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Transfer matrix of a spherical scatterer
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We derive the off-shell scattering matrix for a spherical scatterer. The result obtained generalizes the
off-on-shell matrix commonly used in the theory of scalar waves propagation in random media.
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[. INTRODUCTION which exists due to the reciprocal principal for the Green
function. Analysis of the renormalization of the diffusion
It was recently recognized that the internal structure ofcoefficient employing the off-on-shell transfer matrix of a
scatterers can significantly alter the picture of wave propagascatterer with a finite permittivity"** has shown a strong
tion and localization in random medid When the size of enhancement of the previously obtaifédorrections toD
scatterers cannot be neglected, scattering is anisotropic anced qualitatively agrees with experimental détlumerical
“dwell time” for waves appears in addition to the time of agreement can be attained with the use of an exact off-shell
flight between scattering® This substantially modifies such Matrix. In this paper we derive the transfer matrix of a di-
parameters describing wave propagation as the diffusiof/€ctric sphere and analyze some of its general properties.
coefficient>*~1 transport mean free patfi!! and transport
velocity }>~1* The microscopic approach to the problem of  II. TRANSFER MATRIX OF A DIELECTRIC SPHERE
the renormalization of the diffusion coefficient is based on Th ‘ i of a sinl i originally in-
the Bethe-Salpeter equation for the field-field correlation e transfer matrix of a single scatterer is originally in

function. This equation and the solution obtained involve thetmduc'EOI via the Green function of the wave equation

transfer matrix for a single scatteret,, ,, wherek k' are
outgoing and incident momenta, respectively, ands the
frequency’® This matrix contains all information relating to yherer ' are location vectors of the point of observation

a scatterer’s structure, its influence on the anisotropy of scalyng the source respectively(r) has a constant value
tering, and on internal resonances. A great deal of this inforysige the scatterer and vanishes outside, the wave speed in
mation is ignored in the commonly used-shellapproxima- s equation and below is equal to unity. Equatid must

tion for the transfer matrix where both momektandk’ are o solved under conditions tha, ., and its derivatives

1 n2__ 2 ; . . i
taken on the “mass shell,’k“=w*. The off-shelltransfer 55 /5r are continuous in the entire space outside the
matrix, originally arising in the Bethe-Salpeter equation, iSgqrcel® For a spherical scatterer, one can obt@in, . by
not restricted by this condition. This matrix resolves theutilizing separation of the spherical coordinates and using

structure of a scattered field at any distance away from @qner houndary conditions at the surface of the scatterer
scatterer, while the on-shell matrix gives the far-zone asymp-

tote of a field only. The on-shell approximation formally

{wz[l"_s(r)]—’_A}Gr,r’:_5r—r’a (1)

iwR » on
enters the theory of wave transport in random media via they  _ € © +i/aS (I +172)P(rr")H , H A
commonly accepted-function approximation for the imagi- ' 47R =0 re’

nary part of the Green function, By, 8(w?—c;k?). The

6 approximation confines all transfer matrices in the expres- whenr r’=a,

sion of the diffusion coefficient on the mass shell. However,

the presence of derivatives ofy, , does not allow one to set

o=k automatically. Even within the on-shell approximation,

one has to first calculate the derivatives and then to allow .

k— w. Neglecting this fact can lead to unexpected results, m> (I+12P(rr")JarH o/
=

2

For instance, numerical calculations of the influence of wealer.r' =
absorption within the on-shell approximation show that the
diffusion coefficient becomes larger than its value in the me-

dium without microstructuré® This effect disappears if the
off-shell matrix is used®!!

The off-on-shellmatrix for a scatterer with an infinite per- = (
mittivity was first used in Ref. 1. Such a matrix gives a G =i/4>,
far-zone asymptote of a scattered field when the source is =0
located at a finite distance from a scatterer. This destroys the
symmetry between the incident and scattered momenta when r=a,r’'<a,

rr’
when r<a,r’'=a,

|+ 1/2)P(FT)H,, Jqr

!/

rr
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eiQR

Gr,r’: m+|/42‘6

(I+272P(rt") o dar

rr’

a a
C fo XJax‘]Bde: EQ__a2|Jaa‘]Ba|- (6)

The integrals containing Hankel functions diverge on the up-
per limit. However, since we deal with the retarded Green
wherea is the radius of the scatteréR=|r—r’| is the dis-  function, the frequency is shifted in the upper half-plane,
tance between the point of observation and the source, and— w+i0. This gives an exponentially decaying factor in

Q%=w?(1+¢). In these equations and below we omit theH,, whenr—c and provides convergence of the integrals.

index | denoting P(x)=P,(x), J,=J,+1(X) and H, Using recurrence relations between cylindrical functions one
=H,", 1,5(X), where P,(x) are the Legendre polynomials, can show

Ji+1a(X) are the Bessel functions, ard,’, ,,(x) are the

when r,r’'<a,

Hankel functions of the first kind. The coefficients of these o . a
expansions, obtained by boundary matching, have the form A XJaxH pdx= 2= B2 |JaaH gal - @)
A [Jwadaal _ |HwaHoal Using Egs.(3), (6), and (7) one can represent theff-shell
" Headad ' ! IH,ad0al ’ transfer matrix of a dielectric sphere in the form
B 2ilma &) “ia%(1+1/2)P(kk
== ia?(1+ '
! IHoadoal tsk,IE ( ) P(kk’) LELE,
. . . = 4k
Here we use a short notation of the following determinant
based on any pair of cylindrical functionsl,(x) and foo ie 0?d0?Ixadqal [k adgal
Vi (): o M=K (@~ K?)(a”~ w?)(q°~ Q)
|U vV |_ U,,(aX) V,,(,BX) (4) +|Jkana||Jk’aJwa|+|JkaJwa||Jk’ana|
P aU g a(ax) BV, (BX)|] N
. . — ———(—|JaHal i LDy | Iiad
By definition, the transfer matrix and the Green function are IH,aJdoal (=[IkaHoal LK DicJkadaal)
related by equation,Gy:= S /Di+ ty.D¢D,, Wwhere .
~|3aHo
Dy=[k*-w?]"! is the wave propagator in empty space. x( |J“_’aJQa| 2i/ma )( |Qk a ”
Calculating the Fourier transform of the Green function, 2ilma |HyaHaal /| LoDy 3w adaal

[ o(2m) 3G, .exp(=ikr +ik’r’), and using expansions
of the spherical and plane waves over the spherical functiongyhereL =k?— w? is the inverse wave propagator in empty
Y|m, ONe can obtain space. This expression has an explicit symmetry,
tie = tek, as it must for a spherical scatterer. Equati@
cannot be simplified any more in a general situation.
i1+ 1/2)P kk ) The off-on-shellmatrix can be obtained from Eg¢8) by
tkk,Dka,—;0 T3 J (D q 7 taking th_e outgoing momentum to the masi shiel, wk,
and using the facts that|J,.J.a/=L2=0 and
|3paH wal = —2i/7a

a a
xf errqudrf r'JgrerJgedr’
0

a(l+1/2)P(kk")
0 ————| [Jwadual

. A =0 27wk’
+f ererrdrf r'Jgrerd o dr’ % |

2 0 +—————(|3,ad0al;2i/ Ta) e )

a . |HwaJQa| Ly Dkf|Jk’ ‘JQa|
+f0 ererrdrfar JiroH o dr’ 9)

w a A B The transfer matrix given by E9) coincides with the result
+ J rdyH, dr J karJQrdf) ( B C ) of Refs. 10 and 11. In the limig¢—o (Q— ) it reproduces
a ! ! the result of Ref. 1. This transfer matrix defines the far-zone
o asymptote of the scattered field in the case that the point
f r'JyreH e dr’ source is located at a finite distance from the scatterer. That
« a _ (5) destroys the symmetry between the incident and scattered
a . , momenta.
for JrrrJorrdr For a source at an infinite distance we have to take the

incident momentumk’, in Eq. (9) to the mass shell. This
The integrals of the Bessel functions arising in E5).can be  results in the well-known expression for tha-shelltransfer
found in Ref. 19 matrix of a spherical dielectric scattef®r
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o o i1+ 12P(Kk")] 3,800l _a(p’—a’)(apa®l4) 2
=2 e an 10 Neadsel~ i3+ 53
-2 B 14+1/2
|Haa‘]ﬁa|%ﬂ Z) )
I1l. RAYLEIGH LIMIT
apa?| ~(1+172
All expressions given by Eq€8)—(10) can be substan- a(,82—a2)1“2(|+1/2)( 7 )
tially simplified in the Rayleigh limit when the scatterer size [H paH gal = 2721172

is the smallest linear scale in a problem. Taking into account
conditionswa,)a,ka,k’a<1 and using the asymptotes for Substitution of these equations into E8) yields the transfer

cylindrical functions one can show that matrix for long waves
“ a(1+1/2)P(Kk)(kk'a%/4)' +12 a2LyLy, )
te ~ 2(LP+Ly) +ew?| 1+
K |=Eo 4 KK T(1+ 32T (11 512) | " 2 A +1/27(1+1/2%~1]

do?|.

w2l oL quz(Zl +3)/23}, 3 q2) — qa(k?+k'2)/2J , 1(02)dy g g2) + (kK 2')2/2(21+3) ], 1 A q2)
ew Lyl
0

(@2=k*)(q*= k') (9°— w?)(q?— Q?)
(11

Due to the presence of two factorial functions in the denomi-gG

nator of Eq.(11), the main term in the sum is the term with &TZG(1+5)G=(D+DtD)(1+5)(D+DtD)- (13

[=0. This shows that in the Rayleigh limit an isotroc

term dominates in the scattered field even at distances of the

order of the wavelength from the scatterer. Calculating the

isotropic term of the transfer matrix at the mass shell weHere the operator® and & are diagonal in the momentum

reproduce the well-known Rayleigh scattering amplitude@nd coordinate representations, respective{k|D|k’)

t(w) =& w2a3/6m2. =8 (k2= 0?) 7L, (X|&]x")=&(X) 8, . From the perturba-
Equation (11) contains three types of terms with different tion _series expansion of the scattering operator,

behavior at the mass shell. The first type of term remainst=w’€+ w*¢DE+--+, it follows that €Dt=tDE

finite whenk,k’ — o, the second type vanishes b, and ~=t/@’—¢&. Using this relation to eliminaté from Eq. (13)

the third type vanishes at )2. The third type of term were @nd comparing the result with E(L2), we obtain the opera-

usually missed in calculations, since the off-on-shell transfef°" eguation

matrix was used instead of the off-shell matrix. This

leads to incorrect values of the partial derivatives

ool dw?| =, and dtilk? -, in the expression for the gt ot

diffusion coefficient. Using Eqg8),(11) enables one to ob- Ey A ;+ t

tain correct results for these derivatives. Below we obtain

some general relations fet,/ dw? anddty,/dk which allow

one to avoid lengthy straightforward calculations.

t. (14)

Using the explicit form for matrix elements of all operators
in Eq. (14), we obtain an expression for the derivative

2
IV. DERIVATIVES OF THE t MATRIX Iy I

Calculating the derivative of the operator equation
G=D+DtD with respect tow? and using the fact that

dD/dw?=D? one can obtain Mg e q%dq
— =t | gt . (15
902 02 ka gk’ y2(q2— w?)2
aG 2, M2 2 at
——=D*+D“D+DtD“+D———D. (12 . oo ©
Jw Jw A similar formula for derivatives of t,,, with respect to

wave vectors or their combinations can be obtained by dif-
ferentiating the momentum representation for the perturba-
On the other hand, differentiation of E() yields tion expansion of the scattering operator,
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ty = 02 Eg + o ququngk,

+(,06J j gquq(c;qq/qugqur P
alq’
As a result we have

atw ’ (95 !
kk kk
— 2 2

+ dq ﬁgkq ©
ok Y ok (P—w?) ok

th. (16

Here = E&(k—K") is the Fourier transform of the dielec-
tric function of a scattererg(x). In the case of a spherical

scatterer with the constant permittivi§fk) has the form that
is easy to differentiaté(q) = (singa—qa coxja)4ms/q’.
Equations(15) and(16) are particularly convenient when
both moment& andk’ are taken on the mass shell. In this
case on-shell and off-on-shell matrices only appear in the
expressions for the derivatives and one does not have to dif-
ferentiate the cumbersome E@) and then calculate the
limit of k— w.
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