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Polariton dispersion law in periodic-Bragg and near-Bragg multiple quantum well structures
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The structure of the polariton spectrum is analyzed for periodic multiple quantum well structures with
periods at or close to the Bragg resonance condition at the wavelength of the exciton resonance. The results
obtained used to discuss recent reflection and luminescent experiments bybheridual. [Phys. Rev. Lett.

83, 2841 (1999] that were carried out with long multiple quantum well structures. It is argued that the
discussion of quantum well structures with a large number of wells is more appropriate in terms of normal
modes of infinite periodic structures rather than in terms of super- and subradiant modes.

I. INTRODUCTION excitons in a single well. The reflection coefficient from such
a structure is given by

Optical properties of excitons confined in quasi-two-
dimensional quantum wellQW) structures attract a great R— (NI‘O)2
deal of interestsee Ref. 1 for revieyv Starting from pio- B (0—wg)2+ (y+NTIg)?’
neering work by Agranovich and Dubovskyt was under-
stood that since the translational invariance in quasi-twowherey is a homogeneous exciton broadening. This expres-
dimensional systems is broken in the direction normal to the&ion describes a very broad reflection resonance with the
plane of confinement, the coupling between excitons angnaximum at the Bragg resonance frequency. Equation
light would lead to the radiative decay of excitons. This situ-obviously breaks down wheN grows too large, but the in-
ation is usually described in terms of quasimodes with comterpretation of this equation in terms of the super-radiant
plex eigenenergies. Imaginary parts of the latter characterizenode becomes ambiguous even before that. In Ref. 6 the
radiative lifetimes of the respective modes. Systems witHuminescence from a MQW structure with the number of
multiple QW’s (MQW's) demonstrate the presence of sev-wells up to 100 was found to be very small at the frequency
eral quasimodes with different radiative decay rdt€®r a  of the super-radiant mode. This seemingly paradoxical result
few of those modes the radiative decay rates turn out to bbecomes quite obvious if one considers the spectrum of
larger than those for a single QW, and are actually growinglQW's in the superlattice limit. When the number of QW’s
with the number of QW'’s in the structure. Such modes aréncreases, so-called subradiant modes lose the imaginary
often called bright or super-radiant, while the modes withcomponent of their frequencies, and form regular stationary
reduced radiative decay are called dark or subradia@ine  normal modes of an infinite periodic structdrat the same
of the theoretical and experimental methods to identifytime super-radiant modes become evanescent modes of the
quasimodes of MQW'’s is to consider the reflection coeffi-bandgaps of the structure. The reflection coefficient in band-
cient, which has complex-valued poles at the modesgaps is close to on@f the homogeneous broadening is small
frequencies. The imaginary part of the frequency is inter- enough, and its frequency dependence is very broad with
preted as a half-width of the reflection resonance. almost a rectangular shape. No propagating excitations exist

The interpretation of optical properties of MQW’s in at these frequencies, so it is obvious why the luminescence
terms of super- and subradiant modes gives a clear physicdktected in Ref. 6 in this region was so weak. This rather
picture when the number of QW's is not very large. In sys-straightforward discussion is warranted by the overuse of the
tems with a larger number of wells, such an interpretatiorterminology of super-radiance in the context of MQW'’s.
may be misleading. Consider, for instance, recent experi- We believe the experiments of Ref. 6 are the first where
ments described in Ref. 6, where reflection and luminescendeng MQW's with Bragg or near Bragg periods are studied.
were studied for structures with up to 100 QW'’s. These exAs just mentioned, it is more natural to discuss these experi-
periments used the so-called Bragg resonance structures, fiorents in terms of stationary excitations of an infinite peri-
which the period of the structure satisfies the Bragg reso- odic superlattice. Even though the dispersion equation for
nance conditiona/2= N\, for the wavelength\y of the ra-  this system in its general form has been obtained by many
diation at the first heavy-hole exciton resonance frequencguthorst®~'? the detailed analysis of this equation under
wo. The theory of such structures in terms of super-radianBragg or near Bragg conditions has not been carried out. To
modes was developed in a number of pagér§he main  discuss details of the polariton dispersion in such a situation
result of the theory is that there exists just one “super-is the main objective of the present paper. The results of this
radiant” mode with a lifetimeNI"y, whereN is the number discussion will be useful in better understanding the results
of the wells in the structure, ard, is a radiative lifetime of of Ref. 6 and similar experiments.
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Il. THE STRUCTURE OF THE SPECTRUM AND
POLARITON DISPERSION LAWS FOR A PERIODIC
BRAGG SUPERLATTICE

A general expression for the polariton dispersion law in a
periodic QW superlattice was derived many times by differ-

ent authoré:°~*?For a wave propagating in the direction of
growth it has the following form:
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where Q is the Bloch vector of the polariton andis the
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the bandgap are determined entirely by &}, which means
that at both ends of the gap, the polariton wave veQor
=/a. From Eq.(7) we find that the polariton bandgap is
determined by the inequalities

[2wol” [2wol
wo— 7?_ O<w<wo+ ;)_ 0,

provided that inequality/I'y/wg<<1 holds, which is usually
true in real systems\I'g/wy~10"2 in the experiment of
Ref. 6.

In the presence of homogeneous broadening the bandgap
is not clearly defined, but it is remarkable thatyi#0 the
solution of Eq.(2) at w= wq is real, Q= w/a, while, as Eg.

(8) shows, this solution acquires an imaginary part when

®

speed of light in a background material. Generalization for=0. In order to get a better understanding of the situation we

an oblique direction is straightforwardi/c is replaced with
k,= \/(w/C)Z—k‘z‘, wherek; is an in-plane component of the
wave vector. For short period superlatticesy/c<1, this
equation is reduced to the standard polariton dispersion in

have solved dispersion equati¢®) in the presence of the
homogeneous broadening for the frequencies satisfying Eq.
(8). We found that the real part of the polariton’s wave vec-
tor Q" and its imaginary par®Q” have the following form:

dispersionless material. In the absence of the homogeneous

broadening, there is a polariton gap betweeg and

\/w02+41“oc/a. In general, band gaps in the polariton spec-

trum are determined by inequalities
ZFOw
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where the polariton wave vectd is 0 at the end of the
interval determined by the first of this inequalities, a@d

= mr/a at the ending point of the second one. For frequencie
close tow, these inequalities are often solved approximatelyOf
in the so-called resonance approximation, where the fre;

guency is taken equal @, everywhere except for the exci-
ton resonance denominatbhis approximation fails, how-
ever, for Bragg structures satisfying the condition

a(,()O
— =17
C
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because the last term in ER) describing the interaction
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for ||y, wheree= w — wq. Equation(9) shows that for small

€, the imaginary part of the polariton wave vector indeed
becomes zero along witl, while farther away from the
resonance frequenayy, €|y,

[2771_‘0
wqo ’

which is the expression one would obtain @t wq in the
absence of the homogeneous broadening.
Equation(9) suggests a simple explanation of the results
luminescence experiments carried out in Ref. 6 with the
exact Bragg structures. In this work a peak of the lumines-
cence at the resonance frequengy right in the middle of
the polariton gap, was observed. One can relate this peak to
the zeroing of the imaginary part of the polariton wave num-
ber Q. According to Eq.(9), the width of the peak is deter-
mined by the homogeneous broadening parameterhis
observation can be used in order to validate the suggested
explanation.

1
a

Q//:

between QW excitons and light vanishes at the exciton reso-
nance frequencw,. In the absence of homogeneous broad-
ening vy, the denominator in this term also vanishes, and,

therefore, this case requires careful, albeit elementary, analy- One of the important experimental results of Ref. 6 is the
sis. observation of changes in the luminescence pattern with the

Inequalities(3) and (4) in this case can be rewritten as change ir_1 the period of the MQW structure. In this section
we examine how the spectrum of the MQW'’s evolves when
it is tuned away from the exact Bragg resonance. We solve

Ill. NEAR-BRAGG MQW STRUCTURES

2l o w—wg . S .
> ta 5 @ <-1, (6) inequalities(3) and (4) approximately for the frequency re-
w"— gy ¢ gion |w— wg|a/c<1, wherewg is the Bragg frequency de-
fined aswg=c/a. In this approximation one finds that
2l yw ®— wq when the system is tuned away from the exact Bragg condi-
P 02 col —.—a|>1 (7) " tion, wy=wg, the band gap given by Eg8) divides into
0

two gaps. Ifwy>wg one has for the two gaps
One can notice now that the first of these inequalities is
never obeyed for frequencies closedg. The boundaries of

wry<w<wg, (10
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1 wWo— W
wo—iﬂ'l—‘o g <w<wp, (17
where
2
wotwg 1\/ ,  16Tgwg
1= 5tV (womws) ™ e
wotwg 1 8l'ywp
W= _E\/(wo_ws)2+ — (12

In the case of the detuning of the opposite sigp< wg, the
bandgaps are determined by

wr<w<w +£7TF @B @0 (13
2 0 2 0 wp ’
wg<w<w;. (14

Using data from Ref. 64,=1.491 eV,I';=27 meV), we
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(wo— w2)3
ars

for the branch neaw,. One can see from these expressions
that the effective masses of these two branches are signifi-
cantly different. The one described by E45) has a very
small effective mass, and therefore the frequencies of this
mode could only barely be distinguished from the resonance
frequencywg. The second branch, described by Ef), has

a much stronger dispersion, and, therefore, it must be sepa-
rated fromwg more strongly than by the width of the gap
betweenw, andw,. Indeed, using the numerical parameters
of Ref. 6, we find that the width of the gap for the detuning
wo=0.98wg is approximately equal to 1 meV, while experi-
mentally observed splitting between the modes is 3.2 meV.
This corresponds to the mode excited with a wave nur@ber
such thatQa— m|~0.1. The effective mass of this mode at
the band edge under consideration, according to (Ef),
increases with an increase of detuning from the Bragg struc-

(Qa—m)? (16)

W=wy—

can estimate positions of the gap boundaries for the systefre. This prediction can also be tested experimentally in
used in those experiments. The estimates are consistent wigider to check if the simple picture suggested in the present
the positions of the luminescent peaks observed in Ref. 6 fopaper corresponds to the phenomenon observed in Ref. 6.
different degrees of detuning. The general dispersion equa- Concluding, we analyzed the dispersion law of polaritons
tion (2) can give the values of the wave numb@scorre-  in periodic MQW structures at or close to the Bragg reso-
sponding to the modes excited in those experiments. We bé&ance conditionwya/c= 7, and we established the pattern
lieve, however, that it is useful to have approximate “long-of bandgaps and conductivity bands arising in such struc-
wave” dispersion laws for those modes. For concretenessures. We also obtained analytical expressions for effective
we consider the case,<wg. In this case, the excitations masses of polariton modes presumably observed in Ref. 6.
under interest belong to the branches with frequenciedhe theoretical results obtained were found to agree with
greater thenwy+ 371 o[ (wg— wo)/ wg]~wy and less than experimental data. We also suggested some new experiments
w,. The first of these branches approaches the band edd@at can be used to further test the adequacy of the presented
with Q=0, and the second one wi@= 7. The near-the- results.

edge dispersion laws for these branches can be obtained in

the form ACKNOWLEDGMENTS
1 wg— wg wg— wg We wish to thank S. Schwarz for reading and commenting
w=wo+ 57l +alo— Q%a® (15  on the manuscript. Work at Seton Hall University was sup-
B

for the branch neaw,, and

ported by NATO Linkage Grant No. 974573; work at
Queens College was supported by PSC-CUNY.

L. C. Andreani, inConfined Electrons and Photaredited by E.
Burnstein and C. WeisbudiPlenum Press, New York, 1995
2V.M. Agranovich and O.A. Dubovskii, Zh. I&p. Teor. Fiz.

Pis’'ma Red.3, 345(1966 [JETP Lett.3, 345(1966)].
3L.C. Andreani, Phys. Status Solidi B38 29 (1995.
4D.S. Citrin, Solid State Commur89, 139 (1994).

5G. Bjork, S. Pau, J.M. Jacobson, H. Cao, and Y. Yamamoto,

Phys. Rev. B52, 17 310(1995.

Petersburg36, 2118(1994) [Phys. Solid Stat&6, 1156(1994)];
Superlattices Microstructl6, 17 (1994).

8M.P. Vladimirova, E.L. Ivchenko, A.V. Kavokin, Fiz. Tekh. Po-
luprovodn.32, 101 (1998 [Semiconductor82, 90 (1998].

SL.V. Keldysh, Superlattices Microstruct, 637 (1988.

10E L. Ivchenko, Fiz. Tverd. TelgLeningrad 33, 2388 (1991
[Sov. Phys. Solid Statg3, 1344(1999)].

11L.C. Andreani, Phys. Lett. A92 99 (1994.

6 .. . . .
M. Hubner, J.P. P“neas, C. E”, P. B“Ck, E.S. Lee, G. KhltrOVa, 12|.H. DeutSCh, R.J.C. Spreeuw, S.L. Rolston, and W.D. Phllllps,

H.M. Gibbs, and S.W. Koch, Phys. Rev. L8, 2841(1999.
"E.L. Ivchenko, A.l. Nesvizhskii, and S. Jorda, Fiz. Tverd Ti@a

Phys. Rev. A52, 1394(1995.



