
PHYSICAL REVIEW B 15 AUGUST 2000-IVOLUME 62, NUMBER 7
Polariton dispersion law in periodic-Bragg and near-Bragg multiple quantum well structures
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The structure of the polariton spectrum is analyzed for periodic multiple quantum well structures with
periods at or close to the Bragg resonance condition at the wavelength of the exciton resonance. The results
obtained used to discuss recent reflection and luminescent experiments by M. Hu¨bneret al. @Phys. Rev. Lett.
83, 2841 ~1999!# that were carried out with long multiple quantum well structures. It is argued that the
discussion of quantum well structures with a large number of wells is more appropriate in terms of normal
modes of infinite periodic structures rather than in terms of super- and subradiant modes.
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I. INTRODUCTION

Optical properties of excitons confined in quasi-tw
dimensional quantum well~QW! structures attract a grea
deal of interest~see Ref. 1 for review!. Starting from pio-
neering work by Agranovich and Dubovsky,2 it was under-
stood that since the translational invariance in quasi-tw
dimensional systems is broken in the direction normal to
plane of confinement, the coupling between excitons
light would lead to the radiative decay of excitons. This si
ation is usually described in terms of quasimodes with co
plex eigenenergies. Imaginary parts of the latter characte
radiative lifetimes of the respective modes. Systems w
multiple QW’s ~MQW’s! demonstrate the presence of se
eral quasimodes with different radiative decay rates.3 For a
few of those modes the radiative decay rates turn out to
larger than those for a single QW, and are actually grow
with the number of QW’s in the structure. Such modes
often called bright or super-radiant, while the modes w
reduced radiative decay are called dark or subradiant.4,5 One
of the theoretical and experimental methods to iden
quasimodes of MQW’s is to consider the reflection coe
cient, which has complex-valued poles at the mod
frequencies.3 The imaginary part of the frequency is inte
preted as a half-width of the reflection resonance.

The interpretation of optical properties of MQW’s i
terms of super- and subradiant modes gives a clear phy
picture when the number of QW’s is not very large. In sy
tems with a larger number of wells, such an interpretat
may be misleading. Consider, for instance, recent exp
ments described in Ref. 6, where reflection and luminesce
were studied for structures with up to 100 QW’s. These
periments used the so-called Bragg resonance structure
which the period of the structurea satisfies the Bragg reso
nance condition,a/25l0, for the wavelengthl0 of the ra-
diation at the first heavy-hole exciton resonance freque
v0. The theory of such structures in terms of super-radi
modes was developed in a number of papers.7,8 The main
result of the theory is that there exists just one ‘‘sup
radiant’’ mode with a lifetimeNG0, whereN is the number
of the wells in the structure, andG0 is a radiative lifetime of
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excitons in a single well. The reflection coefficient from su
a structure is given by7

R5
~NG0!2

~v2v0!21~g1NG0!2
, ~1!

whereg is a homogeneous exciton broadening. This expr
sion describes a very broad reflection resonance with
maximum at the Bragg resonance frequency. Equation~1!
obviously breaks down whenN grows too large, but the in-
terpretation of this equation in terms of the super-radi
mode becomes ambiguous even before that. In Ref. 6
luminescence from a MQW structure with the number
wells up to 100 was found to be very small at the frequen
of the super-radiant mode. This seemingly paradoxical re
becomes quite obvious if one considers the spectrum
MQW’s in the superlattice limit. When the number of QW
increases, so-called subradiant modes lose the imagi
component of their frequencies, and form regular station
normal modes of an infinite periodic structure.8 At the same
time super-radiant modes become evanescent modes o
bandgaps of the structure. The reflection coefficient in ba
gaps is close to one~if the homogeneous broadening is sm
enough!, and its frequency dependence is very broad w
almost a rectangular shape. No propagating excitations e
at these frequencies, so it is obvious why the luminesce
detected in Ref. 6 in this region was so weak. This rat
straightforward discussion is warranted by the overuse of
terminology of super-radiance in the context of MQW’s.

We believe the experiments of Ref. 6 are the first wh
long MQW’s with Bragg or near Bragg periods are studie
As just mentioned, it is more natural to discuss these exp
ments in terms of stationary excitations of an infinite pe
odic superlattice. Even though the dispersion equation
this system in its general form has been obtained by m
authors,4,9–12 the detailed analysis of this equation und
Bragg or near Bragg conditions has not been carried out
discuss details of the polariton dispersion in such a situa
is the main objective of the present paper. The results of
discussion will be useful in better understanding the res
of Ref. 6 and similar experiments.
4242 ©2000 The American Physical Society
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II. THE STRUCTURE OF THE SPECTRUM AND
POLARITON DISPERSION LAWS FOR A PERIODIC

BRAGG SUPERLATTICE

A general expression for the polariton dispersion law i
periodic QW superlattice was derived many times by diff
ent authors.4,9–12 For a wave propagating in the direction
growth it has the following form:

cos~Qa!5cosS v

c
aD2

2G0v

v0
22v222gv

3sinS v

c
aD , ~2!

where Q is the Bloch vector of the polariton andc is the
speed of light in a background material. Generalization
an oblique direction is straightforward:v/c is replaced with
kz5A(v/c)22ki

2, whereki is an in-plane component of th
wave vector. For short period superlattices,av/c!1, this
equation is reduced to the standard polariton dispersion
dispersionless material. In the absence of the homogen
broadening, there is a polariton gap betweenv0 and
Av0

214G0c/a. In general, band gaps in the polariton spe
trum are determined by inequalities

2G0v

v0
22v2

cotS v

2c
aD,21, ~3!

2G0v

v0
22v2

tanS v

2c
aD.1, ~4!

where the polariton wave vectorQ is 0 at the end of the
interval determined by the first of this inequalities, andQ
5p/a at the ending point of the second one. For frequenc
close tov0 these inequalities are often solved approximat
in the so-called resonance approximation, where the
quency is taken equal tov0 everywhere except for the exc
ton resonance denominator.8 This approximation fails, how-
ever, for Bragg structures satisfying the condition

av0

c
5p ~5!

because the last term in Eq.~2! describing the interaction
between QW excitons and light vanishes at the exciton re
nance frequencyv0. In the absence of homogeneous broa
ening g, the denominator in this term also vanishes, a
therefore, this case requires careful, albeit elementary, an
sis.

Inequalities~3! and ~4! in this case can be rewritten as

2G0v

v22v0
2

tanS v2v0

2c
aD,21, ~6!

2G0v

v22v0
2

cotS v2v0

2c
aD.1. ~7!

One can notice now that the first of these inequalities
never obeyed for frequencies close tov0 . The boundaries of
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the bandgap are determined entirely by Eq.~7!, which means
that at both ends of the gap, the polariton wave vectorQ
5p/a. From Eq.~7! we find that the polariton bandgap
determined by the inequalities

v02A2v0G0

p
,v,v01A2v0G0

p
, ~8!

provided that inequalityAG0 /v0!1 holds, which is usually
true in real systems (AG0 /v0;1022 in the experiment of
Ref. 6!.

In the presence of homogeneous broadening the band
is not clearly defined, but it is remarkable that ifgÞ0 the
solution of Eq.~2! at v5v0 is real,Q5p/a, while, as Eq.
~8! shows, this solution acquires an imaginary part wheng
50. In order to get a better understanding of the situation
have solved dispersion equation~2! in the presence of the
homogeneous broadening for the frequencies satisfying
~8!. We found that the real part of the polariton’s wave ve
tor Q8 and its imaginary partQ9 have the following form:

uaQ82pu5aQ95ApeG

gv0
, ~9!

for ueug, wheree5v2v0. Equation~9! shows that for small
e, the imaginary part of the polariton wave vector inde
becomes zero along withe, while farther away from the
resonance frequencyv0, ueug,

Q95
1

a
A2pG0

v0
,

which is the expression one would obtain atv5v0 in the
absence of the homogeneous broadening.

Equation~9! suggests a simple explanation of the resu
of luminescence experiments carried out in Ref. 6 with
exact Bragg structures. In this work a peak of the lumin
cence at the resonance frequencyv0, right in the middle of
the polariton gap, was observed. One can relate this pea
the zeroing of the imaginary part of the polariton wave nu
ber Q. According to Eq.~9!, the width of the peak is deter
mined by the homogeneous broadening parameterg. This
observation can be used in order to validate the sugge
explanation.

III. NEAR-BRAGG MQW STRUCTURES

One of the important experimental results of Ref. 6 is t
observation of changes in the luminescence pattern with
change in the period of the MQW structure. In this secti
we examine how the spectrum of the MQW’s evolves wh
it is tuned away from the exact Bragg resonance. We so
inequalities~3! and ~4! approximately for the frequency re
gion uv2vBua/c!1, wherevB is the Bragg frequency de
fined asvB5pc/a. In this approximation one finds tha
when the system is tuned away from the exact Bragg co
tion, v05vB , the band gap given by Eq.~8! divides into
two gaps. Ifv0.vB one has for the two gaps

v2,v,vB , ~10!
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v02
1

2
pG0

v02vB

vB
,v,v1 , ~11!

where

v15
v01vB

2
1

1

2
A~v02vB!21

16G0vB
2

p~vB1v0!
,

v25
v01vB

2
2

1

2
A~v02vB!21

8G0vB

p
. ~12!

In the case of the detuning of the opposite sign,v0,vB , the
bandgaps are determined by

v2,v,v01
1

2
pG0

vB2v0

vB
, ~13!

vB,v,v1 . ~14!

Using data from Ref. 6 (v051.491 eV,G0527 meV), we
can estimate positions of the gap boundaries for the sys
used in those experiments. The estimates are consistent
the positions of the luminescent peaks observed in Ref. 6
different degrees of detuning. The general dispersion eq
tion ~2! can give the values of the wave numbersQ corre-
sponding to the modes excited in those experiments. We
lieve, however, that it is useful to have approximate ‘‘lon
wave’’ dispersion laws for those modes. For concreten
we consider the casev0,vB . In this case, the excitation
under interest belong to the branches with frequenc
greater thenv01 1

2 pG0@(vB2v0)/vB#'v0 and less than
v2. The first of these branches approaches the band e
with Q50, and the second one withQ5p. The near-the-
edge dispersion laws for these branches can be obtaine
the form

v5v01
1

2
pG0

vB2v0

vB
1pG0

vB2v0

8vB
Q2a2 ~15!

for the branch nearv0, and
to

a

m
ith
or
a-
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s

ge

in

v5v22
~v02v2!3

4G0
2 ~Qa2p!2 ~16!

for the branch nearv2. One can see from these expressio
that the effective masses of these two branches are sig
cantly different. The one described by Eq.~15! has a very
small effective mass, and therefore the frequencies of
mode could only barely be distinguished from the resona
frequencyv0. The second branch, described by Eq.~16!, has
a much stronger dispersion, and, therefore, it must be s
rated fromv0 more strongly than by the width of the ga
betweenv0 andv2. Indeed, using the numerical paramete
of Ref. 6, we find that the width of the gap for the detuni
v050.98vB is approximately equal to 1 meV, while exper
mentally observed splitting between the modes is 3.2 m
This corresponds to the mode excited with a wave numbeQ
such thatuQa2pu'0.1. The effective mass of this mode
the band edge under consideration, according to Eq.~16!,
increases with an increase of detuning from the Bragg st
ture. This prediction can also be tested experimentally
order to check if the simple picture suggested in the pres
paper corresponds to the phenomenon observed in Ref.

Concluding, we analyzed the dispersion law of polarito
in periodic MQW structures at or close to the Bragg res
nance condition,v0a/c5p, and we established the patte
of bandgaps and conductivity bands arising in such str
tures. We also obtained analytical expressions for effec
masses of polariton modes presumably observed in Re
The theoretical results obtained were found to agree w
experimental data. We also suggested some new experim
that can be used to further test the adequacy of the prese
results.
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