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Single-parameter scaling in one-dimensional Anderson localization: Exact analytical solution
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The variance of the Lyapunov exponent is calculated exactly in the one-dimensional Anderson model with
random site energies distributed according to the Cauchy distribution. We derive an exact analytical criterion
for the validity of single-parameter scaling in this model. According to this criterion, states with energies
within the conduction band of the underlying nonrandom system satisfy single-parameter scaling when the
disorder is small enough. At the same time, single-parameter scaling is not valid for states close to band
boundaries and those outside of the original spectrum, even in the case of small disorder. The results obtained
are applied to the Kronig-Penney model with the potential in the form of periodically positionedd functions
with random strengths. We show that an increase in disorder can restore single-parameter scaling behavior for
states within the band gaps.
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I. INTRODUCTION

The hypothesis of single-parameter scaling~SPS! in the
context of transport properties of disordered conductors
introduced in Ref. 1. It was suggested that scaling proper
of the conductanceg are determined by a single paramet
the conductance itself, through a scaling equation

d~ ln g!

d~ ln L !
5b~g!, ~1!

whereL is the size of a sample. The nature of the scal
conductanceg was debated for some time until it wa
understood2 that scaling in the theory of localization must b
interpreted in terms of the entire distribution function of co
ductivity rather than in terms of its momentums. SPS in t
case means that the distribution function ofg is fully deter-
mined by a single parameter, which obeys the scaling eq
tion ~1!. In Ref. 2, which was concerned with scaling pro
erties of one-dimensional disordered conductors, Ander
et al. proposed the parameter

g̃~L !5
1

2L
lnS 11

1

gD ~2!

as a scaling parameter suitable to describe the fluctuation
the conductivity. In the limitL→` the introduced paramete
takes a nonrandom valueg, which is the inverse localization
lengthl loc or the Lyapunov exponent~LE! characterizing the
spatial distribution of electron’s wave functions.3,4 It was
suggested in Ref. 2 that the introduced parameter has a
mal distribution and does not exhibit anomalously large fl
tuations. Calculations carried out in Ref. 2 showed that v
ance of the LE,s2, scales according to the law of larg
numbers,s2;1/L, and is related in a universal way to L
~Ref. 5!:

s25g/L. ~3!
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This relation is the essence of SPS in the case of str
localization, as it presumes that two parameters of the n
mal distribution of the LE are reduced to one scaling para
eterg. According to the scaling theory~see Ref. 1 and ref-
erences therein! almost all states in one-dimensional syste
are localized, and these systems are, therefore, always in
regime of strong localization in the asymptotic limitL
@ l loc .

Equation ~3! was first derived in Ref. 2 within the ap
proximation known as the random phase hypothesis, wh
assumes that there exists a microscopic length scale
which phases of complex transmission and reflection coe
cients become completely randomized. Under similar
sumptions, Eq.~3! was rederived later by several authors f
a number of different models.6–11

Landauer’s representation of the conductance in term
transmission coefficients for different scattering channels12,13

reduces the study of the conductance in quasi-o
dimensional wires to the analysis of scattering or trans
matrices. Within the transfer-matrix approach14 the problem
is further reduced to the study of statistical properties of
products of random matrices~see Ref. 15 and reference
therein!. In this context, the self-averaging of LE and i
normal distribution in the asymptotic limitL→` are rigor-
ously established mathematical facts.3,16,17SPS expressed b
Eq. ~3! was also established in the limit of strong localizati
for a quasi-one-dimensional geometry in Refs. 18 and
with the use of the Dorokhov-Mello-Pereyra-Kum
equation.20

The SPS hypothesis has also been verified in the reg
of weak localization, which exists in the conducting phase
three-dimensional conductors and in the limit of a large nu
ber of scattering channels in the quasi-one-dimensional
ometry. In contrast with the case of strong localization,
distribution of the conductance~rather than the logarithm o
the conductance! has Gaussian form with two independe
parameters. The variance of the conductance, however,
found to be a universal number,21,22 leaving one again with a
©2001 The American Physical Society02-1
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single scaling parameter: the average conductance. The
versal conductance fluctuations, which were first discove
in three-dimensional conductors within a diagramma
approach,21,22were later reinterpreted from the point of vie
of the random matrix theory in a quasi-one-dimensional
ometry ~see for review Ref. 15!.

The scaling properties of conductivity have also be
studied numerically by a number of authors. The gene
concepts of the scaling theory expressed by Eq.~1! were
verified by means of Green’s function and transfer-ma
approaches generalized for two- and three-dimensional
tems in Ref. 23. The log-normal distribution of the condu
tance and SPS, Eq.~3!, has been confirmed for the Anderso
model~AM ! in numerical simulations in Ref. 19. In the on
dimensional situation, the existence of SPS has been
obtained in simulations of AM with correlated disorder24 and
scalar wave propagation in superlattices with different m
els of randomness.25,26

The zero energy state in one-dimensional models w
off-diagonal disorder~random hopping models! represents a
special case. These models demonstrate a delocalization
sition in the vicinity of zero energy27 contrary to the conclu-
sion of the scaling theory that such a transition is absen
one-dimensional systems. The SPS relation~3! between the
standard deviation of the LE and its mean value is also v
lated in this case.28 Unusual properties of this model are du
to a so-called chiral symmetry, which is characteristic of
state withE50 in this model. In further discussion we wi
ignore this special case and refer to regular situations, wh
include models with diagonal disorder and random hopp
models away from the criticalE50 point.

Simultaneously with numerous confirmations of the ex
tence of SPS, the limits of its validity have been the subj
of intensive discussions~see, for example, Ref. 29 and re
erences therein!. As we mentioned above, the original co
dition for SPS, postulated in Ref. 2, invokes the hypothe
of the phase randomization. This hypothesis implies that
phases of complex transmission and reflection coefficie
become completely randomized at the distances m
smaller than the localization length. Phase randomiza
was numerically studied for the AM in Ref. 30, where it w
shown that for small disorder the phases indeed become
formly distributed at a scale much shorter than the locali
tion length. This does not happen, however, for states in
center of the original conduction band. Numerical calcu
tion of the AM in Ref. 30 and analytical consideration of
model with periodically positioned scatterers in Ref. 31 o
tained a nonuniform phase distribution for such states. It w
shown in Ref. 31 that for the states at the center of the b
there exists a new length, a phase relaxation lengthl w . As
soon as the length of the sample exceedsl w , the phase dis-
tribution approaches a stationary but nonuniform form. U
der certain conditions, the relaxation length rather than
mean free path was found to determine the localizat
length. At the same time, neither analytical nor numeri
studies of the states at the center of the conduction b
found violations of SPS. These results cast doubt upon
relevance of phase randomization for SPS. In this paper
show that the condition for SPS is not phase randomizat
22420
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When local disorder is strong, the phase distribution w
found to never become uniform,30 and the probability distri-
bution of LE, in this case, is controlled by two independe
parameters.29,30 It was indicated,30 however, that even in the
case of an extremely nonuniform phase distribution, the
viations from SPS are rather limited.

The hypothesis of phase randomization lies at the foun
tion of all existing theoretical approaches to statistical pro
erties of conductance, including those based upon rand
matrix theory.15 An additional requirement crucial for Eq.~3!
can be called ‘‘local weakness of disorder.’’ In calculatio
based upon the random matrix theory,17,20this requirement is
set as a limit when the cross section of each individual s
terer tends to zero, while the density of the scatterers tend
infinity keeping the localization length constant. It is com
monly believed that in the regime of strong localizatio
( l loc!L), SPS holds provided that the local disorder
weak, so that the localization length exceeds all microsco
length scales of the model. Increase of the disorder lead
reduction of the localization length, and eventually violat
SPS.

Results which apparently contradict this well establish
understanding of the crossover between SPS and stati
with two independent parameters were recently reported
Ref. 32. The system considered in Ref. 32 belongs to
class of Kronig-Penney-like models~KPM’s!, which have
been intensively studied~see, for example, Refs. 4, 33 an
34 and references therein!. The original spectrum of KPM’s
contains multiple bands separated by band gaps. Disorde
only localizes states within the original pass bands but a
creates tails of localized states in former band gaps.4 Accord-
ing to Ref. 32 the spectrum of the system is divided into t
groups of states with different scaling behavior: SPS ho
for states from the conduction bands of the initial spectr
and is violated for states from initial band gaps. Moreov
this violation of SPS for band gap states occurs even
weak disorder and turns out to be much more dramatic t
the phase randomization approach would predict.30

The occurrence of states outside of the initial conduct
bands is known to be a model independent phenomeno
seems plausible, therefore, that the coexistence of SPS
non-SPS states found in Ref. 32 is not a particular featur
KPM’s but rather a general property of quantum disorde
systems.

The main objective of the present paper is to reexam
the problem of scaling properties of conductance in o
dimensional systems and to derive SPS, Eq.~3!, without the
assumption of phase randomization. This calculation allo
us to formulate a ‘‘correct’’ criterion for SPS and to unde
stand the nature of its violation reported in Ref. 32. The m
results of this paper were outlined in Ref. 35.

The paper is organized as follows: In Sec. II we formula
the model within which we calculate the variance of LE. T
details of the calculations are presented in Sec. III. The n
criterion of SPS is derived and analyzed in Sec. IV. In th
section we also complement our analytical calculations w
numerical simulations of a more generic model. Comparis
with the latter helps us to distinguish between universal f
tures of our results and those specific to the selected mo
2-2
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The transition between SPS and non-SPS states is discu
in Sec. V. We conclude in Sec. VI.

II. DESCRIPTION OF THE MODEL

Let us consider a one-dimensional tight-binding mo
with diagonal disorder, which is described by the followin
equations of motion:

cn111cn212Uncn50, ~4!

wherecn represents the wave function of the system at
nth site. In Eq.~4! the hopping integral is chosen to be equ
to 1, so it sets the energy scale in the system. The conc
meaning ofUn depends upon the interpretation of the mod
~4!. There are two apparently different models that can
described by Eq.~4!. In the first, this equation represent
classical AM, withUn defined as

Un52E1en , ~5!

whereE is the energy of a particle anden is the random site
energy. Second, it can be shown~see, for example, Ref. 4!
that the Schro¨dinger equation for KPM’s with a random po
tential formed by periodically positionedd functions with
random strengths,Vn , also reduces to the form~4! with cn
being the values of the eigenfunctions at the sites occu
by thed potentials. In this case,Un is defined as follows4:

Un52 cos~ka!1
Vn

k
sin~ka!, ~6!

wherek5AE is the energy variable anda is the period of the
structure. To be able to obtain an exact analytical solut
we assume that parametersen or Vn are distributed with the
Cauchy probability density~the Lloyd model36!

PC~x!5
1

p

G

G21~x2x0!2
, ~7!

wherex050 or V0 for the AM or KPM’s, respectively. Pa
rametersx0 and G represent the mean value of the rando
variablex and the width of the distribution, respectively. A
thoughG characterizes the strength of disorder in the syst
it cannot be interpreted as a second moment of the distr
tion ~ 7!, because the latter does not exist. The AM with t
probability distribution~7! is one of the first models wher
the LE was evaluated exactly.4,37 The probability distribution
of parametersUn , which enter equations of motion~4!, has
the same form as Eq.~7! with the following parameters:

^Un&5U05H 2 cos~ka!1
V0

k
sin~ka!, KPM,

E, AM,

~8!

GU5H G

k
usin~ka!u, KPM,

G. AM.

~9!
22420
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In the absence of disorder, the energy spectrum of
model is determined by the condition:uU0u,2. In the AM
this leads to a single conduction band22<E<2. In KPM’s
there exist multiple bands separated by band gaps. Allow
values of the energy variable belong to intervals

kn
ba,ka,pn, n51,2,3. . . , ~10!

wherekn
b obeys the equation

tanS kn
ba

2 D 5
V0

2kn
b

, n odd, ~11!

tanS kn
ba

2 D 52
2kn

b

V0
, n even. ~12!

The higher-energy boundaries of each band correspon
so-called resonances4 because disorder does not affect tran
port at these particular energies. This fact can easily be s
from Eq. ~9!, whereGU for KPM’s becomes zero for allka
5pn. The presence of these resonances is a specific prop
of the model under consideration caused by the strict per
icity in the positions of site potentials. Similar resonances
also present in other models such as the dimer model38 or
models of random superlattices.25,32 The resonances dissap
pear once one destroys the exact periodicity in the positi
of d functions or allows for random variations in the width
superlattice’s layers.

The main objects of our study are the finite-size LEg̃(L)
and its variances2. Hereg̃(L) can be defined for the mode
under consideration as4

g̃~L !5
1

L
ln r N , ~13!

whereN5L/a is the total number of sites in the system a
r N is the envelope of the wave function:

r N5~cN
2 1cN21

2 !1/2. ~14!

As we discussed in the Introduction,g̃(L) takes a nonran-
dom value,g, in the limit L→`. This limiting value can also
be considered as an average ofg̃(L) over different realiza-
tions of the system.3,4 For large but finiteL, g̃(L) exhibits
finite-size fluctuations whose distribution function asym
totically approaches the Gaussian form with the variances2

decreasing as 1/L.4,16,17

The average LEg in the considered model was first ca
culated in Ref. 37. It turns out that the method developed
that paper~see also Ref. 4! can be as well used for exac
calculation ofs2. The method is based upon the represen
tion of LE in terms of the phase variablezn , defined aszn
5cn /cn21, which obeys the following equation of motion
2-3
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zn1zn21
21 5Un . ~15!

The finite-size LE can be expressed in terms ofzn :

g̃~L !5
1

L (
n51

N

lnuznu1
1

2L
lnS r 0

2
11zN11

2

z0
2 D . ~16!

If zn is a stationary random function ofn—that is, a distri-
bution ofzn is independent ofn—the first term in Eq.~16! is
of the order of unity while the second term is of the order
(1/L) and disappears in the limitL→`. The expression for
the LE, therefore, takes the following form:

g5 lim
L→`

1

L (
n51

N

lnuznu5^ lnuznu&, ~17!

where the average on the right-hand side is taken over
stationary distribution ofz.

The asymptotic expression for variance of the LE can
obtained from Eq.~16!,

s25
1

L2 (
m,n51

N

@^ ln zmln zn&2^ ln zm&^ ln zn&#, ~18!

and is valid as long as the system’s sizeL is much greater
than the correlation radius ofzn , which we assume to be
finite.

III. VARIANCE OF THE LYAPUNOV EXPONENT
IN THE LLOYD MODEL

A. Two-point distribution of the phases zn

Calculation of the variance from Eq.~18! requires knowl-
edge of the two-point distribution functionP2(zn ,zm) of the
phasesz. Our calculations of this function are based up
representation of a joint distribution of multiple random va
ables as the product of marginal and conditional distri
tions:

P2~zn ,zn1k!5P1~zn!P~znuzn1k!, ~19!

where P1(zn) is a stationary probability distribution ofzn
andP(znuzn1k) denotes a conditional probability distributio
of zn1k provided thatzn is fixed. With the help of Eq.~15!
the latter probability can be written as

P~znuzn1k!5E d~zn1k1zn1k21
21 2Un1k21!

3P~znuzn1k21 ,Un1k21!dUn1k21dzn1k21 ,

where P(znuzn1k21 ,Un1k21) is a joint probability of
zn1k21 andUn1k21. It follows from the structure of Eq.~15!
that zn depends only upon values of the random param
Um at preceding sitesm,n and thus is independent ofUn .
The joint probabilityP(znuzn1k21 ,Un1k21), therefore, can
be factorized and integration overUn1k21 can be carried
out. The result is the following recurrent relation betwe
P(znuzn1k) andP(znuzn1k21):
22420
f
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e

-

er

P~znuzn1k!5E P~znuzn1k21!PC~zn1k1zn1k21
21 !dzn1k21 ,

~20!

wherePC is the Cauchy distribution introduced in Eq.~7!.
The advantage of the Cauchy distribution is that recurre
~20! can be solved exactly. The conditional probability o
tained has again the form of the Cauchy distribution, wh
can be conveniently presented in the form

P~znuzn1k!5
Im jk

p

1

~zn1k2jk!~zn1k2jk* !
, ~21!

where the asterisk denotes complex conjugation and par
etersjk obey the following equation:

jk1jk21
21 5U01 iG. ~22!

Equation~21! for P(znuzn1k) and Eq.~22! for jk have ex-
actly the same form as those obtained in Ref. 37 for
one-point distributionP1(zn). However, in the case of the
one-point distribution one looks for a stationary solution
Eq. ~22!, while the conditional distributionP(znuzn1k) re-
quires that Eq.~22! be solved with the initial condition

j05zn . ~23!

This solution can be presented as

jk5
dk2d2k2zn~dk112d2k21!

dk212d2k112zn~dk2d2k!
, ~24!

where d is the k-independent solution of Eq.~22!, which
obeys the stationary version of Eq.~22!:

d1d215U01 iG. ~25!

Real and imaginary parts ofd determine the center and th
width of the one-point distributionP1(zn):

P1~zn!5
Im d

p

1

~zn2d!~zn2d* !
. ~26!

Averaging Eq.~17! with the probability distribution~26!, one
obtains the average LE~Refs. 4 and 37! g,

g5 lnudu/a. ~27!

Equations~21!, ~24!, and~26! determine the two-point prob
ability distributionP2(zn ,zn1k) defined by Eq.~19!.

B. Variance of the Lyapunov exponent: General expression

Equation~18! for the variance of the LE,s2, can be pre-
sented in the following form:

s25
2

L2 (
n50

N21

(
k51

N2n

^ lnuznu lnuzn1ku&1
1

L
^ ln2uznu&2g2.

~28!
2-4
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The correlation functionD(k)5^ lnuznulnuzn1ku& is indepen-
dent of the initial siten. With the use of the probability
distributionP2(zn ,zn1k) found in the previous subsection,
can be presented as

D~k!5
Im d

p E
2`

` lnuzu lnujk~z!u

~z2d!~z2d* !
dz, ~29!

wherejk(z) andd are defined by Eqs.~24! and~25!, respec-
tively. Interchanging the order of integration and summat
in Eq. ~28! one can find for the variance

s25
2 Imd

paL E
2`

` lnuzu lnuzd21u

~z2d!~z2d* !
dz

2
1

aL
w~p2w!2

2

L
g ln~d221!1O~1/L2!, ~30!

wherew is the phase ofd,

d5p exp~ iw!,

reduced to the interval@0,p#, and p denotes the absolut
value ofd: d5upu. The remaining integral in Eq.~30! can be
further simplified with the use of an appropriate contour
the complexz plane. One, finally, arrives at the followin
expression for the variance in the casew,p/2, which corre-
sponds toU0.0:

s25
1

L H 2g ln F2
cosh~2ga!2cos~2w!

sinh2~ga!
G

1
1

aEw

p

dx tan21F sinh~2ga!sinw

cosh~2ga!cosw2cosxG J 1O~1/L2!.

~31!

Since our model is symmetric with respect to the transform
tion w→p2w, the variance forw.p/2 can be easily evalu
ated.

IV. NEW CRITERION FOR SINGLE-PARAMETER
SCALING

The necessary~but not sufficient! condition for SPS to
hold is that the localization length be greater than all mic
scopic scales in the system. Therefore, we should cons
the general result, Eq.~31!, in the limit of large localization
length, ga!1. Our first goal is to develop an asymptot
form of the integral in Eq.~31! in this limit. This is not a
trivial task since the integral has a singularity atg50. The
first term in Eq.~31! is also singular at this point, and on
would anticipate two singularities to cancel out. The lat
singularity has a logarithmic nature,g ln g, and we need,
therefore, to extract the similar logarithmic singularity fro
the integral in Eq.~31!. To this end, we first evaluate th
integral in Eq.~31! by parts and present it in the followin
form:
22420
n

-

-
er

r

F~g,w!5p tan21S b

11z
D 2w tan21S b cosw

z2cosw
D

1bE
212z

2(z2cosw)

dx
arccos~x1z!

x21b2
, ~32!

where parametersb andz are defined as

b5sinh~2ga!sinw, ~33!

z5cosh~2ga!cosw. ~34!

Since we are interested in small values ofga, we can expand
cos21(x1z) from Eq. ~32! in the Taylor’s series inx,

cos21~x1z!5cos21~z!1 (
n51

`

anxn, ~35!

and carry out the termwise integration. As the result we
tain

F~g,w!5cos21~z!H tan21S 11z

b
D 2tan21S z2cosw)

b
D J

2
1

2

b

A12z2
lnF ~z2cosw!21b2

~11z!21b2 G
1b$F@2~z2cosw!#2F~212z!%, ~36!

whereF(x) is defined by the following power series:

F~x!5 (
n52

`

an

xn21

n21
.

Comparing this expression with the original series~35! one
can obtain forF(x) the following integral representation:

F~x!5
1

x
cos21~z!1

lnuxu

A12z2
1E dx

x2
cos21~z1x!.

~37!

The remaining integral in Eq.~37! can be calculated exactly
As a result we have

F~x!5
1

x
@cos21~z!2cos21~z1x!#

1
1

A12z2
lnu12z2~z1x!

1A~12z2!@12~z1x!2#u. ~38!

When one combines Eq.~31! with Eqs. ~36! and ~38!, the
logarithmic singularity inF(g,w) nicely cancels out the sin
gularity in the first term of Eq.~31!. The expression for the
variances2 emerging in the leading ing order takes the SPS
form

s2.2g/L. ~39!
2-5
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This is, to the best of our knowledge, the first truly micr
scopic derivation of SPS with noad hoc hypotheses. The
main reward for this is the exact criterion for SPS, whi
follows from the conditions under which we have arrived
Eq. ~39!. First of all we assumed that

b

A12z2cos2w
!1. ~40!

Since

b.2ga sinw, z.112~ga!2, ~41!

the inequality~40! can be recast in the form

ga!sinw. ~42!

Another condition, which we have to impose in order
obtain Eq.~39!, is

~z21!cosw/b.ag/tanw!1. ~43!

Since sinw<tanw, the first of the two inequalities is mor
restrictive, and the final condition for SPS takes the form

k5 l loc / l s@1, ~44!

wherel loc5g21 is the localization length and a new leng
l s is defined as

l s5a/sinw. ~45!

Evaluation of the integral in Eq.~31! in the limit k!1 can
be performed by means of a simple expansion of the in
grand in power series inb and retaining only the linear inb
term. The resulting expression fors can be presented as

s25
1

l sL
S p2

2l loc

l s
D . ~46!

Equation~46! shows that in the regime considered here,s2

is determined by the new lengthl s rather than byl loc . It is
important to emphasize that in this limit both lengthsl s and
l loc can far exceeda, and Eq.~46!, therefore, describes th
violation of SPS while the system remains within a meani
ful scaling regime.

It should be noted, however, that Eq.~39! differs from Eq.
~3! by the factor of 2. This discrepancy is due to the pecu
nature of the Cauchy distribution, whose moments, star
from the second one, diverge. Because of this, none of
standard approaches, used to derive Eq.~3! within the ran-
dom phase hypothesis, can be applied to the Lloyd mode
order to illustrate this point, let us consider, for example,
expression fors2 obtained in Ref. 30 for the AM:

s25
1

N H VarF lnS 11
e2

42E2D G
1K S lnF112

e

A42E2
cosn1

e2

42E2G D 2L J . ~47!
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Brackets^ & designate here averaging over the random
energye and the phasen, which is assumed to be statistical
independent ofe and distributed uniformly. ‘‘Var’’ denotes
the variance of the respective quantity. The standard w
disorder expansion used in Ref. 30 implies the expansion
this expression in powers of the random variablee with con-
secutive averaging. The first term in Eq.~47! then becomes
of the order of (̂e2&/@42E2#)2 and is neglected, while the
second term after averaging over the phase yields Eq.~3!. In
the case of the Cauchy distribution fore, this approach can-
not be applied because^e2& does not exit. In order to pass t
the weak-scattering limit one has to average overe first, and
only after that carry out expansion over the parameterG of
the Cauchy distribution. Both terms in Eq.~47! then become
of the same order of magnitudeG/A42E2, and though the
general proportionality betweens2 and the LE is preserved
the numerical factor not equal to that of Eq.~3! or of Eq.
~39!. This result implies that the phase randomization h
pothesis is not valid at all for the Lloyd model. What is mo
important, however, is the fact that although the phase r
domization hypothesis fails, SPS still survives.

For k!1, one can provide a clear physical interpretati
for the lengthl s . According to Thouless,39 the phasew(E) is
proportional to the integrated density of statesG(E)
5w(E)/p, and k!1 corresponds to eitherG(E)!1 or 1
2G(E)!1. The lengthl s then can be expressed in terms
the number of states in the energy intervals betweenE and
the closest boundary of the spectrum,l s51/@pG(E)# @or l s
5a/(p2apG)]. For the AM these boundaries lie at6`,
and for KPM’s they are the resonance boundaries of
bands, wherew(E)5pn with n an integer. The states in
these regions arise due to rare realizations of the disor
and can be associated with spatially localized and w
separated structural defects. The lengthl s then can be inter-
preted as an average distance between such defects. In
of this interpretation ofl s , the physical meaning of the tran
sition between two types of scaling regimes also becom
clear. Condition~44! means that the localization length at th
energyE exceeds the spatial separation between neighbo
localization centers from the relevant part of the tail~be-
tweenE and the nearest boundary of the spectrum!. Under
this condition the localized states overlap and SPS is va

To complete our discussion of the new scaling parame
l s , let us compare it with the phase randomization length,l ph
numerically studied by Stoneet al.30 Assuming thatE is in-
side the conduction band and far from the band boundar
we can approximatel s as

l s
21.

1

2a
A42U0

21O~GU
2 !. ~48!

According to Eq.~48!, l s decreases toward the center of t
bandU050, where it reaches its minimum value equal toa.
At the same time, the phase randomization length was fo
in Ref. 30 to increase toward the center of the bandE50,
where it seemed to diverge. ForE50, the phase distribution
was found to be nonuniform even for very long chains. T
absence of the phase randomization in the center of the b
was also found analytically in Ref. 31. This comparis
2-6
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proves thatl s is an independent new parameter respons
for the statistics of the LE. Both numerical results of Ref.
and analytical calculations of Ref. 31 show that a nonu
form distribution of phases can be consistent with SPS, p
viding an additional argument against the condition for S
based upon phase randomization. At the same time, our
terion, Eq.~44!, correctly predicts validity of SPS in the ban
center as long as the localization length remains ma
scopic.

l s and the SPS criterion in generic models

The peculiarities of the Lloyd model may cast doubts
the robustness of the new scalel s and the criterion, Eq.~44!.
In order to show that this criterion is applicable beyond
Lloyd model, we carry out additional numerical simulatio
of the model studied previously in Ref. 32. That model is
the Kronig-Penney kind, but unlike the model considered
the present paper, its potential is formed by rectangu
barriers. The width of the barriers is assumed to be rand
with a uniform distribution over a given interval. Bot
the potential and the statistics of the model used
numerical simulations are considerably different from t
Lloyd model; e.g., all moments of the distribution functio
exist.

It is instructive to rewrite expressions fors2 in terms of a
new dimensionless variablet5s2Ll loc/2 as a function ofk.
In terms of these variables both asymptotics of the varia
s2 given by Eqs.~39! and ~46! can be presented in a form
which contains no free parameters:

t5H kS p

2
2k D , k!1,

1, k@1.

~49!

Although we do not expect the concrete form of the funct
t(k) to be universal, we do believe that the new crosso
lengthl s retains its physical meaning in the general case,
that the crossover point is also universally determined bk
;1.

In order to generalize the crossover lengthl s for other
models, we use the interpretation of the phasew in terms of
the integral density of states normalized in such a way
the phase would vary between 0 andp for any given band.
The generalization is quite straightforward for models with
single-band spectrum if in the absence of disorder the b
has a finite width. The total number of states in such mod
is finite, and it can be used to normalize the phase. If
initial band of the system is infinitely broad, e.g., for th
Schrödinger equation with a random white-noise potenti
one has to introduce a cutoff frequency for the spectrum
order to normalize the phase. This cutoff introduces a mic
scopic length similar to the intersite distancea, which is used
to define the localization length and the density of states.
crossover parameterk then can be obtained from an expre
sion relating the LE and the integral density of states fou
in Ref. 4:
22420
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k21~E!5
Ap

2 E
0

`
Ax expS 2

x3

12
2

Ex

D2/3D dx, ~50!

whereD determines the strength of thed-correlated poten-
tial. The asymptote ofk for large negativeE is

k'expS 2
4uEu3/2

3D D!1,

and we conclude that these states do not obey SPS.
transition to SPS behavior again occurs at the initial ba
boundaryE50, wherek'1.1 and does not depend upo
parameters of the model.

For systems with multiple~in the absence of disorder!
bands separated by band gaps, one has to consider sepa
two different situations. If disorder-modified bands still d
not overlap and a genuine gap between the bands pers
the situation is equivalent to the single-band case. The ph
can be defined for each separate band and normalized b
number of states in the band. The results of the numer
simulations of this particular situation are shown in Fig.
along witht(k) obtained from our analytical Eq.~31!. Here
l s was calculated numerically with the phase defined us
the integral density of states normalized in such a w
that the phase changes from zero top when energy sweep
over a band from one fluctuation boundary to the oth
In order to generate the plot we calculated both quanti
t and k as functions of energy, and plotted them vers
each other. One can see from this figure that the cross
between different asymptotes for both numerical and ana
cal calculations occurs in the same region. This pro
the universal significance of our criterion~44! for SPS and
justifies the suggested generalization of the crossover le
l s .

FIG. 1. The functiont(k) obtained from the analytical solution
of the Lloyd model, Eq.~31! ~solid line!, and the numerical simu-
lations of KPM with rectangular barriers of random widths~open
circles!. Note that the SPS equations for these models differ b
factor of 2@Eqs.~3! and~39!#; therefore we rescaled numerical da
by this factor.
2-7
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A new situation arises, however, when fluctuation sta
from adjacent bands overlap, and the spectrum does not
boundaries in former band gaps. On the one hand, it is c
that if the number of states in the former gap is small, S
should not be expected on the basis of the general qualita
interpretation of the criterion~44!. On the other hand, sinc
there are no exact boundaries of the spectrum inside for
gaps, one cannot define a phase suitable for determinatio
l s . Though this situation requires special consideration,
can offer a conjecture that can be used to meaningfully
fine l s in this case. Consider one of the original bands
tween two adjacent band gaps. In the presence of diso
there appear tails of the density of states within the ga
When disorder is small, one can always distinguish betw
gap states originating from different bands~except for a
small region where the tails from different bands overla!.
Let gn(E) be the differential density of states related to t
nth band. Then integralNtot5*2`

` gn(E)dE gives the total
number of states originating from the band. One can defin
phase

wn~E!5pE
2`

E

gn~E!dE/Ntot ,

with E obeying the inequalityEmin
n21,E,Emin

n , whereEmin
n

corresponds to the minimum of theactualdifferential density
of states within the gap between thenth and (n11)th bands.
The phase defined according to this procedure does no
sume unphysical values ofp at the points where there are n
spectrum boundaries, and we suggest that the paramel s
defined through this phase according to

l s
215sinF p

Ntot
E

2`

E

gn~E!dEG , Emin
n21,E,Emin

n , ~51!

can be used in order to formulate the criterion, Eq.~44!. The
suggested definition ofl s can be practically used for analyt
cal estimates of the transition between different statist
using, for example, a tight-binding approach to a multiba
problem, where interactions only between adjacent bands
taken into account. However, more detailed discussion
this issue requires a separate paper.

V. PROPERTIES OF THE TRANSITION REGION
BETWEEN SPS AND NON-SPS STATES

In this section we discuss properties of the transition
gion between SPS and non-SPS states. In spite of the m
tioned peculiarities of the Lloyd model, our calculations pr
vide a sound qualitative explanation for numerical results
Ref. 32, confirming once again that we correctly describe
qualitative nature of the transition between SPS and non-
statistics. In the model considered, the phasew and LEg can
be conveniently presented in the form4

sinw5
As

AU0
21s

, ~52!

g.GU /As, ~53!
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s5
1

2
~41GU

2 2U0
2!1

1

2
A~41GU

2 2U0
2!214U0

2GU
2

~54!

and we assume again thatg!1. The relation betweeng and
w is determined by the parameters, which in its turn depends
upon the energyE. Let us recall that the energy enters in
our equations through parametersU0 andGU defined in Eqs.
~8! and~9!. For energies within conduction bands, the LE
of the order ofGU though l s is of the order of 1@see Eq.
~48!#. Thus, SPS holds as long as disorder is small,GU!1,
in accordance with the previous results.2,6,29,30 From Eqs.
~52!, ~53!, and ~54! it is clear that the relation betwee
l loc and l s changes with the energy approaching an init
spectral boundary. In the limit of small disorderl loc5 l s
exactly at the boundary. Therefore, one should expect
strongest violation of SPS for states which arise due to
order in the originally forbidden regions. For the AM th
corresponds to energiesuEu.2, and for KPM’s these
are energies from band gaps of the original spectru
For energies lying far away from the boundaries one c
obtain the following approximate expressions for LE and
phasew:

sinw;
GU

AU0
224

!1, ~55!

g;
AU0

224

U0
. ~56!

It is evident that in this casel loc! l s , and the variance be
haves according to Eq.~46!. The states disobeying SPS
however, are more important for KPM’s than for the AM
The reason for this is that the LE in the AM becomes of t
order of 1 not very far from the boundary, moving the syste
out of any scaling regime. In KPM’sg can remain
small enough throughout entire band gaps for sufficien
high energiesk@V0, and the violation of SPS in this cas
occurs when the localization length is still of a macrosco
scale.

Equations~39! and~46! explain a nonmonotonic behavio
of s(E) observed numerically in Ref. 32. When the ener
moves towards a band edge, the LE grows ands grows
along with g. When, however,g becomes equal tol s

21 ,
the variance s2 starts decreasing towards the val
;p l s

21/N. The maximum ofs, therefore, corresponds to th
energy whereg. l s

21 , i.e., the boundary of the origina
spectrum.

We can now also estimate the width of the transition
gion between SPS and non-SPS states, which was foun
numerical simulations to be surprisingly small. The transiti
between the two groups of states occurs whens(E) passes
through its maximum, and the width of the transitio
region is related to the sharpness of the maximum. In v
of the preceding discussion, the latter is determined
2-8
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the region of energies over whichg(GU) changes its behav
ior. The extent of this region can be estimated from the c
dition

u42U0
2u;2U0GU . ~57!

In the AM it leads todE;G, and in KPM’s one has

dk;
G

akndn
;

G

V0

Dn

dn
, ~58!

whereDn is the width of thenth band gap,kn represents the
nonresonant boundary of thenth band, and the parameterdn
is defined as

dn511
4V0

akn
2

. ~59!

In both cases the width of the transition region is determin
by the degree of disorder in the system and is small w
disorder is small. In the Kronig-Penney situation, howev
Eq. ~58! indicates a special sharpness of the transition in
case of high-energy bands, when the parameterDn is also
small.

When disorder increases, the AM and KPM’s behave d
ferently. Monte Carlo results32 show that in periodic systems
an increase of disorder leads to a restoration of SPS fo
most the entire spectrum of the system. We are now abl
explain this behavior and to provide an estimate for the c
cal disorder. It is clear that the parameterl s

21 reaches a mini-
mum at the energy in the center of a band gap. This m
mum value can be estimated from Eq.~56! as

l s min
21 ;

G

kn
Adn, ~60!

where kn represents the nonresonant boundary of thenth
band, and the parameterdn is defined by Eq.~59!. At the
same energy wherel s

21 is minimal, the LE assumes its max
mum value:

gmax;
V0

knAdn

. ~61!

l s min
21 increases with disorder, whilegmax does not change

and atG.V0 /dn two length scales are of the same ord
l s min.gmax

21 . At this instant for the states outside of the im
mediate vicinity of the center of the band gap,l s@g21 and
SPS is restored. Thus, we can identifyGcr

n 5V0 /dn as a criti-
cal disorder for thenth band gap. For the states right in th
center of the gaps, however,l s;g21 no matter what disorde
is, and these states do not obey SPS. Therefore, the com
restoration of SPS for the entire band gap does not occu
this model, but the width of the non-SPS region decrea
with increase of disorder. This can be seen from Fig.
where we present the LE and its variance obtained from
analytical results, Eq.~31!, for different degrees of disorde
In the case of a strong potentialV0 and high energy,a21

!V0!kn, one hasdn.1, and the critical disorder is jus
22420
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FIG. 2. The variance of the LE multiplied by the length of th
systemL ~solid line! and LE itself ~dashed line! for KPM’s are
posted as functions of the energy parameterk for different degrees
of disorder. The plot extends over the region 10p,ka,11p, so
one gap and one conductance band are represented. The prese
the maximum in the vicinity of the band boundary (ka;10.35p)
signals the violation of SPS for states from a band gap. The abs
of a similar maximum at the second boundary is due to its re
nance nature. The degrees of the disorder,G, are 3~a!, 7 ~b!, and 15
~c!. It is clearly seen that with the increase of disorder, the num
of states disobeying SPS decreases.
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equal toV0. When a potential is weak,V0a!1, there exists
a medium-energy regime, whenAV0 /a@kn@V0. In this
case

gmax;AV0a!1,

l s min
21 ;

G

kn
2
AV0

a
,

Gcr
n .akn

2 .

It is interesting to note that in this caseGcr
n increases with

an increase ofkn , even though the widths of the gaps d
crease.

The calculations presented above referred to the nonr
nant band boundaries. At the resonant pointska5pn, both
the localization lengthl loc and the crossover lengthl s di-
verge, while the variance of the LE vanishes. Although
resonances are not stable with respect to a violation of
periodic arrangements of thed potentials, they occur in som
other models as well. We already mentioned models w
correlated disorder38 and random superlattices.25,32The latter
has an experimental significance with applications to pro
gation of classical waves. Therefore, it is interesting to c
sider the behavior of the critical parameterk in the vicinity
of the resonances. Although bothl loc and l s diverge at the
resonances, their ratiok remains finite and takes on the fo
lowing values:

k55
V0

G0
1A11

V0

G0
, ka,pn,

2
V0

G0
1A11

V0

G0
, ka.pn.

~62!

One can see from Eq.~62! thatk experiences a discontinuit
at resonance points: its value decreases by 2V0 /G0 once a
point is crossed. In the case of small disorder, whenV0 /G0
@1, this is a dramatic jump, such thatk@1 at the band side
of the resonant boundary andk!1 at the gap side. It is
obvious, therefore, that the scaling properties of the sys
also change discontinuously at the resonance from SPS
havior at the band side to the scaling with two parameter
the gap side.

VI. CONCLUSION

In this paper we studied statistical properties of t
Lyapunov exponent in the one-dimensional Anderson mo
with the Cauchy distribution of site energies. The model c
also be interpreted as the Kronig-Penney model with perio
cally positionedd potentials with random strengths. Th
main objective of the study was to find an exact solution
the thermodynamical limit of the variance of the LE and
establish an exact criterion for the existence of single par
eter scaling. It is important to emphasize that in contrast w
all previous calculations of the variance, we did not use
phase randomization hypothesis. This allowed us to re
22420
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the generally accepted assumption that it is the length o
which the phase of reflection and transmission coefficie
become uniformly distributed that sets the condition for t
existence of SPS.

We found a new length scalel s , which is responsible for
the scaling properties of the conductivity in the system: S
exists as long as the localization lengthl loc exceedsl s . The
length l s , however, differs from the phase randomizati
length and presents, therefore, a new significant scaling
rameter. The parameterl s is microscopic for states clos
to the center of the original conduction bands of t
system and does not impose, therefore, any additio
restrictions for the existence of SPS excepting the reg
requirement for the localization length to be of
macroscopic dimension. However, for the states at the e
of the bands,l s grows to a macroscopic size and th
condition l loc5 l s actually establishes a boundary betwe
the states with and without the SPS statistics. As so
as l s becomes much larger than all microscopic lengt
this scale becomes significant. In this limit it can be e
pressed in terms of the number of states,Nde f(E), which
arise at the tails of the initial bands due to rare fluctuat
configurations:l s

215Nde f(E). It then can be given a natura
physical interpretation as an average distance between
defects.

The change of the scaling behavior occurs when the
ergy crosses over a boundary of a former gap. In the cas
regular boundaries, the change occurs gradually with
critical parameterk being of the order of unity right at the
boundary. The Kronig-Penney version of our model, besi
regular boundaries, has so-called resonant boundaries, w
both the LE andl s

21 vanish. We found that at the resonan
boundaries the parameterk undergoes a sudden jump from
very large valuesk@1 at the band side of the boundary
very small valuesk!1 at the gap side. This means that t
change of the scaling behavior at the resonant energies
occurs discontinuously: the system obeys SPS when
boundary is approached from the conduction band and t
demonstrates two-parameter scaling if the boundary is
proached from the gap.

We carried out numerical simulations of the Kroni
Penney-like model with a different configuration of the p
tential and different statistics. The comparison between
merical and analytical results clearly indicates th
significance of the length scalel s defined in terms of the
integral density of states persists beyond the Lloyd mo
and that the new criterion for SPS established in the pre
paper has a universal nature.
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