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Random path averaging in multiple-scattering theory
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A method of path averaging for waves propagating in a random dilute system of identical scatterers is
developed. The scattering matrix of such a system is calculated. The method systematically takes into account
repeating scatterings on the same scatterer and effects of correlations. Results obtained show the significant
influence of new effects on the extinction of a coherent field and are valid in both the diffusive and localized
regimes[S0163-182607)04506-2

I. INTRODUCTION of scattering events and has a multipli€?, wheren is the
average density of particles antis the number of different
Diffusion and localization of waves propagating in ran- scatterers participating in the scattering process. The theory
dom media have attracted a great deal of interest within theontains three fundamental length scales, namely, the scat-
last decadé? Even though considerable progress in undererer sizea, the separation between scatterers)”, and the
standing these phenomena has been achieved, many qu#gvelength\. In the case of dilute systems, when the vol-
tions remain open. A commonly accepted picture is as follime fraction of scatterersia®, is small, one can ignore all
lows. A coherent wave incident on a medium breaks into arforrelations in a scatterers distribution and use only the first-
incoherent stream of photons within the distance of the ordeprder terms of the mass operator and the vertex function as
of the photon scattering mean free pattvhich then travel the leading terms of the expansions over smatost of the
randomly through the medium. Thus, one can expect nalytical results are based on tleading approximationn

smooth diffusive distribution of the wave amplitude and e low de”S'Fy limit _and on s_lmplt_a corrections fo It. .
strong fluctuations of the phase at space-time scales of t The Green’s function and field-field correlator obtained in

. . htﬁe leading approximation only take a restricted class of scat-
order of the photan mean free path and the free-flight tlmetering diagraﬁﬁps into account.)/OnIy multiple scattering pro-
When the wavelengthy, is much smaller the, the trans-  cogqes in which a wave scatters no more than once off any
port equation or the random walk approach give an adequalg atterer are included. This prescribes a “long memory” to a
description of the photon diffusion in a mediuitOn the  \yave, such that when traveling in a medium it “remembers”
other hand, when and| are comparable, wave interference || scatterers that were already visited and avoids them in its
can destroy ordinary diffusion and can lead to the wave losubsequent motion. In application to the wave diffusion, this
calization. To incorporate interference effects into the theoryestriction seems to contradict the underlying picture of ran-
of wave propagation in random media, one must start wittdomly walking photons. In the case of particlelike photons

the solution of the wave equation, this would lead to anomalous diffusion, significantly differ-
, ent from ordinary diffusioff:® Besides, the fraction of these
{oT1+EXx) ]+ AW (x)=0. (1) “long memory” paths is exponentially small for long path

Here o is the wave frequency and the functigifx) de- Iengths._Therefore, the Iegdmg approximation must be ac-
scribes properties of scatterers and their spatial distributio cor_npanled by strong phyS|c§1I reasons for ignoring other sta-
When self-averaging of a field takes place in a random mg_lstlcally dominating scattering sequences. Such reasoning
) o ) —usually appeals to destructive interference of scattered waves
dium, observable quantities can be obtained upon averagingnic “separates wave diffusion from diffusion of particles.
over an ensemble of random configurations of scatterers. Afhis was analyzed in numerical calculations on finite clusters
averaged Green's function of E€l), (G,), defines the ex- of scatterer§, but reliable analytical results in this area are
tinction length,l.,, and the density of states. The transportabsent. The problem arises because, in order to investigate an
properties of waves are described by the field-field correlainfluence of wave interference, one must evaluate the entire

tion function,(éxé)f,}. With the help of the Dyson equation, series for the Green'’s function and the field-field correlator.

analysis of(éx) is usually reduced to calculations of the In this paper we propose a method that enables us to

mass operator. The field-field correlator satisfies the BetheqonSIder processes with repeated scattering in calculation of

Salpeter equation. The latter involves the vertex functior;[he scattering operator. Our method is based uppaver-

which describes an effective interaction of waves in a ran23ind over random paths instead of averaging over ensemble

dom medium. Microscopic analysis of these functions in aconfigurations,(ii) the statistical independence of random

system of identical scatterers is based on multiple scatteringlrnps of scattered waves, afid) the existence of a hierar-
perturbation theory. The perturbation procedure represen y of length scales in dilute systems of scatterers.

all quantities of interest as infinite series, where each term
involves free-space Green'’s functions, one-particle scattering
operators and, partial distribution functions of scatterers. The Green's function of Eq(l) corresponds to a field
Each term in the series corresponds to a particular sequendgeduced by ad source. It satisfies an integral equation with

II. LOW DENSITY LEADING APPROXIMATION
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the iteration solution given by the formal operator series: wheretk,Q,:(klflk) is the scattering amplitude of a single
L o particle in the forward direction.
G=D+DED+DEDED+ - - - =D+DTD, (2 However, even a naive statistical analysis gives rise to
R R doubts regarding this approximation. Let us consider a sys-
whereD is a free-space propagator amddenotes the total tem with the linear size. containingN scatterers. A wave
scattering operator of a system. One can choose any reprpropagates through the system by means of random jumps
sentation to obtain a constructive form of these expressiongrom one scatterer to another. During this motion a likely

For instance, in the coordinate representation, operddors jump length is of the order of the mean free pathn the

andZ have the following matrix elements: diffusion limit, after s jumps, a wave covers the distance
IJs and leaves the system whegss,= L2l ~2. Therefore,
eidlx—x'| paths with length of the order &, are most responsible for
Dy = m Er =PE(X) Oyt (3)  the diffusive content of an emerging field. A total number of

paths consisting oé jumps is equal td\N®. The number of
. . . 13 th) H ' _ ' H H
whereq= w is a wave number in the system of units where long memory” s paths isN!/(N .S)" Itis stralghtfqrward
to estimate that in a macroscopic system the ratio of these

speed of waves=1. two numbers, or fraction of the “long memory” paths, tends
In the case of a single scatterer, using an exact solution atV ’ 9 P '

3 13 1
Eqg. (1), one can obtain the scattering operator of a ssinglé0 zero as exp-s/2n3T]. Thus, all “long memory” paths

icle 1. 1 N identical h | represent a statistically negligible fraction of the scattering
particle, t. In a system oiN Iidentical scatterers, the total ., that are important for the wave diffusion.

scattering operator can be expressed in terntsopierators: Moreover, the “long memory” in random walks provides
an effect of “outward pressure” acting on a walker. For a
R ~ 4 an an simple walker the probability to stay within any volume

ngl (Xlzxs) txD- - - Dt Dby, (4) around the origin after it makes steps is proportional to

N%/V=n® When a walker is forced to avoid repeating scat-

wherefXm denotes the scattering operator of a particle located€/ng on the same scatterer, this probability is proportional

. . to NI/[(N—s)!s!'Vs]=~n¥/s!. The longer paths we consider,
.at the poinx;,. The sums in Eq(4) account fqr all spat_ter- the smaller, comparing with an unrestricted walker, this
ing paths, k3 —Xx,—---—Xg), that are possible within a

. L e . ) robability is. In the latter case an average distance from the
given spatial distribution of particles. Ensemble averaging oP y g

Eq. (4) eliminates this restriction and gives an average sca f—?”gm’ Rs, is Of the order O.ﬂ.‘/g' Since fqr a particle with
long memory” the probability to stay within any volume

tering operatoK T)ensempie= T in the form of the weighted  515,nd the origin is weakened by the factas! 1the R, must
sum of contributions from all scattering paths: be greater thahy/s. This can be treated as an effective out-
ward pressure that drives a particle much farther away from
the origin. A similar pressure, caused by an excluded vol-
ume, exists in the case of the self-avoiding random walks
and it leads to anomalous diffusién.

where the symbof(xl,,_xs) denotes integrations over all the  From this point of view the success of the leading ap-
indicated variables with the natural measure for each variproximation in a description of the wave diffusion looks
able. The path weighMV(x,- - -Xg), is the fraction of those rather surprising. In any case, it is necessary to investigate
configurations where the path is allowed and it can be exthe effect of all remaining paths on the scattering operator
pressed in terms of partial distribution functions of scatterersand the field-field correlator.

The conventional way of calculating in a statistically
homogeneous system makes use of the momentum represen-
tation where the free-space propagator is diagonal,
Dy’ = S /Dy = i [k?— »?] 71, and the scattering matrix ~ With the use of uncorrelated distributions of scatterers
of a single particle depends upon the location of a scatterer ione can calculate the “long memory” subseries exactly.
a simple way(k'|t,| k) =t expx(k’ —k). Ignoring all short- However, it does not help in the evaluation of the total scat-
range correlations arising from the rigid nature of scatterersiering operator without bias against any scattering paths. To
one can calculate exactly the “long memory” subseries.advance here we modify the averaging procedure. Averaging
This subseries contains those terms of Fs). where the over random paths of scattered waves is physically equiva-
scattered wave visits different scatterers only, soxalare lent to averaging over random distributions of scatterers.
independent andW(x;- - -xJ=n®. Retaining only these Therefore, we can rewrite Eq5) using jump vectors,
terms is known as the low densilyading approximatioror ~ Ry=Xm+1—Xm, @s independent variables instead of coordi-
as the approximation of independent scattering. It is thoughfates of scatterers
to be appropriate in the case of dilute systems of small scat-
terers and most of analytical results are based on it. For o
instance, the diagonal part of tieoperator in this approxi- T= 2 j Wi
mation has the forfh =0 Jixg.Ry. ... Ry

T=> W(X;- - -x9t, D---Dt, Dt,, (5
s=1 J(x1--%9 s 2

Ill. RANDOM PATH AVERAGING

TLeading: ntk,w[ 1— ntk,w f] —1’ (6) X f) .. 6EX0+R1+R26EXO+RleX0' (7)
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Any possible scattering patfxg,R1- - - Rg}, is accounted for  ber ofs paths. A parametey is understood to be of the order

in Eq. (7) with a path weightW(xo,R; - - -Ry). In the system  of no, if the scattering mean free path is much greater than
of N scatterers fixed in space, the total numbes giaths is N~ 3 and it tends to the inverse average separatiort’?,
equal to N—1)° and, as one can see from H4), they are When the scattering cross section becomes large and both
all accounted for ifT. When scatterers are randomly placedlengths become comparable.

in space, a path weight is proportional to the probability to In a dilute system Eq(7) can be further simplified by
find all scatterers in proper places along a path. This probroting that the size of a scatterer is much smaller than the
ability is given by a joint distribution function of scatterers ~average separation. If we use the coordinate representation in
which takes into account all correlations between them. Ifall intermediate states for the matrix elemeris|T|k)

one ignores these correlations, a path weight takes a form:T,,,,

used in the leading approximatioWy=[(N—1)/V]3=n5.

Any attempt to preserve all correlations W presents too © _

general problem with no constructive way to go far beyond T,/ = >, We'K' (X0 Rst - +Rq) =ikxo

the leading approximation. Meanwhile, a random path pic- $=0 J(xo.Ry "Ry

ture allows us to approach the problem utilizing theadom

jump distributioninstead of distribution functions of scatter- xf terr' Dy v 4r "Dy or 4R bk

ers. On each random step along the dath R;..Rs} a wave (rpryeeersrg) 5% 2 0® vor

may jump to any ofN—1 scatterers. If we introduce a den- (10)

sity of scatterers available for a single jumpg(R), and

assume statistical independence of random steps, then the can see that the ranges of the changes of variables

path weight can be factorized as follows: (rq,ri---rs,r) have a different order of magnitude. A
_ single-particle scattering matrix in the coordinate representa-
W(xO,Rl- . -Rs)=n5+1g(Rl)--~g(RS). (8) tion, t,,,, vanishes outside the scatterer, whefer=a,

while the distances between two successive scattdReesge

The functionng(r) describes the density of scatterers at aof the order of the average separation,’>. Assuming that
distancer from the scatterer placed at the origin. In a statis-short-range density fluctuations are not crucially important in
tically homogeneous system this function is close to the avthe low density limit, we can assume that essential values of
erage densityn. However, correlations between scatterersR are much greater than thoserdfr. This fact allows one
and fluctuations of their concentration cause deviations ofo use the far-zone asymptote of the free-space propagators
g(r) from unity at small distances. This is supported by thein Eq. (10):
following argument. The fluctuations of density are de-
scribed by the Poisson distribution. In a dilute system an , , gldR
average volume per particle, %, is much greater than the DRr—rr~Dge'¥ =), Dr=7 R (13)
volume of a scattereg®. Therefore, analyzing density fluc-
tuations at large scales we can neglect the volume of th
scatterers themselves. The probability to fimd particles
within a spherical shell of radius and thickness ™2 is
P(m,r)=(47r2n?3)Mexp(—4ar2n?®)/ml. It shows that .
the probability of large fluctuations of density rapidly de- T K (Xa Rt -+ - 4 R)— ikx

-1/3 . Tk’k“E j Welk (X0t Rs 1) 0
creases at>n" . We can expect, therefore, that the devia- &0 )ur. )
tions of g(r) from unity are substantial at distances compa-

fuhereq=wn,n=R/R. It makes it possible to calculate all
integrals with respect tor¢,ry- - -rg,rs) in Eq. (10):

rable to the average separation between particled?. In Xlrgg  1g,kDry- - - DRy - (12
application to wave propagation further simplification seems
to be relevant. When the scattering cross sectiay, is In a statistically homogeneous system, the integral over

small the precise structure afg(r) more likely can be dis-  the location of the first scatterex,, gives the common mul-
regarded since a wave with a large probability can just ignorgiplier §,,, expressing the homogeneity of the system. Since
a lot of surrounding scatterers. The probability that a wavehe distribution function,g(R), depends upon the jump
makes anr jump is proportional to the probability of not |ength only, the integrations over the directions of the jumps
meeting any scatterer inside a cylinder of lengtiith the  can be separated from the integrals over jump lengths in Eq.
base area equal te.. From the Poisson distribution it fol- (12). All directional integrals can be evaluated with the help
lows that P(Orog)=exp(—nrog). Therefore, we can as- of the Taylor expansion of smooth functions in the integrand
sume that the effect of density fluctuationsrg(r) is sub-  and a deformation of the integration contour in the complex
stantial at distances of the order of the scattering mean fregiane:

path, (los) 1. The function that takes into account the
above arguments can be choosen in the form J

A 2m 1 X
it @ [ Tdg [ aut(gmer
0 -1

3 n

ng(r)=n 1—y—eX|:(—ry) . 9

8mn 270

= Wt...awlztawlz...e

~ ikRo
This function is normalized oN—1 and, consequently, the

path weightW(xg,R, - - - Rs) is normalized on the total num- (13
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This formula works quite well in the case of weak scattering n7T2,(g9.+9g_)

anisotropy, Tsz n| ty,+ m , (19)
at | A
. k)<th Y (14 wheret,=(wkl|t|wk) is the on-shell scattering amplitude,

Tv o={(K|tlwk) is the on-off-shell amplitude, and
especially wherkR>1. Equation(13) becomes the rigorous t, ,=(k|t|k) is the off-shell one. All these quantities can be
equality for isotropic scattering. After utilizing EG13), all  obtained from the solution of the boundary-value problem
the remaining integrals over jump lengths in Et2) can be  for a single scatterer and are well known for scatterers of a
factorized since there is no correlations beween jumps. Theimple shap& ! Quantitiesg. are given in Eq.(16) and
resulting expression for diagonal elementsTgf, takes the  depend upon the choice of the density of surrounding scat-
form terers. The substitution of the functigfr) given by Eq.(9)
yields the total scattering operator of a dilute system of iden-

tical isotropic scatterers:
- ntkk+ nE 2 tkosgastasos,l s gaztozalgolto’lk '

s=1 0109+
(19 ot LT~ tiatoJDE— (/8 D]
=n
In this equation the indexas, o, ... correspond to %+” ko 1-nt,[Dy—(y*8mn)Dy ']
or “=" and we denote (20
tko=(Kltlowk), tou=(owk|t|k), This result involves the effective correlation radius?.

In the limit y—<, when correlations between scatterers can
* o ikRo be ignored, thel matrix given by Eq.(20) reproduces the
0 rg(r)Dre™dr. expression for the coherence length obtained in the leading
(16) approximation. The choice oﬁ~|§cl physically means that
) ) _ the contribution to the coherent field from scattering paths
Due to the fact that all intermediate states in EIf) are  consisting of many short jumps is assumed to be small, since

aligned along or against the incident momentiinthe mul-  they are rare in a statistically homogeneous dilute system.
tiple scattering part of th& matrix can be rewritten in terms

of 2X 2 matricest andg defined in Eq(16):

A N o2n
t,or =(ook|t|o’ wk), 9o="

IV. EXTINCTION LENGTH

TIUPe= 3> > 1, [0(t9)%] oty k The averaged Green'’s function describes the coherent part
$=0 5q' of the field created by a point source placed in a random
medium. Due to random scattering of propagating waves the
=N te,[0(1—t9) Nyorterk- (17)  pole of the Green’s function is shifted away from the pole of
oo’ the free-space propagatdrs= w. The imaginary part of this

pole defines the extinction length of coherent waves in the
Finally, using an explicit expression for the matrix random medium. According to the relationship between
(1—tg) "%, we can represent tHE matrix in the form Gy, and the scattering matrixG,,= Dﬁ’+(D|'f)2Tkw, it
seems thaG,, has a pole of the second order whetends
to w. However, this singularity disappears, sintg, has
there a zero of the first orderT,,=—2w(k—w)
+0O[(k— w)?]. Our result, as well ag;?2"9 demonstrates
(g+tk+) (18) this behavior. Therefore, only a pole in tfﬁematrix gives an
g_t_/’ actual singularity of the Green’s function. In the leading ap-

. proximation this pole can be found from the equation
where tftg| and deftg| denote the trace and the determi-

nant, respectively. For a spherical scattarer=t__ is the

forward scattering amplitude and. . =t,_ is the back- k’—w®=nty,. (21)

scattering amplitude with all momenta confined at the “mass

shell,” k*=w?, while in t,. andt., one of the momenta This approximation relies on the low density of particles and

(k) can be of an arbitrary magnitude. weak scattering, which implies thdt=(4n/3)a®n<1 and
This T matrix is formally defined at all spatial scales and oty ,, is small. Weak scattering takes place in the Rayleigh

for any wavelength. In our evaluation, we assumed a weakmit where aw<1 and the scattering amplitude itself is a

anlsotropy of scattering and a low density of particles,small quantity. An expansion over the small parameter

na®<1. An isotropic scattering dominates, for instance, inyields the leading term of the scattering amplitude
the Rayleigh limit when a wavelength is much greater than

the scatterer sizegw<1. In this case, since scattering am-
plitudes do not depend upon directions of incoming and out-
going momenta, Eq.18) can be simplified as follows:

T= ntkk+

n
T, to
1= ttg + defitg "+ 1%

1-t._g-, t_,0+
t._g-, 1-ti .04

X

4 3 2
de,w~8§7ra w?, (22
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wheree is the difference between dielectric constants of the w3 y:
scatterer and the host medium. ThetRedoes not depend lex ~w(fs)28 n( )
uponk and is of the second order, while the leading term of
the imaginary part is of the fifth order, as it follows from the
optical theorem:

8mn/’

In both cases we obtain physically meaningful expressions
for the extinction length since we have assumed that
- y=|c_0}r approacheso.in the weak scattering regime and it
|mtk,w:(2772)2wf |tiger| k. becomes proportional to'”® when the scattering cross sec-
tion becomes large.
Solving Eq.(22) for long waves in a dilute system we obtain

kz(w) —w V. CONCLUSIONS

w3
1+f8+i(f8)2ﬂ}.
7 In summary, we developed a new method for studying
interference of multiple scattered waves that takes into ac-
count multiple returns to the same scatterer. We evaluated
the scattering matrix of a dilute system of identical particles.
The T matrix obtained in Eq(20) is valid in the Rayleigh
|;X1=|mk(w):ng“/2~ w(fe)2w3/8mn. limit, wa<<1. We did not impose any other restrictions on
the wavelength, therefore, our result can be used to analyze
Here the factorw®/87n is of the order of R/\)3, whereR the localized regimewl~1. All scattering paths and finite
and\ are the average separation between scatterers and tfge of correlations are accounted for in our approach. This
wavelength, respectively. It can be dangerously large, but ifiesults in the momentum cutoff that appears in &) as a
the weak scattering regime it is totally neutralized by thetruncation of the free-space propagat® by the term
small parametefe. However, even in a rare mist of water (y3/87rn)D“’+'7 It also gives an extra term in the numera-
drops this parameter can be of the order of unity due to théor of Eq. (20), which is missing inT'®29 |n the Rayleigh
large value ofe. In similar dilute systems with large mis- limit this term is small because the leading terms of all scat-
match indexes the leading approximation still seems to béering amplitudes are equal. However, the change of the de-
valid. ForR>\ it gives nominator is physically important for the consistent descrip-
tion of the wave extinction in a system with large mismatch
1 a2 indexes. Using a microscopic expression for the density
lex ~0fe(RIN)>o. function, g(r), in Eq. (19) one can obtain an exact expres-
sion for the extinction length. According to the definition of
On the other hand, the extinction lengthe phase coherence g(r), this function must have the structugér)=1— “de-
length being much smaller than the wavelength is physicallycay function.” It guarantees the appearance of the momen-
meaningless since then we cannot talk about wave propagéum cutoff in the denominator of the exa€t matrix. This
tion anymore. Therefore, the leading approximation requiregffect is due to scattering paths with multiple returns. Even if
that at least two conditions to be met, namelyy<1 and  each such path gives a negligible contribution, altogether
fe<l. they present a dominant amount of scattering paths and they
Our T matrix was obtained under the conditions cannot be neglected in the coherent field. Referring to the
f<1, an<1, and it involves a phenomenological param-motivation of our work given in the Introduction, we can
eter, y=Ir, Our equation for the pole of the Green’s func- conclude that the interference cancellation of non-“long-
tion reads memory” contributions in the coherent field is overestimated
in the leading approximation.
The T matrix itself does not allow one to analyze the

Whenfe<1, this equation gives the well-known expression
for the extinction length,

2 27rk2_ SN2 2_ FoN2 influence of “long memory” effects on transport properties
[k~ Tk~ (0F1y)T=nt, K= (@ +iy) of waves. Calculations of the field-field correlator are cur-
3 rently in progress. Our method enables us to proceed without
—7—(k2—w2) (23) utilizing the Bethe-Salpeter equation and does not require
8mn any additional approximations.

To be consistent, we have to use the Rayleigh scattering
amplitude given by Eq(22). When fe<1, the right-hand
part of Eg.(23) is small and we obtain ACKNOWLEDGMENTS
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