the dielectric constant as a func-

obtaining the diffusion constant of classical waves in randonfio" Of the position vector will be specified later in this
media since it is important to understand from where differ-S€Ction- Field generated at any pofnin space by the point

ent terms in the expression f& come from. We consider SOUrce located at, can be expressed in terms of the Green

the Fourier transform of the scalar fiejdr t) satisfying the ~ function of Eq.(1), ¥r.t)=G(r.ro.t). As a result of macro-
wave equation, scopic homogeneity, the functid(r,r’,t)|* averaged over

disorder has translational invariance, i.e., it depends upon
_ [r—r’| only, and(|G(rr’,t)]*) is the wave intensity(r —r’ t)
6(”] ¥(r.B)=0, (1) due to a point source af. In the weakly scattering regime

wherec is the wav din r f tterer Ththe space-time Fourier transform of the disorder averaged
erec is the wave spee a space free of scatterers. ﬁﬁtensityl(q,w), defined as

wave propagates in an infinite absorbing random medium.
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|
must have a diffusive pole asw,g—0 (e.g., 20wE
1(q,w)>[—iw+Dg?]™}). In Eq.(2) the notationk , =k +q/2 ™ Ak(Qaw)sz,Uk’k(qaw) (6)

andE*=E+ w/2+i0 were introduced. From this pole one
can evaluate the diffusion constant. The quantity of our priyitp
mary interest, however, is notq,w) but rather the function
®,(q,w;E), which on one hand, inherits all the analytical 2
properties ofl (q,w) including the diffusive pole, and, onthe A (q,w)= 52 [Ek+(E+)+Ek(E‘)+ f K (0,0)
other, an exact form of the equation it satisfies is known. k

The function®, (q,w;E) can be expressed in terms of the
Fourier transform of the averaged one-field Green function X[Gyr (ET)+ Gy (E‘)]]. (7)
via the BS equatioh? * -

It is easy to see that fay,w=0, Eq.(6) reduces to the optical
@ (q,w;E) theorem for monochromatic light
The structure of the BS equation suggests that the func-
tion ®,(q,w;E) should have isotropic and anisotropic parts.
ZAGk(q,w)-i-f Ui (9, 0) @y (g, ), (3  Based on this, it is convenient to start the solution of the BS
k' equation with the definition of a function

2Ew
—?+ZQK

where disorder averageetarded G, , andadvanced G ,
Green functions have the form PE(q,w)ZEK: ®(q,w:E), ®)

Gy (E*)=(Gy, (E))
) _ which is isotropic and may be regarded as the Fourier trans-
) _kZ_Et(Et)} @ form of the “E component” of the averaged intensity ex-
K cited atr’ att=0. The anisotropic properties of the average

. 3 intensity can be described by the ‘“correlation current”
Here X, is a self-energy and we denofg=(2m) ~fdk, Je(q,0)

AG(0,w;E)=G,,. " (E")—G,_"(E™). All possible scat-

tering processes are included in the kefdgl, (g, w), which

has the following form: Je(q,0)=2, (k-q)Py(q,w;E). 9)
K

+

c

=ak—wﬂ(

Ui (0.0) =AC(0.0)Kker (60) = AX(G0) i (5 The next step is to derive a system of equations that would
with A=A, (E")—3_(E7). In the case of classical relate these two functions and then solve fgr. After inte-
waves the irreducible vertex functidq,, is related to the gration of the Eq(3) and application of the WI in the form
self-energy3, by thegeneralizedWard identity® of Eq. (4) we obtain the continuity equation
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Ew Ew iko instead of AG,(q,0) in it. Instead, one can expand
—Z Petdet = jkAk(q,w)q)k(q,w): byt Ui (9,0) up to the lowest power af and then solve Egs.
(14) and(16) for Pg yielding

(10
where we have used the fact tHfa\ G, =—iky/27. In order P.— c? 1 17
to deal with the integral in the left-hand side of Eg0) we £ 4mc[1+a(E)] —iw+Dg?’
can make use of the diffusion approximati@n—0) and ex- o o
pand®,(q,»;E) to the first order ing where the diffusion coefficient has the form
2
D(q,0;E)=AG(0,0[Ac+(k-q)B,].  (11) bop.t| 1FaE) 19
%\c,/ 1+a(E)’

Integration of Eq.(11) with respect tdk yields the “isotro-
pic” coefficients A, . Multiplying both sides of Eq(11) by  and the bare diffusion constab, is given by
(k-q) and then integrating with respect kogives the “an-

isotropic” coefficientB 1 37
p k D0:§ Cp[ PO_ fkjk’Kk'k,(O,O)AGK(O,O)AGK’(O,O)

2i
A= AGKO.0Pe; (k-a)(k'-q) -
Ko X7 [1—5“,]] . (19
27 [3k-q o )
Bk=k— el AG(0,0)J¢. (12 The expression is curly brackets in E@.9) represents a
0 q conventional transport mean free pah'® A(E) is an addi-
Combining Eqs(12) with Eq. (11) gives tional correction to the diffusion constant. It can be written
as
2i 3k-q .
@k(q,w;E)=k—AGk(0,0) PE+P7JE . (13) 3 (kQ) &Uk,k’(qluo)‘
0 q A(E) - ) 7 . q
kO k kl koq (?q qr:()

Substituting Eq.(13) back into Eq.(10) and expanding all
terms in powers of» andq up to the lowest order, we find XAGy/(0,0). (20

the continuity equation L
An analogous renormalization factor for electrons has been

Ew iko found by Burin!’ The interpretation of the Eq18) is trans-

Je— —= [1+a(E)|Pg=——, (14 parent enough. The diffusion coefficient for waves in any
¢ 4m kind of random medium can be expressed s vgl/3,

where the functiora(E) represents a correction to the wave Wherel is a general form of a transport mean free path,
velocity found by AG* It is defined as different from the conventional; given by Eq.(19). La-
gendijk and van Tiggeléh’ have shown that the speegd in

2mic the case of classical waves is equal to
a(E)=— P fAk(o,O)AGk(o,O). (15)
E k CZ 1
E)=————. 21
Here the phase velocity in the medium is equal dp ve(E) cp 1+a(E) @)

=c(1—Re3; /ko) Y2 We now have to derive an equation
for the currentlz . We multiply Eq.(3) by k-g and integrate
it with respect tok using the relatior(11) to obtain

The correctiolA(E) then provides a renormalization of the
transport mean free path,

. , [(E)=I{[1+A(E)]. 22
6mi (k-a)(k’-q) (E)=I1{1+A(E)] (22
E %o S o T KZE U (0,0AG(0,0
lll. RESULTS AND DISCUSSION
=P: Ekg 2_@ fJ' (K-q)U i (9,00AGy/(0,0) } . In order to perform detailed investigations of the diffusion
3 Ko JkJx' coefficient in the form of Eq(18) an exact analytical form of

(16) the kernelU,,(g,0) must be known. The limit of low den-
sities of scatterers is a good approximation to use to find

The second term on the right-hand side of Bif) is impor- U (9,0), since it is realized in most experimental
tant in the calculation of the diffusion constant. It has beersetups-*® In this approximation the self-energy and the irre-
concluded by the Amsterdam grdtip and Barabanenkov ducible vertex are expressed in terms of the scattering matrix
and Ozrirtt*®that after application of the generalized WI in for individual scatterert,. and density of scatterers
Eq. (16) this term isexactlyequal to zero. If it would have n as =“(K.,w;E")=nt. v (E7) and Ky (g, o)
the form [, Ji/(K-Q)Uw(9,00AG(q,0) the statement =nte, . +(E")t_ - (E7). The density of scatterera
made in Refs. 4-7, 11, and 15 would be correct. It is, howimust be small enough to allow the weak scattering approxi-
ever,impossibleto use WI in the second term of the right- mation to be valid. Then, the expressions for corrections
hand side of the Eq(16) due to appearance dG,(0,00 a(E) andA(E) in the low-density limit are
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Rety « iE ) the case of elastic collision, the scattering matgix, de-
AB)=n—7—+n— (X4 p)K(KkK)), pends on the modulus of the mometk#=|k’|* and on the
P cosine of the scattering angle=k -k’'/k? only. We have also

JRet , APy denoted the phase shift of the scattering matrixpag. (E)

a(E)=n Tzk'k—'nz AGy/ [ty |2 jéék (23 according to i (ET) =]t |expld ). In the low-

k density approximation both(E) anda(E) become true cor-
with rections of the order ofi to D,. SinceA(E) anda(E) con-
e e Py tain partial derivatives with respect bandE, respect_ively,

't —— ' }t: k,] . (24)  theoff-shelltransfer matrix has to be used in calculations. An
ok k du | exact form of the off-shell transfer matrix for a dielectric
where u=k-k’/k? is a cosine of the scattering angle. In de- sphere of the index of refractiod and radiusR is given in
riving these equations it has been taken into account that iRef. 14,

K(k,k')=i |m(

o ATR (k=K N(L-M?EL(E - KP)  AnRAM? - 1) (& -k
tae (B0 [k—K'[(M?2—K'?) T IMPE K (MPE )

i (KRh{F(£.R)— [ (kKRh{T) (£.R)
Mj{ (MERNT(E.R)— | (MELRN T (£.R)
wR2<M2—1>siz Mj (KR)j{ (M£.R)—j| (KR |(M£LR)
(M282-Kk'?) 9 Mj[(MER{ (LR —[i(MELRN ™ (£.R)

xZ (21+1) Pi(COH)[MEL i+ 1(MELR)j (KR)

—kii(M&-R)j 1+ 1(kR) ]+

X (21+1)Py(cos)[ é-h{T)(£-R)j|(KR) —kh{T(£-R)j 1 1(kR)], (25)

where§i=Ei/cp,j,(x) are spherical Bessel functions of the tained results"° we useM,=2.73 in the evaluations. The
Ith order,h{*)(x) andh{*)(x) are spherical Neumann func- appropriate value oM; that covers the range of the size
tions of the first and second kind, respectiveBj(u«) are  parameter valuessEx<5 is M;=0.005. Our goal, however,
Legendre polynomials of thelth order, and j/(x) is not limited to the study of the effect of absorption on
=dj,(x)/dx. A conventionalon-shell t matrix can be ob- resonances. A demonstration of necessity of the use of the
tained from Eq(25) by making the substitutiok=k"=§..,  off-shell approximation for thé matrix is an equally impor-
tant issue. For this reason we show our results for both ap-

2i S
t, (ET)=— — 21+1)P b* (E), 26 proximations.
e (E7) E 2| ( JPi(p)by (E) (29 We plot the on-shell and off-shell versions of the total

whereb,(x) is a Van de Hulst coefficient for the TE mode of corre.ction to the diffusion constant, givep in_the case of low
the vector Mie spher¥’ densny.by D—DO)/D0~—.a(x_)+A(x), in Flgg. 1 and 2
Equations(23—(26) give the analytical form of the cor- re§pectlvely, fqr the relat'|ve index of refractidvi =2.73
rections to the diffusion coefficient. Now we can study the ~10-005(thick lines. The figures also show the correspond-
functional behavior oD as a function of a dimensionless INg correction in the absence of absorptibh=2.73 (thin
size parametex= kOR (belOW the value oR=1cm s usebj "neS). We would like to stress here that we consider very
Absorption in the medium can be introduced as an imaginaryveak absorption and even in this case we find significant
part of the complex index of refractiol =M, —iM;. The changes in the corrections to the diffusion constant. The pro-
range of values oM; which can be used in calculations is, found difference between two approximations fomatrix
however, limited. Eq(18) for the diffusion constant is ob- can be seen from these graphs. The most striking changes
tained within the diffusion approximation which implies that occur in the on-shell correction: it becomes positive at values
I+/1,<1, wherel,=(2M,M k,) "%, otherwise conventional of the size parameter~2, 2.5, 3, 3.5, 4, 4.5, and 5, which
diffusion would break down. Thus, we obtain a condition correspond to the principal Mie resonances. On the other
M;<R/(2M,l1x). A minor inconvenience hidden here is hand, even such weak absorption substantially washes off
that the transport mean free path itself is a function of a sizeesonances in the off-shell version of the total correction,
parameter. Thus, for different values»ofve obtain different  which, however, remains negative for the whole range of
values ofM; satisfying the validity condition. Using the fact values of the size parameter. In order to understand which
that the scattering mean free path is not changed significantlgorrection leads to these changes we will look at properties
by absorption we have estimated the valu®tf2M,Ix) as  of a(x) andA(x) separately.
a function ofx for M=M, and then have used the largest We plot the on-shell version of the correctia(x) in Fig.
value of M, that does not violate the above condition. In 3 and the off-shell version o&(x) in Fig. 4 for M=2.73
order to be able to make a comparison with previously ob-—i0.005 (thick lineg and M =2.73 (thin lines. It can be
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FIG. 1. The total correction to the diffusion constant(x) FIG. 3. The correction to the transport velocétx) calculated

—a(x), calculated within theon-shell approximation, with and Wwithin theon-shellapproximation for the same valuesidfas in all
without absorption as a function of the size parameter. The thin lingorevious figuresM =2.73-i0.005 (thick line) and M =2.73 (thin
corresponds to the value M =2.73, the thick line corresponds to line).
the value ofM=2.73-i0.005. In order to preserve the details of
resonances in the presence of absorption we shorten the verticiditional forml+=1s/(1—{u)), wherel is scattering mean
scale of this and other figures. The magnitude of peaks left out ofree path. It is known that in the vicinity of principal Mie
the figure can be as large as 600. The total correction becomegsonances scattering is primarily in the forward directibn.
positive in the presence of absorption for the valuessfl.5, 2,  Thus, the average cosine of the scattering angle increases
and 2.5. leading to the growth of the transport mean free path. Analo-
gous features cannot be found in the on-shell version of
seen, that the effect of absorption on resonances is similar iA(x). It is always negative and it basically replicates features
both cases. Even weak absorption decreases the magnituaga(x) shown by a thin line in Fig. 3. When absorption is
of resonances at least by 10—25 times. On the other hand, tfigiroduced in the medium, resonances are washed out in the
value ofa(x) remains positive definite in agreement with the case of the off-shell version ai(x), which becomes now
statement of Ref. 7 that the quantkga(E) represents posi- negative for values ak=2.5 and 3. The functional behavior
tive definite “potential energy” inside the scatterers. of the on-shell version ofA(x) is altered much more seri-
The effect of absorption on the on-shéfflig. 5 and off-  ously. It becomes positive due to inversion of the principal
shell (Fig. 6) versions of the correctio(x) is different.  Mie resonances that is shown in Fig. 6, while the rest of it is
Special attention has to be paid to the off-shell version ohardly affected by absorption.
A(x) in the absence of absorptioA(x) is positive for the Let us return to the total correction to the diffusion con-
wide range of values aof, thus leading to the growth of the stant. In the on-shell approximation absorption “stimulates”
transport mean free path. These changes occur in the vicinigiffusion since the renormalized value Dfbecomes greater
of the first five principal Mie resonances located at values ofhanDg. This result, however, can be hardly justified physi-
x=~1, 1.5, 2, 2.5, and 3. These peculiarities can be understoozhlly. Contrary, the growth of the transport mean free path in
if we look at properties of Mie resonances. The transport
mean free path given by Eq19) can be rewritten in its

3 -50
2 >
s N ,:
o
-50 %
o) £-100
e 75 °
= =
2-100 2
3 £-150
§ 125 §
-150
-200
-175 1 2 3 4 5
-200 Size parameter
1 2 3 4 5
Size parameter FIG. 4. The correction to the transport velocéyx) calculated

within the off-shellapproximation for the same valuesidfas in all
FIG. 2. The same as in Fig. 1 but the total correction is calcuprevious figuresM =2.73—-10.005 (thick line) and M =2.73 (thin
lated within theoff-shell approximation. The total correction stays line). As in the on-shell case of the magnitude of resonances is
negative in both cases. significantly decreased.
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FIG. 5. The correction to the transport mean free paft) FIG. 6. The correction to the transport mean free pafl)

calculated within then-shellapproximation for the same values of calculated within theff-shellapproximation for the same values of

M as in all previous figuresM =2.73-i0.005 (thick line) and M as in all previous figuresM =2.73—i0.005 (thick line) and

M =2.73 (thin line). The principal Mie resonances are inverted by M =2.73(thin line). This correction is positive even in the absence

absorption. of absorption. In this case absorption decreases the magnitude of
resonances.
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