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We derive the off-shell scattering matrix for a spherical scatterer. The result obtained generalizes the
off-on-shell matrix commonly used in the theory of scalar waves propagation in random media.
@S0163-1829~96!02141-8#

I. INTRODUCTION

It was recently recognized that the internal structure of
scatterers can significantly alter the picture of wave propaga-
tion and localization in random media.1,2 When the size of
scatterers cannot be neglected, scattering is anisotropic and a
‘‘dwell time’’ for waves appears in addition to the time of
flight between scattering.2,3 This substantially modifies such
parameters describing wave propagation as the diffusion
coefficient,2,4–11 transport mean free path,10,11 and transport
velocity.12–14 The microscopic approach to the problem of
the renormalization of the diffusion coefficient is based on
the Bethe-Salpeter equation for the field-field correlation
function. This equation and the solution obtained involve the
transfer matrix for a single scatterer,tkk8

v , wherek,k8 are
outgoing and incident momenta, respectively, andv is the
frequency.15 This matrix contains all information relating to
a scatterer’s structure, its influence on the anisotropy of scat-
tering, and on internal resonances. A great deal of this infor-
mation is ignored in the commonly usedon-shellapproxima-
tion for the transfer matrix where both momentak andk8 are
taken on the ‘‘mass shell,’’k25v2. The off-shell transfer
matrix, originally arising in the Bethe-Salpeter equation, is
not restricted by this condition. This matrix resolves the
structure of a scattered field at any distance away from a
scatterer, while the on-shell matrix gives the far-zone asymp-
tote of a field only. The on-shell approximation formally
enters the theory of wave transport in random media via the
commonly acceptedd-function approximation for the imagi-
nary part of the Green function, ImGk,v}d(v22cp

2k2). The
d approximation confines all transfer matrices in the expres-
sion of the diffusion coefficient on the mass shell. However,
the presence of derivatives oftkk8

v does not allow one to set
v5k automatically. Even within the on-shell approximation,
one has to first calculate the derivatives and then to allow
k→v. Neglecting this fact can lead to unexpected results.
For instance, numerical calculations of the influence of weak
absorption within the on-shell approximation show that the
diffusion coefficient becomes larger than its value in the me-
dium without microstructure.16 This effect disappears if the
off-shell matrix is used.10,11

Theoff-on-shellmatrix for a scatterer with an infinite per-
mittivity was first used in Ref. 1. Such a matrix gives a
far-zone asymptote of a scattered field when the source is
located at a finite distance from a scatterer. This destroys the
symmetry between the incident and scattered momenta

which exists due to the reciprocal principal for the Green
function. Analysis of the renormalization of the diffusion
coefficient employing the off-on-shell transfer matrix of a
scatterer with a finite permittivity10,11 has shown a strong
enhancement of the previously obtained2,7 corrections toD
and qualitatively agrees with experimental data.17 Numerical
agreement can be attained with the use of an exact off-shell
matrix. In this paper we derive the transfer matrix of a di-
electric sphere and analyze some of its general properties.

II. TRANSFER MATRIX OF A DIELECTRIC SPHERE

The transfer matrix of a single scatterer is originally in-
troduced via the Green function of the wave equation

$v2@11«~r …#1n%Gr ,r852d r2r8 , ~1!

where r ,r 8 are location vectors of the point of observation
and the source, respectively;«(r ) has a constant value,«,
inside the scatterer and vanishes outside, the wave speed in
this equation and below is equal to unity. Equation~1! must
be solved under conditions thatGr ,r8 and its derivatives
]Gr ,r8 /]r are continuous in the entire space outside the
source.18 For a spherical scatterer, one can obtainGr ,r8 by
utilizing separation of the spherical coordinates and using
proper boundary conditions at the surface of the scatterer

Gr ,r85
eivR

4pR
1 i /4(

l50

`
~ l11/2!P~ r̂ r̂ 8!HvrHvr 8

Arr 8
Al

when r ,r 8>a,

~2!

Gr ,r85 i /4(
l50

`
~ l11/2!P~ r̂ r̂ 8!JVrHvr 8

Arr 8
Bl

when r<a,r 8>a,

Gr ,r85 i /4(
l50

`
~ l11/2!P~ r̂ r̂ 8!HvrJVr 8

Arr 8
Bl

when r>a,r 8<a,
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Gr ,r85
eiVR

4pR
1 i /4(

l50

`
~ l11/2!P~ r̂ r̂ 8!JVrJVr 8

Arr 8
Cl

when r ,r 8<a,

wherea is the radius of the scatterer,R5ur2r 8u is the dis-
tance between the point of observation and the source, and
V25v2(11«). In these equations and below we omit the
index l denoting P(x)5Pl(x), Jx5Jl11/2(x) and Hx

5Hl11/2
1 (x), where Pl(x) are the Legendre polynomials,

Jl11/2(x) are the Bessel functions, andHl11/2
1 (x) are the

Hankel functions of the first kind. The coefficients of these
expansions, obtained by boundary matching, have the form

Al52
uJvaJVau
uHvaJVau

, Cl52
uHvaHVau
uHvaJVau

,

Bl52
2i /pa

uHvaJVau
. ~3!

Here we use a short notation of the following determinant
based on any pair of cylindrical functionsUn(x) and
Vn(x):

uUaxVbxu5U Un~ax! Vn~bx!

aUn11~ax! bVn11~bx!
U. ~4!

By definition, the transfer matrix and the Green function are
related by equation,Gkk85dkk8Dk

v1 tkk8
v Dk

vDk8
v where

Dk
v5@k22v2#21 is the wave propagator in empty space.

Calculating the Fourier transform of the Green function,
* r* r8(2p)23Gr,r 8exp(2ikr1 ik8r 8), and using expansions
of the spherical and plane waves over the spherical functions,
Ylm , one can obtain

tkk8
v Dk

vDk8
v

5(
l50

`
i ~ l11/2!P~ k̂k̂8!

4Akk8 F E0`~Dq
V2Dq

v!
dq2

ip

3E
0

a

rJkrJqrdrE
0

a

r 8Jk8r 8Jqr8dr8

1E
a

`

rJkrHvrdrE
0

a

r 8Jk8r 8Jvr 8dr8

1E
0

a

rJkrJvrdrE
a

`

r 8Jk8r 8Hvr 8dr8

1S E
a

`

rJkrHvrdr;E
0

a

rJkrJVrdr D SAl Bl

Bl Cl
D

3S Ea`r 8Jk8r 8Hvr 8dr8

E
0

a

r 8Jk8r 8JVr 8dr8
D G . ~5!

The integrals of the Bessel functions arising in Eq.~5! can be
found in Ref. 19

E
0

a

xJaxJbxdx5
a

b22a2 uJaaJbau. ~6!

The integrals containing Hankel functions diverge on the up-
per limit. However, since we deal with the retarded Green
function, the frequency is shifted in the upper half-plane,
v→v1 i0. This gives an exponentially decaying factor in
Hvr when r→` and provides convergence of the integrals.
Using recurrence relations between cylindrical functions one
can show

E
a

`

xJaxHbxdx5
a

a22b2 uJaaHbau. ~7!

Using Eqs.~3!, ~6!, and ~7! one can represent theoff-shell
transfer matrix of a dielectric sphere in the form

tkk8
v

5(
l50

`
ia2~ l11/2!P~ k̂k̂8!

4Akk8 FLkvLk8v

3E
0

` i«v2dq2uJkaJqauuJk8aJqau
p~q22k2!~q22k82!~q22v2!~q22V2!

1uJkaHvauuJk8aJvau1uJkaJvauuJk8aHvau

2
1

uHvaJVau
~2uJkaHvau;Lk

vDk
VuJkaJVau!

3S uJvaJVau 2i /pa

2i /pa uHvaHVau
D S 2uJk8aHvau

Lk8
v Dk8

V uJk8aJVau
D G ,

~8!
whereLk

v5k22v2 is the inverse wave propagator in empty
space. This expression has an explicit symmetry,
tkk85 tk8k , as it must for a spherical scatterer. Equation~8!
cannot be simplified any more in a general situation.

The off-on-shellmatrix can be obtained from Eq.~8! by
taking the outgoing momentum to the mass shell,k5v k̂,
and using the facts that uJvaJvau5Lv

v50 and
uJvaHvau522i /pa

t
v k̂k8
v

5(
l50

`
a~ l11/2!P~ k̂k̂8!

2pAvk8
F uJk8aJvau

1
1

uHvaJVau
~ uJvaJVau;2i /pa!S 2uJk8aHvau

Lk8
v Dk8

V uJk8aJVau
D G .
~9!

The transfer matrix given by Eq.~9! coincides with the result
of Refs. 10 and 11. In the limit«→` (V→`) it reproduces
the result of Ref. 1. This transfer matrix defines the far-zone
asymptote of the scattered field in the case that the point
source is located at a finite distance from the scatterer. That
destroys the symmetry between the incident and scattered
momenta.

For a source at an infinite distance we have to take the
incident momentum,k8, in Eq. ~9! to the mass shell. This
results in the well-known expression for theon-shelltransfer
matrix of a spherical dielectric scatterer20
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t k̂k̂8
v

5(
l50

`
i ~ l11/2!P~ k̂k̂8!uJvaJVau

p2vuHvaJVau
. ~10!

III. RAYLEIGH LIMIT

All expressions given by Eqs.~8!–~10! can be substan-
tially simplified in the Rayleigh limit when the scatterer size
is the smallest linear scale in a problem. Taking into account
conditionsva,Va,ka,k8a!1 and using the asymptotes for
cylindrical functions one can show that

uJaaJbau'
a~b22a2!~aba2/4! l11/2

2G~ l13/2!G~ l15/3!
,

uHaaJbau'
22

aip S b

a D l11/2

,

uHaaHbau'
a~b22a2!G2~ l11/2!S aba2

4 D 2~ l11/2!

2p2~ l21/2!
.

Substitution of these equations into Eq.~8! yields the transfer
matrix for long waves

tkk8
v '(

l50

`
a2~ l11/2!P~ k̂k̂8!~kk8a2/4! l11/2

4pAkk8G~ l13/2!G~ l15/2!
F2~Lk

v1Lk8
v

!1«v2S 11
a2Lk

vLk8
v

4~ l11/2!2@~ l11/2!221# D
1«v2Lk

vLk8
v E

0

`q2~2l13!/2Jl13/2
2

~qa!2qa~k21k82!/2Jl11/2~qa!Jl13/2~qa!1~kk8a8!2/2~2l13!Jl11/2
2

~qa!

~q22k2!~q22k82!~q22v2!~q22V2!
dq2G .

~11!

Due to the presence of two factorial functions in the denomi-
nator of Eq.~11!, the main term in the sum is the term with
l50. This shows that in the Rayleigh limit an isotropicS
term dominates in the scattered field even at distances of the
order of the wavelength from the scatterer. Calculating the
isotropic term of the transfer matrix at the mass shell we
reproduce the well-known Rayleigh scattering amplitude,
t(v)5«v2a3/6p2.

Equation ~11! contains three types of terms with different
behavior at the mass shell. The first type of term remains
finite whenk,k8→v, the second type vanishes asLk

v , and
the third type vanishes as (Lk

v)2. The third type of term were
usually missed in calculations, since the off-on-shell transfer
matrix was used instead of the off-shell matrix. This
leads to incorrect values of the partial derivatives
]tkk

v /]v2uk5v and ]tkk
v /]k2uk5v in the expression for the

diffusion coefficient. Using Eqs.~8!,~11! enables one to ob-
tain correct results for these derivatives. Below we obtain
some general relations for]tkk

v /]v2 and]tkk
v /]k which allow

one to avoid lengthy straightforward calculations.

IV. DERIVATIVES OF THE t MATRIX

Calculating the derivative of the operator equation
G5D1DtD with respect tov2 and using the fact that
]D/]v25D2 one can obtain

]G

]v2 5D21D2tD1DtD21D
]t

]v2D. ~12!

On the other hand, differentiation of Eq.~1! yields

]G

]v2 5G~11E!G5~D1DtD !~11E!~D1DtD !. ~13!

Here the operatorsD andE are diagonal in the momentum
and coordinate representations, respectively,^kuDuk8&
5dkk8(k

22v2)21, ^xuEux8&5«(x)dxx8 . From the perturba-
tion series expansion of the scattering operator,
t5v2E1v4EDE1•••, it follows that EDt5 tDE

5t/v22E. Using this relation to eliminateE from Eq. ~13!
and comparing the result with Eq.~12!, we obtain the opera-
tor equation

]t

]v2 5
t

v2 1 tSD21
D

v2D t. ~14!

Using the explicit form for matrix elements of all operators
in Eq. ~14!, we obtain an expression for the derivative
]tkk8

v /]v2

]tkk8
v

]v2 5
tkk8
v

v2 1E tkq
v tqk8

v q2dq

v2~q22v2!2
. ~15!

A similar formula for derivatives of tkk8
v with respect to

wave vectors or their combinations can be obtained by dif-
ferentiating the momentum representation for the perturba-
tion expansion of the scattering operator,
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tkk8
v

5v2Ekk81v4E
q
EkqDqEqk8

1v6E
q
E
q8
EkqDqEqq8Dq8Eq8k8 . . . .

As a result we have

]tkk8
v

]k
5v2

]Ekk8
]k

1v2E dq

~q22v2!

]Ekq
]k

tqk8
v . ~16!

HereEkk85E(k2k8… is the Fourier transform of the dielec-
tric function of a scatterer,«(x). In the case of a spherical

scatterer with the constant permittivityE(k) has the form that
is easy to differentiateE(q)5(sinqa2qa cosqa)4p«/q3.

Equations~15! and~16! are particularly convenient when
both momentak andk8 are taken on the mass shell. In this
case on-shell and off-on-shell matrices only appear in the
expressions for the derivatives and one does not have to dif-
ferentiate the cumbersome Eq.~8! and then calculate the
limit of k→v.
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