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Random path averaging in multiple-scattering theory
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A method of path averaging for waves propagating in a random dilute system of identical scatterers is
developed. The scattering matrix of such a system is calculated. The method systematically takes into account
repeating scatterings on the same scatterer and effects of correlations. Results obtained show the significant
influence of new effects on the extinction of a coherent field and are valid in both the diffusive and localized
regimes.@S0163-1829~97!04506-2#
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I. INTRODUCTION

Diffusion and localization of waves propagating in ra
dom media have attracted a great deal of interest within
last decade.1,2 Even though considerable progress in und
standing these phenomena has been achieved, many
tions remain open. A commonly accepted picture is as
lows. A coherent wave incident on a medium breaks into
incoherent stream of photons within the distance of the or
of the photon scattering mean free pathl which then travel
randomly through the medium. Thus, one can expec
smooth diffusive distribution of the wave amplitude a
strong fluctuations of the phase at space-time scales o
order of the photon mean free path and the free-flight tim
When the wavelength,l, is much smaller thenl , the trans-
port equation or the random walk approach give an adeq
description of the photon diffusion in a medium.3 On the
other hand, whenl and l are comparable, wave interferenc
can destroy ordinary diffusion and can lead to the wave
calization. To incorporate interference effects into the the
of wave propagation in random media, one must start w
the solution of the wave equation,

$v2@11E~x!#1D%C~x!50. ~1!

Here v is the wave frequency and the functionE(x) de-
scribes properties of scatterers and their spatial distribut
When self-averaging of a field takes place in a random m
dium, observable quantities can be obtained upon avera
over an ensemble of random configurations of scatterers
averaged Green’s function of Eq.~1!, ^Ĝx&, defines the ex-
tinction length,l ex, and the density of states. The transp
properties of waves are described by the field-field corre
tion function,^ĜxĜx8

* &. With the help of the Dyson equation

analysis of^Ĝx& is usually reduced to calculations of th
mass operator. The field-field correlator satisfies the Be
Salpeter equation. The latter involves the vertex funct
which describes an effective interaction of waves in a r
dom medium. Microscopic analysis of these functions in
system of identical scatterers is based on multiple scatte
perturbation theory. The perturbation procedure repres
all quantities of interest as infinite series, where each te
involves free-space Green’s functions, one-particle scatte
operators and, partial distribution functions of scattere
Each term in the series corresponds to a particular sequ
550163-1829/97/55~6!/3574~6!/$10.00
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of scattering events and has a multipliernm, wheren is the
average density of particles andm is the number of different
scatterers participating in the scattering process. The the
contains three fundamental length scales, namely, the s
terer size,a, the separation between scatterers,n21/3, and the
wavelength,l. In the case of dilute systems, when the vo
ume fraction of scatterers,na3, is small, one can ignore al
correlations in a scatterers distribution and use only the fi
order terms of the mass operator and the vertex function
the leading terms of the expansions over smalln. Most of the
analytical results are based on thisleading approximationin
the low density limit and on simple corrections to it.

The Green’s function and field-field correlator obtained
the leading approximation only take a restricted class of s
tering diagrams into account. Only multiple scattering p
cesses in which a wave scatters no more than once off
scatterer are included. This prescribes a ‘‘long memory’’ t
wave, such that when traveling in a medium it ‘‘remember
all scatterers that were already visited and avoids them in
subsequent motion. In application to the wave diffusion, t
restriction seems to contradict the underlying picture of r
domly walking photons. In the case of particlelike photo
this would lead to anomalous diffusion, significantly diffe
ent from ordinary diffusion.4,5 Besides, the fraction of thes
‘‘long memory’’ paths is exponentially small for long pat
lengths. Therefore, the leading approximation must be
companied by strong physical reasons for ignoring other
tistically dominating scattering sequences. Such reason
usually appeals to destructive interference of scattered wa
which separates wave diffusion from diffusion of particle
This was analyzed in numerical calculations on finite clust
of scatterers,6 but reliable analytical results in this area a
absent. The problem arises because, in order to investiga
influence of wave interference, one must evaluate the en
series for the Green’s function and the field-field correlat

In this paper we propose a method that enables us
consider processes with repeated scattering in calculatio
the scattering operator. Our method is based upon~i! aver-
aging over random paths instead of averaging over ensem
configurations,~ii ! the statistical independence of rando
jumps of scattered waves, and~iii ! the existence of a hierar
chy of length scales in dilute systems of scatterers.

II. LOW DENSITY LEADING APPROXIMATION

The Green’s function of Eq.~1! corresponds to a field
induced by ad source. It satisfies an integral equation wi
3574 © 1997 The American Physical Society
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55 3575RANDOM PATH AVERAGING IN MULTIPLE- . . .
the iteration solution given by the formal operator series:

Ĝ5D̂1D̂ÊD̂1D̂ÊD̂ÊD̂1•••5D̂1D̂T̂D̂, ~2!

whereD̂ is a free-space propagator andT̂ denotes the tota
scattering operator of a system. One can choose any re
sentation to obtain a constructive form of these expressi
For instance, in the coordinate representation, operatorD̂
and Ê have the following matrix elements:

Dxx85
eiqux2x8u

4pux2x8u
, Exx85q2E~x!dxx8 , ~3!

whereq5v is a wave number in the system of units whe
speed of wavesc51.

In the case of a single scatterer, using an exact solutio
Eq. ~1!, one can obtain the scattering operator of a sin
particle, t̂. In a system ofN identical scatterers, the tota
scattering operator can be expressed in terms oft̂ operators:7

T̂5(
s51

`

(
~x1•••xs!

t̂xsD̂•••D̂t̂x2D̂t̂x1, ~4!

wheret̂xm denotes the scattering operator of a particle loca
at the pointxm . The sums in Eq.~4! account for all scatter-
ing paths, (x1→x2→•••→xs), that are possible within a
given spatial distribution of particles. Ensemble averaging
Eq. ~4! eliminates this restriction and gives an average s
tering operator̂ T̂&ensemble5T in the form of the weighted
sum of contributions from all scattering paths:

T5(
s51

` E
~x1•••xs!

W~x1•••xs! t̂xsD̂•••D̂t̂x2D̂t̂x1, ~5!

where the symbol* (x1•••xs) denotes integrations over all th
indicated variables with the natural measure for each v
able. The path weight,W(x1•••xs), is the fraction of those
configurations where the path is allowed and it can be
pressed in terms of partial distribution functions of scattere

The conventional way of calculatingT in a statistically
homogeneous system makes use of the momentum repr
tation where the free-space propagator is diago
Dkk85dkk8Dk

v5dkk8@k
22v2#21, and the scattering matrix

of a single particle depends upon the location of a scattere
a simple waŷ k8u t̂xuk&5tk8kexpix„k82k…. Ignoring all short-
range correlations arising from the rigid nature of scatter
one can calculate exactly the ‘‘long memory’’ subserie
This subseries contains those terms of Eq.~5! where the
scattered wave visits different scatterers only, so, allxm are
independent andW(x1•••xs)5ns. Retaining only these
terms is known as the low densityleading approximationor
as the approximation of independent scattering. It is thou
to be appropriate in the case of dilute systems of small s
terers and most of analytical results are based on it.
instance, the diagonal part of theT operator in this approxi-
mation has the form8

Tk,v
leading5ntk,v@12ntk,vDk

v#21, ~6!
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where tk,v5^ku t̂uk& is the scattering amplitude of a sing
particle in the forward direction.

However, even a naive statistical analysis gives rise
doubts regarding this approximation. Let us consider a s
tem with the linear sizeL containingN scatterers. A wave
propagates through the system by means of random ju
from one scatterer to another. During this motion a like
jump length is of the order of the mean free pathl . In the
diffusion limit, after s jumps, a wave covers the distanc
lAs and leaves the system whens>s05L2l22. Therefore,
paths with length of the order ofs0 are most responsible fo
the diffusive content of an emerging field. A total number
paths consisting ofs jumps is equal toNs. The number of
‘‘long memory’’ s paths isN!/(N2s)!. It is straightforward
to estimate that in a macroscopic system the ratio of th
two numbers, or fraction of the ‘‘long memory’’ paths, tend
to zero as exp@2As/2nA3 l #. Thus, all ‘‘long memory’’ paths
represent a statistically negligible fraction of the scatter
paths that are important for the wave diffusion.

Moreover, the ‘‘long memory’’ in random walks provide
an effect of ‘‘outward pressure’’ acting on a walker. For
simple walker the probability to stay within any volum
around the origin after it makess steps is proportional to
Ns/Vs5ns. When a walker is forced to avoid repeating sc
tering on the same scatterer, this probability is proportio
to N!/ @(N2s)!s!Vs#'ns/s!. The longer paths we conside
the smaller, comparing with an unrestricted walker, t
probability is. In the latter case an average distance from
origin, Rs , is of the order oflAs. Since for a particle with
‘‘long memory’’ the probability to stay within any volume
around the origin is weakened by the factor 1/s!, theRs must
be greater thanlAs. This can be treated as an effective ou
ward pressure that drives a particle much farther away fr
the origin. A similar pressure, caused by an excluded v
ume, exists in the case of the self-avoiding random wa
and it leads to anomalous diffusion.4,5

From this point of view the success of the leading a
proximation in a description of the wave diffusion look
rather surprising. In any case, it is necessary to investig
the effect of all remaining paths on the scattering opera
and the field-field correlator.

III. RANDOM PATH AVERAGING

With the use of uncorrelated distributions of scatter
one can calculate the ‘‘long memory’’ subseries exact
However, it does not help in the evaluation of the total sc
tering operator without bias against any scattering paths.
advance here we modify the averaging procedure. Averag
over random paths of scattered waves is physically equ
lent to averaging over random distributions of scattere
Therefore, we can rewrite Eq.~5! using jump vectors,
Rm5xm112xm , as independent variables instead of coor
nates of scatterers

T5(
s50

` E
~x0 ,R1 , . . . ,Rs!

W̄t̂x01R11•••1Rs

3D̂•••D̂t̂x01R11R2
D̂t̂x01R1

D̂t̂x0. ~7!
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Any possible scattering path,$x0 ,R1•••Rs%, is accounted for
in Eq. ~7! with a path weight,W̄(x0 ,R1•••Rs). In the system
of N scatterers fixed in space, the total number ofs paths is
equal to (N21)s and, as one can see from Eq.~4!, they are
all accounted for inT̂. When scatterers are randomly plac
in space, a path weight is proportional to the probability
find all scatterers in proper places along a path. This pr
ability is given by a joint distribution function ofs scatterers
which takes into account all correlations between them
one ignores these correlations, a path weight takes a f
used in the leading approximation,W̄5[(N21)/V] s5ns.
Any attempt to preserve all correlations inW̄ presents too
general problem with no constructive way to go far beyo
the leading approximation. Meanwhile, a random path p
ture allows us to approach the problem utilizing therandom
jump distributioninstead of distribution functions of scatte
ers. On each random step along the path$x0, R1...Rs% a wave
may jump to any ofN21 scatterers. If we introduce a den
sity of scatterers available for a single jump,ng(R), and
assume statistical independence of random steps, then
path weight can be factorized as follows:

W̄~x0 ,R1
•••Rs!5ns11g~R

1
!•••g~Rs!. ~8!

The functionng(r ) describes the density of scatterers a
distancer from the scatterer placed at the origin. In a stat
tically homogeneous system this function is close to the
erage density,n. However, correlations between scattere
and fluctuations of their concentration cause deviations
g(r ) from unity at small distances. This is supported by t
following argument. The fluctuations of density are d
scribed by the Poisson distribution. In a dilute system
average volume per particle,n21, is much greater than th
volume of a scatterer,a3. Therefore, analyzing density fluc
tuations at large scales we can neglect the volume of
scatterers themselves. The probability to findm particles
within a spherical shell of radiusr and thicknessn21/3 is
P(m,r )5(4pr 2n2/3)mexp~24pr 2n2/3)/m!. It shows that
the probability of large fluctuations of density rapidly d
creases atr@n21/3. We can expect, therefore, that the dev
tions of g(r ) from unity are substantial at distances comp
rable to the average separation between particles,n21/3. In
application to wave propagation further simplification see
to be relevant. When the scattering cross section,ssc, is
small the precise structure ofng(r ) more likely can be dis-
regarded since a wave with a large probability can just ign
a lot of surrounding scatterers. The probability that a wa
makes anr jump is proportional to the probability of no
meeting any scatterer inside a cylinder of lengthr with the
base area equal tossc. From the Poisson distribution it fol
lows that P~0,rssc!5exp~2nrssc!. Therefore, we can as
sume that the effect of density fluctuations onng(r ) is sub-
stantial at distances of the order of the scattering mean
path, (nssc)

21. The function that takes into account th
above arguments can be choosen in the form

ng~r !5nF12
g3

8pn
exp~2rg!G . ~9!

This function is normalized onN21 and, consequently, th
path weightW̄(x0 ,R1

•••Rs) is normalized on the total num
b-
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ber ofs paths. A parameterg is understood to be of the orde
of nssc, if the scattering mean free path is much greater th
n21/3, and it tends to the inverse average separation,n21/3,
when the scattering cross section becomes large and
lengths become comparable.

In a dilute system Eq.~7! can be further simplified by
noting that the size of a scatterer is much smaller than
average separation. If we use the coordinate representati
all intermediate states for the matrix elements^k8uT̂uk&
5Tk8k ,

Tk8k5(
s50

` E
~x0 ,R1•••Rs!

W̄eik8~x01Rs1•••1R1!2 ikx0

3E
~r1 ,r18•••rs ,rs8!

tk8rs8Dr
s82rs1Rs

•••Dr
182r11R1

tr1k ,

~10!

we can see that the ranges of the changes of varia
(r1 ,r18•••r s ,r s8) have a different order of magnitude. A
single-particle scattering matrix in the coordinate represe
tion, tr8r , vanishes outside the scatterer, wherer 8,r>a,
while the distances between two successive scatterers,R, are
of the order of the average separation,n21/3. Assuming that
short-range density fluctuations are not crucially importan
the low density limit, we can assume that essential value
R are much greater than those ofr 8,r . This fact allows one
to use the far-zone asymptote of the free-space propaga
in Eq. ~10!:

DR1r2r8'DRe
iq„r2r8…, DR5

eiqR

4pR
, ~11!

whereq5vn̂,n̂5R/R. It makes it possible to calculate a
integrals with respect to (r1 ,r18•••r s ,r s8) in Eq. ~10!:

Tk8k'(
s50

` E
~x,R, . . . !

W̄eik8~x01Rs1•••1R1!2 ikx0

3tk8qs•••tq1kDRs
•••DR1

. ~12!

In a statistically homogeneous system, the integral o
the location of the first scatterer,x0, gives the common mul-
tiplier dk8k expressing the homogeneity of the system. Sin
the distribution function,g(R), depends upon the jump
length only, the integrations over the directions of the jum
can be separated from the integrals over jump lengths in
~12!. All directional integrals can be evaluated with the he
of the Taylor expansion of smooth functions in the integra
and a deformation of the integration contour in the comp
plane:

E
n̂
t . . . n̂tn̂ . . .e

ikRn̂k̂5E
0

2p

dfE
21

1

dm f ~f,m!eikRm

' (
s56

2ps

ikR
t . . .sv k̂tsv k̂ . . .e

ikRs.

~13!
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This formula works quite well in the case of weak scatter
anisotropy,

]t . . . n̂

]~ n̂• k̂!
!kRt . . . n̂ , ~14!

especially whenkR@1. Equation~13! becomes the rigorou
equality for isotropic scattering. After utilizing Eq.~13!, all
the remaining integrals over jump lengths in Eq.~12! can be
factorized since there is no correlations beween jumps.
resulting expression for diagonal elements ofTk8k takes the
form

Tkv5ntkk1n(
s51

`

(
s1s2•••

tkss
gss

tssss21
. . .gs2

ts2s1
gs1

ts1k .

~15!

In this equation the indexess1 ,s2 , . . . correspond to ‘‘1’’
or ‘‘–’’ and we denote

tks5^kutusv k̂&, tsk5^sv k̂utuk&,

tss85^sv k̂utus8v k̂&, gs5
s2pn

ik E
0

`

rg~r !Dr
veikRsdr.

~16!

Due to the fact that all intermediate states in Eq.~15! are
aligned along or against the incident momentumk, the mul-
tiple scattering part of theT matrix can be rewritten in term
of 232 matricest andg defined in Eq.~16!:

Tkv
multiple5n(

s50

`

(
ss8

tks@g~ tg!s#ss8ts8k

5n(
ss8

tks@g~12tg!21#ss8ts8k . ~17!

Finally, using an explicit expression for the matr
(12tg)21, we can represent theT matrix in the form

T5ntkk1
n

12tri tgi1deti tgi ~ t1k ,t2k!

3S 12t22g2 , t21g1

t12g2 , 12t11g1
D S g1tk1

g2tk2
D , ~18!

where tri tgi and deti tgi denote the trace and the determ
nant, respectively. For a spherical scatterert115t22 is the
forward scattering amplitude andt215t12 is the back-
scattering amplitude with all momenta confined at the ‘‘ma
shell,’’ k25v2, while in tk6 and t6k one of the momenta
(k… can be of an arbitrary magnitude.

This T matrix is formally defined at all spatial scales a
for any wavelength. In our evaluation, we assumed a w
anisotropy of scattering and a low density of particle
na3!1. An isotropic scattering dominates, for instance,
the Rayleigh limit when a wavelength is much greater th
the scatterer size,av!1. In this case, since scattering am
plitudes do not depend upon directions of incoming and o
going momenta, Eq.~18! can be simplified as follows:
e

s

k
,

n

t-

Tkv5nF tkv1
nT kv

2 ~g11g2!

12tv~g11g2!
G , ~19!

where tv5^v k̂u t̂uv k̂& is the on-shell scattering amplitude
Tk,v5^ku t̂uv k̂& is the on-off-shell amplitude, and
tk,v5^ku t̂uk& is the off-shell one. All these quantities can b
obtained from the solution of the boundary-value proble
for a single scatterer and are well known for scatterers o
simple shape.9–11 Quantitiesg6 are given in Eq.~16! and
depend upon the choice of the density of surrounding s
terers. The substitution of the functiong(r ) given by Eq.~9!
yields the total scattering operator of a dilute system of id
tical isotropic scatterers:

Tkv5n
tkv1n@T kv

2 2tkvtv#@Dk
v2~g3/8pn!Dk

v1 ig#

12ntv@Dk
v2~g3/8pn!Dk

v1 ig#
.

~20!

This result involves the effective correlation radiusg21.
In the limit g→`, when correlations between scatterers c
be ignored, theT matrix given by Eq.~20! reproduces the
expression for the coherence length obtained in the lead
approximation. The choice ofg; l sc

21 physically means tha
the contribution to the coherent field from scattering pa
consisting of many short jumps is assumed to be small, s
they are rare in a statistically homogeneous dilute system

IV. EXTINCTION LENGTH

The averaged Green’s function describes the coherent
of the field created by a point source placed in a rand
medium. Due to random scattering of propagating waves
pole of the Green’s function is shifted away from the pole
the free-space propagator,k5v. The imaginary part of this
pole defines the extinction length of coherent waves in
random medium. According to the relationship betwe
Gk,v and the scattering matrix,Gkv5Dk

v1(Dk
v)2Tkv , it

seems thatGkv has a pole of the second order whenk tends
to v. However, this singularity disappears, sinceTkv has
there a zero of the first order,Tkv522v(k2v)
1O@(k2v)2#. Our result, as well asTkv

leading demonstrates
this behavior. Therefore, only a pole in theT matrix gives an
actual singularity of the Green’s function. In the leading a
proximation this pole can be found from the equation

k22v25ntk,v . ~21!

This approximation relies on the low density of particles a
weak scattering, which implies thatf5(4p/3)a3n!1 and
vtk,v is small. Weak scattering takes place in the Rayle
limit where av!1 and the scattering amplitude itself is
small quantity. An expansion over the small parameterav
yields the leading term of the scattering amplitude

Retk,v'«
4

3
pa3v2, ~22!
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where« is the difference between dielectric constants of
scatterer and the host medium. The Retk,v does not depend
uponk and is of the second order, while the leading term
the imaginary part is of the fifth order, as it follows from th
optical theorem:

Imtk,v5~2p2!2vE utkk8u
2dk̂8.

Solving Eq.~21! for long waves in a dilute system we obta

k2~v!5vF11 f«1 i ~ f«!2
v3

4pnG .
When f«!1, this equation gives the well-known expressi
for the extinction length,

l ex
215Imk~v!5nssc/2'v~ f«!2v3/8pn.

Here the factorv3/8pn is of the order of (R/l)3, whereR
andl are the average separation between scatterers an
wavelength, respectively. It can be dangerously large, bu
the weak scattering regime it is totally neutralized by t
small parameterf«. However, even in a rare mist of wate
drops this parameter can be of the order of unity due to
large value of«. In similar dilute systems with large mis
match indexes the leading approximation still seems to
valid. ForR@l it gives

l ex
21;v f«~R/l!3/2@v.

On the other hand, the extinction length~the phase coherenc
length! being much smaller than the wavelength is physica
meaningless since then we cannot talk about wave prop
tion anymore. Therefore, the leading approximation requ
that at least two conditions to be met, namely,av!1 and
f«!1.
Our T matrix was obtained under the condition

f!1, av!1, and it involves a phenomenological param
eter,g5 l corr

21 Our equation for the pole of the Green’s fun
tion reads

@k22v2#@k22~v1 ig!2#5ntvFk22~v1 ig!2

2
g3

8pn
~k22v2!G . ~23!

To be consistent, we have to use the Rayleigh scatte
amplitude given by Eq.~22!. When f«!1, the right-hand
part of Eq.~23! is small and we obtain

l ex
21'g.

For f«;1 andR@l, taking into account thatl/ l corr!1 and
g3/8pn;(R/ l corr)

3;1, we have
e

f

the
in

e

e

y
a-
s

-

g

l ex
21'v~ f«!2

v3

8pn S 12
g3

8pnD .
In both cases we obtain physically meaningful expressi
for the extinction length since we have assumed t
g5 l corr

21 approachesnssc in the weak scattering regime and
becomes proportional ton1/3 when the scattering cross se
tion becomes large.

V. CONCLUSIONS

In summary, we developed a new method for study
interference of multiple scattered waves that takes into
count multiple returns to the same scatterer. We evalua
the scattering matrix of a dilute system of identical particl
The T matrix obtained in Eq.~20! is valid in the Rayleigh
limit, va!1. We did not impose any other restrictions o
the wavelength, therefore, our result can be used to ana
the localized regime,v l;1. All scattering paths and finite
range of correlations are accounted for in our approach. T
results in the momentum cutoff that appears in Eq.~20! as a
truncation of the free-space propagator,Dk

v by the term
(g3/8pn)Dk

v1 ig . It also gives an extra term in the numer
tor of Eq. ~20!, which is missing inT leading. In the Rayleigh
limit this term is small because the leading terms of all sc
tering amplitudes are equal. However, the change of the
nominator is physically important for the consistent descr
tion of the wave extinction in a system with large mismat
indexes. Using a microscopic expression for the den
function, g(r ), in Eq. ~19! one can obtain an exact expre
sion for the extinction length. According to the definition
g(r ), this function must have the structureg(r )512 ‘‘de-
cay function.’’ It guarantees the appearance of the mom
tum cutoff in the denominator of the exactT matrix. This
effect is due to scattering paths with multiple returns. Even
each such path gives a negligible contribution, altoget
they present a dominant amount of scattering paths and
cannot be neglected in the coherent field. Referring to
motivation of our work given in the Introduction, we ca
conclude that the interference cancellation of non-‘‘lon
memory’’ contributions in the coherent field is overestimat
in the leading approximation.

The T matrix itself does not allow one to analyze th
influence of ‘‘long memory’’ effects on transport propertie
of waves. Calculations of the field-field correlator are cu
rently in progress. Our method enables us to proceed with
utilizing the Bethe-Salpeter equation and does not req
any additional approximations.
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