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Optimum gain for plasmonic distributed feedback lasers
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Although nanolasers typically have low Q factors and high lasing thresholds, they have been successfully
implemented with various gain media. Intuitively, it seems that an increase in the gain coefficient would improve
the characteristics of nanolasers. For a plasmonic nanolaser—in particular, a distributed feedback laser—we
propose a self-consistent model that takes into account both spontaneous emission and the multimode character
of laser generation to show that for a given pumping strength, the gain coefficient has an optimal value at which
the radiation intensity is at a maximum and the radiation linewidth is at a minimum.
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I. INTRODUCTION

Laser physics has been extensively developed since the
discovery of the laser more than half a century ago [1–3], and
now the principles of its operation have been well established.
A laser consists of a resonator and a gain medium, in which
a population inversion is created by external pumping [4].
Spontaneous emission with population inversion results in an
increase of the number of photons inside the resonator. The
resonator provides a positive feedback stimulating the gain
medium to radiate into the resonator modes. The gain medium,
as an amplifier, together with the feedback makes a coherent
light generator.

An amplifying medium is usually described by the gain
coefficient G, which does not depend on the pump rate. This
coefficient, G = nGσG, is the product of the concentration of
atoms of the active medium, nG, and the cross section of their
interaction with the electromagnetic wave, σG [5–7]; exp(G)
is the factor by which the amplitude of the plane wave is
increased after its propagation through a unit length of the
amplifying medium. In traditional lasers the gain coefficient
varies in the range of 0.1–1 cm−1 [8].

Lasing begins when the pump power exceeds a threshold
at which the energy supplied compensates the loss. Energy is
lost in the resonator walls and to radiation of light including
laser output. There are several ways of increasing the laser
power. One can either increase the pump power or decrease
losses. Decreasing losses results in increasing the Q factor
of the resonator and thereby decreasing the lasing threshold.
The threshold decrease may also be achieved by using new
materials with enhanced gain. This often leads to emergence
of lasers with a new design. In traditional macroscopic lasers,
however, lasing can be achieved at fairly low values of the gain
coefficient and a reasonable pump power. Therefore, there is
no need for special efforts to increase the gain coefficient.

In the last decade, a different class of lasers, nanolasers,
has become a subject of ever-growing interest because of
the prospect of creating a subwavelength source of coherent
radiation [9–19]. Owing to its small size, the nanolaser
allows for ultrafast field dynamics [13,15]. This leads to

the possibility of ultrafast transceivers that are important for
developing optoelectronic technologies that require sources of
coherent radiation that are capable of rapid transformations
of electrical to optical signals. However, the side effect of the
subwavelength size of plasmonic nanolasers is a wide angular
distribution of the emitted light. To narrow the directional
distribution, at least one of the laser dimensions should be of
the wavelength size. For this purpose, one can use conically
shaped nanoantennas [20], Yagi-Uda antennas [21,22], or
periodic chains [23] and lattices of nanoparticles. The latter
forms a plasmonic distributed feedback (DFB) nanolaser
[17–19,24–34], which is the subject of our paper.

In nano-DFB lasers, the role of the resonator is played
by the periodic plasmonic structure. These can be metallic
films perforated by holes or slits [18,19,24,26,28,32] and
one- or two-dimensional arrays of plasmonic nanoparticles
[25,27,30]. The eigenmodes of plasmonic DFB lasers are
hybrid plasmon-polariton Bloch modes [18,25,27]. These
modes can be generated with either continous [18,24,28,32]
or pulsed [25–27,29–31,33,34] pumping.

Even though substantial progress has been made in creating
plasmonic DFB lasers [18,24–34], a number of problems
remain unsolved. The main problem with a DFB laser is that a
plasmonic system has high losses and, thereby, a low Q factor
and a high value of the first lasing threshold. Consequently,
in these systems, the contribution of spontaneous emission
is high. Therefore, plasmonic DFB lasers may be overheated
at levels of pump power required to achieve coherent lasing
[35–37]. High-gain materials have been used to address this
challenge [18,28]. These are either semiconductor quantum
wells [18,24,28,32] or organic dyes [25–27,29–31,33,34] for
which gain coefficients are in the range of 100–1000 cm−1.
These materials, however, are either expensive or require
cryogenics for laser operations. Therefore, the search for
low-loss plasmonic materials and active materials with high
gain continues [38–41].

In typical high-Q lasers, multimode excitations may result
in various effects. These include mode competition, which
may suppress lasing from all modes except from the strongest
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one, mode locking, and mode beating, which are well studied
in the literature [12,42,43]. Usually, in plasmonic DFB lasers,
mode competition is suppressed by low Q factors. Though
competition between closely spaced modes can result in mode
suppression even in low-Q systems [44,45], the number of
photons in such modes is negligibly small in the DFB lasers
considered below. Therefore, suppression of these modes does
not affect the behavior of the main modes in plasmonic DFB
lasers, which remain essentially multimode. In this paper, we
consider a synergetic cooperation of spontaneous emission and
a multimode regime.

We show that an increase in the gain coefficient would
not necessarily improve nanolaser output. There is an optimal
value of the gain that results from the nonlinear interaction
of modes via the gain medium. For this value, a maximum
intensity of radiation for a given pump power is realized. If
the gain exceeds the optimal value, the radiation intensity
decreases and the laser linewidth increases. We study the
effect of spontaneous emission on multimode generation in
a DFB nanolaser and do not consider effects of nonuniform
distributions of a gain medium [42,46] and a pump power in the
resonator [47–51], as well as the nonmonotonic dependence of
the laser generation threshold on parameters of the resonator
[52–54].

II. SYSTEM

In experiments, to create an inverted population of an
amplifying medium, an optical pulse pumping is usually used
[25–27]. The duration of the pulse varies from 40 fs to 200
ns [25,26]. A pulse must not overheat and destroy an active
medium, which limits the pulse duration. A characteristic time
of the longitudinal relaxation of active medium atoms is less
than 10 ns. If a pump pulse has a duration of 100 ns or more,
then in a laser stationary oscillations are established. Such a
pulse, therefore, can be approximately considered a cw regime.
This is the regime that we consider below.

To demonstrate the concept, we consider a DFB laser in
which plasmonic nanoparticles are periodically positioned in
a layer of a gain medium (see Fig. 1). A similar system was
realized experimentally in Ref. [27].

R101+SU8

SiO2

30
0 

nm

390 nm

100 nm
Ag NP

FIG. 1. Schematics of the DFB laser. This system consists of a
300-nm layer of a mixture of polymer SU8 and dye R101 that is
applied on a quartz substrate. Cylindrical silver nanoparticles are
placed inside the layer. The diameter and the height of a nanoparticle
are 100 and 30 nm, respectively. The nanoparticles are positioned in
periodic square-lattice sites with the period of l = 390 nm; the size of
the system is L = 10l. The transition frequency of dye molecules
is ωσ = 3.195 × 1015 rad/s and their longitudinal and transverse
relaxations rates are γd = (4.3 ns)−1 and γσ = (4.6 fs)−1, respectively
[56,57].

FIG. 2. Eigenmodes of a plasmonic DFB laser at the coordinates
�XM�. The size of a dot reflects the value of the Q factor, ω/(2γi), of
the respective mode. Horizontal dashed lines show the amplification
linewidth of dye molecules. The inset shows the irreducible Brillouin
zone with the �XM� path.

Eigenmodes of such a laser are the Bloch modes, whose
wave numbers kB lie in the plane parallel to the gain layer and
satisfy the phase condition of the laser generation [52,55],

LRekB = πn + arg r, (1)

where L is the length of the laser side, n is an integer, and
r is the coefficient of reflection from the laser boundary.
This coefficient is determined by both the laser structure and
properties of the surrounding medium. We assume that arg r =
0. For calculation of eigenmodes of the plasmonic DFB laser,
we apply Bloch boundary conditions to the elementary cell
of the periodic lattice. By going through the Bloch wave
numbers satisfying Eq. (1), we find the corresponding complex
eigenfrequencies ω + iγ shown in Fig. 2.

Note that the radiation from the surface of the DFB
laser arises if the spatial spectrum of the generated Bloch
wave contains wave numbers whose tangential components
are smaller than the wave number of the surrounding space
[18,24,27]. Below we consider the case when the radiation is
in the direction perpendicular to this plane. Despite the small
thickness of the active layer the width of the radiation pattern
of the emitter may be narrow because it depends on the size of
the radiation aperture which, in our case, is the transverse size
of the laser.

III. MATHEMATICAL MODEL

A consistent study of plasmonic DFB lasers should take
into account the multimode character of laser generation
and spontaneous radiation of “atoms” of the gain medium.
There are two equivalent approaches to the description of
spontaneous radiation in multimode lasers. The first one is
based on the solution of the operator version of the Maxwell-
Bloch equations—the Heisenberg-Langevin equations. These
equations include noise terms, thanks to which they take into
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account spontaneous emission processes [58,59]. However,
operators describing noise in the Heisenberg-Langevin equa-
tions are noncommutative. Therefore, working with them is
difficult. For a large number of atoms, operator equations can
be replaced by equations for c numbers to obtain Maxwell-
Bloch equations [60]. Such an approach is commonly used for
the consideration of laser generation [61–64] including studies
of multimode lasers [65].

In our paper, we use another approach, which is based on
equations for expectation values for operators of the number
of photons, the population inversion of atoms of the gain
medium, and operators of coupling between these atoms and
the electromagnetic field [16,66–69]. These equations can be
obtained by using the Lindblad form of the master equation
for the density matrix [70,71] (see Appendix A). When this
equation is derived from the von Neumann equations for
the density matrix, the reservoir variables are excluded by
using the Born-Markov approximation and averaging over
the reservoir state. As a result, noise and dissipation into the
reservoir are taken into account in the master equation for the
density matrix using Lindblad superoperators, which include
correlators of noise with all dynamic variables. Formally,
this leads to a deterministic form of the master equation in
which processes due to noise are taken care of by Lindblad
superoperators. The main problem in such an approach is an
infinite number of equations. However, in many problems it is
possible to uncouple some operator correlators to obtain a finite
system. For a laser system, a common approach is uncoupling
of the correlator of the number of photons, â+â, and the
population inversion, D̂, namely, 〈â+âD̂〉 = 〈â+â〉〈D̂〉, which
results in a finite number of coupled nonlinear equations that
take into account spontaneous emission (see Ref. [66]). In
the limit of a large number of atoms, the difference between
〈â+âD̂〉 and 〈â+â〉〈D̂〉 falls off as the inverse of the number
of atoms [70], which justifies the applicability of such an
approximation for DFB lasers. This approach is suitable for
both numerical simulations and analytical evaluations, and it
is used in our paper.

To derive the laser equations that take into account
both spontaneous radiation and multimode character of the
laser generation, we use the Jaynes-Cummings Hamiltonian
[59,70]:

Ĥ =
∑

i

h̄ωi â
+
i âi +

∑
m

h̄ωσ σ̂+
m σ̂m

+
∑
i, m

(h̄�imâ+
i σ̂m + h̄�∗

imâi σ̂
+
m ), (2)

where â+
i and âi are creation and annihilation operators of a

quantum in the ith resonator mode, ωi is the frequency of this
mode, σ̂+

m and σ̂m are raising and lowering operators for the
transition of the mth two-level atom, ωσ is the frequency of
this transition, and �im is the coupling constant between the
field in the ith mode and the mth atom.

Using Hamiltonian (2) and the master equation, Eq. (A1),
we obtain equations for the expectation values of the operator
of the number of photons in the ith mode, n̂i = â+

i âi ; the opera-
tor of the population inversion of the mth atom, D̂m = σ̂+

m σ̂m −
σ̂mσ̂+

m ; the operator of the energy flux from the mth atom to the
ith mode [16,66], Îim = −i(h̄�imâ+

i σ̂m − h̄�∗
imâi σ̂

+
m ); and the

interaction operator between the mth atom and the field in the
ith mode, V̂im = h̄�imâ+

i σ̂m + h̄�∗
imâi σ̂

+
m [Eqs. (A6)–(A9)]:

dni

dt
= −γini +

∑
m

Iim, (3)

dDm

dt
= −γd

(
Dm − D0

m

) − 2
∑

i

Iim, (4)

dIim

dt
= −(γσ + γi/2)Iim + (ωi − ωσ )Vim

+ |�im|2(2niDm + Dm + 1), (5)

dVim

dt
= −(γσ + γi/2)Vim + (ωσ − ωi)Iim, (6)

where γi is the relaxation rate of the photons in the ith resonator
mode and γd and γσ are the rates of the longitudinal and
transverse relaxations in an atom. The term γdD

0
m describes

processes of incoherent pumping of the two-level active
medium [72].

The system of equations (3)–(6) describes interactions
between each resonator mode and each atom of the amplifying
medium. If we assume that the constants of interactions of the
ith mode with each atom are the same, �im = �i , then, in
Eqs. (3)–(6), we can sum up over all atoms of the amplifying
medium. With this assumption, the Maxwell-Bloch equations
predict a single-mode regime for any gain [66]. Our equations
(3)–(6), even after summation describe the multimode regime.
The final form of the equations is:

dni

dt
= −γini + Ii, (7)

dD̄

dt
= −γd (D̄ − D̄0) − 2

N

∑
i

Ii , (8)

dIi

dt
= −(γσ + γi/2)Ii + (ωi − ωσ )Vi

+ |�i |2(2niD̄ + D̄ + 1), (9)

dVi

dt
= −(γσ + γi/2)Vi + (ωσ − ωi)Ii, (10)

where D̄ is the average population inversion of atoms of the
amplifying medium, Ii is the total energy flux from all atoms
of the amplifying medium into the ith resonator mode, Vi is
the energy of the interaction between the ith resonator mode
and all atoms of the amplifying medium, and N is the number
of atoms. Note that energy loss in the resonator is due to both
losses in the material and radiation. Therefore, for each mode,
the relaxation rate γi can be represented as a sum of rates due
to nonradiation, γNRi , and radiation losses, γRi .

The Jaynes-Cummings Hamiltonian that was used for
deriving Eqs. (7)–(10) describes the interaction of the field
with two-level atoms. In reality, amplifying media have
complicated multilevel structures. Often, a multilevel system
can be approximately considered as a three- or four-level
system which, in turn, can be reduced to an effective two-level
system [72]. Below we assume that the concentration of atoms
of the active medium is nG = 5 × 1017 cm−3, which allows
us to neglect nonradiation interactions among the atoms of an
amplifying medium (e.g., the Förster transitions).
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Note that in high-Q-factor lasers, γσ � γi . Therefore,
variables Ii and Vi can be adiabatically excluded from Eqs. (7)–
(10). As a result, these equations become identical to the rate
equations for the number of photons and the population inver-
sion. In low-quality resonators, such as plasmonic resonators
that are considered here, the condition γσ � γi is not fulfilled
for some modes. In this case, Eqs. (7)–(10) cannot be reduced
to the rate equations, and one has to solve the system (7)–(10).

The coupling constant between the ith resonator mode
and the amplifying medium, |�i |2, is proportional to G [see
Appendix B, Eq. (B12)]:

|�i |2 ∼ ηi G, (11)

where ηi = WE/WT , WE is the energy of the electric field of
the ith eigenmode in the volume of the amplifying medium,
and WT is the total energy of this mode:

ηi = WE

WT

=
1

8π

∫
VG

[∂Re(εω)/∂ω]ω=ωi
|Ei |2d3r

1
8π

∫
V

{[∂Re(εω)/∂ω]ω=ωi
|Ei |2 + |Hi |2}d3r

,

(12)

where ε(r) is the coordinate-dependent dielectric permittivity
of the DFB laser in which all media are considered as
nonmagnetic. The dispersion of the dielectric permittivity must
be taken into account for the correct calculation of the field in
the structures with negative permittivities such as plasmonic
structures.

As shown in Appendix B, the gain coefficient can be
expressed as

G = nGσG = nG

ω

c

4 π |d|2
h̄γσ

√
ReεG

, (13)

where d is the dipole moment of an atom, εG is the dielectric
permittivity of the active medium, and c is the speed of light
in vacuum.

IV. COMPARISON OF THE DEVELOPED MODEL WITH
THE SEMICLASSICAL MODELS OF LASING

By solving Eqs. (7)–(10) numerically we show that the
number of photons in system modes is always nonzero. This
number increases monotonically with an increase in the pump
rate as shown in Fig. 3. In the stationary state, the number of
photons in the ith eigenmode is

ni(G) = 1

2

αiηiG

γi

D̄(G) + 1

1 − αiηiGD̄(G)/γi

, (14)

and the population inversion is

D̄ = γdD̄0 − 1
N

∑
i αiηiG

γd + 1
N

∑
i αiηiG(2ni + 1)

, (15)

where

αi = cγ 2
σ

γ 2
σ + (ωσ − ωi)2

Re
√

εG

2π [∂Re(εGω)/∂ω]
. (16)

In Eqs. (9) and (14), spontaneous transitions are described
by the term (D̄ + 1).

FIG. 3. The number of photons in different modes as a function
of the pump rate of the active medium. The solid red line shows the
number of photons in the mode with the lowest generation threshold;
dashed blue and dash-dotted green lines show the numbers of photons
in modes with the second and the third lowest generation thresholds,
respectively. The gain coefficient is G = 525 cm−1. In this and all
other figures, the concentration of atoms of the active medium is
nG = 5 × 1017 cm−3.

While the number of photons is small, we can assume
that D̄ ≈ D̄0. Using this approximation we can estimate
the generation threshold as a function of G. The number
of photons in the ith mode starts rising sharply when the
denominator 1 − αiηiG D̄0/γi in Eq. (14) approaches zero.
One can, therefore, define the lasing threshold as

D̄th
0i = γi/(αiηiG). (17)

This value coincides with the first generation threshold
obtained from both the Maxwell-Bloch equations [59] and
the rate equations when spontaneous radiation is not taken
into account [72].

However, away from this threshold, the results of our
theory are different. Note that in the semiclassical Maxwell-
Bloch theory due to the mode competition, photons exist
in one mode only [66]. Moreover, the laser behavior does
not change qualitatively when gain changes. This theory
predicts that if D0 > D̄th

0 , then D̄(D0) = D̄th
0 . The difference

�MBD̄ = D̄0 − D̄(D0) = D0 − D̄th
0 arises due to depletion of

the inverse population D̄ by stimulated emission. Our theory,
Eqs. (14)–(16), takes into account spontaneous emission. For
D̄0 > D̄th

0 , the theory yields D̄(D̄0) < D̄th
0 and �D̄ > �MBD̄.

Additional depletion is caused by spontaneous emission and
depends on gain. Moreover, spontaneous emission goes into all
modes. Consequently, owing to spontaneous emission, there
are photons in all modes; the stimulated emission occurs in all
modes as well.

Below the generation threshold, the Maxwell-Bloch equa-
tions predict the absence of photons in the modes. According
to Eqs. (7)–(10) for αiηiGD̄/γi 	 1, the number of photons
in each mode is proportional to αi and is approximately the
same for each mode (see Fig. 3). In this case, the DFB laser
works in the multimode regime.

With an increase in the pump rate, the fastest growth of the
number of photons is in the mode with the largest αi , i.e., in the
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FIG. 4. The number of photons in different modes as a function
of the gain coefficient of the active medium. The solid red line
shows the number of photons in the mode with the lowest generation
threshold; blue dashed and green dash-dotted lines show the numbers
of photons in modes with the second and the third lowest generation
thresholds, respectively. The inset shows the number of photons near
the threshold gain coefficient, Gth, Eq. (18), which is shown by the
vertical dotted line.

mode with the lowest generation threshold. For αiηiG D̄/γi >

1, the number of photons in this mode is much greater than
in all other modes. This is similar to the single-mode regime
except for the dependence on G.

V. NONMONOTONIC BEHAVIOR OF THE
PHOTON NUMBER

In a real system, the characteristic gain parameter is GD.
The population inversion D depends on time and the pump
rate. Assuming that the pump rate D̄0 is fixed, we analyze the
dependence of numbers of photons in resonator modes on the
gain coefficient G of the active medium. From Eqs. (7)–(10),
one can find that when the gain coefficient exceeds a threshold
value Gth, the number of photons in any mode starts sharply
increasing (Fig. 4). Gth is defined by the condition (14)

Gth = γi/(αiηiD̄0). (18)

Near the generation threshold, the population inversion of
the active medium is approximately D̄ ≈ D̄0; the number of
photons is small and is approximately the same for all modes.
Although, in this regime, the photon number in all modes
increases with nearly the same rates with an increase in the
gain coefficient (see inset in Fig. 4), in the mode with the
lowest generation threshold, the rate increase is the greatest.
The number of photons in the ith mode depends inversely on
the value (D̄th

0i − D̄):

ni = D̄ + 1

2
(
D̄th

0i − D̄
) (19)

[see Eq. (14)]. Obviously, in the mode with the lowest
generation threshold, D̄th

0i , ni has the maximum value.
An increase in gain G results in a decrease of D̄th

0i [see
Eq. (17)] that in turn leads to an increase in the number of

photons ni [see Eq. (19)]. At the same time, due to stimulated
emission, the increase in the number of photons results in
additional depletion of the population inversion of the active
medium D̄ leading to a slower photon rate increase above the
threshold, Gth, in any mode. Because of the mode competition,
a dramatic rate decrease occurs in any mode but the mode with
the lowest generation threshold (see Fig. 4).

Our computer simulation based on the solution of Eqs. (7)–
(10) shows that a further increase in the gain coefficient G

results in suppression of the lasing rate even in the mode with
the lowest generation threshold. At a certain value of the gain
coefficient, Gopt, the number of photons in this mode has a
maximum (see Fig. 4).

In the stationary generation regime, the total rate of
stimulated and spontaneous transitions into all modes cannot
be greater than the pump rate. However, if D̄ > −1, an increase
in the gain coefficient G results in an unlimited increase
in the rate of spontaneous emission [�i

sp ∼ |�i |2(D̄ + 1) ∼
ηiG(D̄ + 1)] [see Eqs. (9) and (11)]. To stop the increase in
the number of spontaneously emitted photons, the depletion
of the population inversion should be sufficiently high to yield
D̄ = −1. Note that, for D̄ < 0, the photon generation does not
occur because stimulated transitions lead to photon absorption.

In a single-mode laser, for D̄ < 0, the lasing stops but the
total number of photons does not decrease due to the growing
number of spontaneously emitted photons. In a multimode
laser, in the mode with the lowest generation threshold, the
generation breakdown causes a decrease in both the number
of coherent photons and the total photon number, because of
the increase in spontaneous emission into the other modes.

Let us consider the change in the rate of spontaneous and
stimulated transitions with a variation of the gain coefficient G.
The rate of induced transitions is proportional to the number
of photons in the mode,

�i
st = 2γ −1

σ |�i |2niD̄ ∼ 2ηiGniD̄. (20)

The rate of the spontaneous transitions does not depend
on ni ,

�i
sp = γ −1

σ |�i |2(D̄ + 1) ∼ ηiG(D̄ + 1). (21)

Since −1 � D̄ � 1 the ratio D̄/(D̄ + 1) is less than D̄ for
both positive and negative values of D̄. As a consequence,
the ratio �i

st /�i
sp, which is mainly determined by the product

of the number of photons in the mode and the population
inversion of the active medium, is bounded above:

�i
st

�i
sp

= 2niD̄

D̄ + 1
� 2niD̄. (22)

As it follows from Eqs. (20) and (21), when the gain
approaches zero, both rates �i

st and �i
sp, as well as the number

of photons in modes, tend to zero. Due to the latter, the ratio
�i

st /�i
sp also tends to zero [see Eq. (22)].

When the gain coefficient G increases, the population
inversion D̄ decreases [see Eq. (15)]. Moreover, as can be seen
from Eq. (15), D̄ becomes zero at G0 = NγdD̄0/

∑
i αiηi . As

a consequence, at this gain, the ratio �i
st /�i

sp becomes zero as
well (see Appendix C). Thus there should be two gain values
at which the ratio �i

st /�i
sp is zero. Since the ratio �i

st /�i
sp is

positive, it should achieve a maximum at some value of gain
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FIG. 5. The ratio of rates of stimulated and spontaneous transi-
tions for the mode with the lowest generation threshold, �0

st / �0
sp , as

a function of the gain coefficient of the active medium. The vertical
dotted lines show the threshold gain coefficient, Gth, and the gain
coefficient, at which the ratio �st/�sp has a maximum.

G = GSE : Gth < GSE < G0. In the stationary regime, for the
mode with the lowest generation threshold, the value of GSE

can be obtained analytically (see Appendix D):

GSE = 1
2 (D̄0 + 4)Gth. (23)

For a large pump power, D̄0 ≈ 1, and GSE ≈ 5Gth/2. Our
numerical solution of system (7)–(10) is in excellent agreement
with the analytical evaluation, Eq. (23). Indeed, as is shown
in Fig. 5, the dependence of �0

st / �0
sp on the gain reaches a

maximum at GSE .

VI. RESULTS AND DISCUSSION

A. Generation linewidth

When the amplification is close to the optimum, the number
of photons in a mode is large; see Fig. 4. Then the generation
linewidth is determined by the Schawlow-Townes formula
[4,59,72]:

�ωi = 2π2γi�
i
sp(G)/�i

st (G). (24)

The dependence of the linewidth on gain, G, is shown
in Fig. 6. As follows from Eq. (24), the minimum of the
generation linewidth coincides with the maximum of �i

st /�i
sp.

Thus, for the optimal value of the gain, the linewidth is
minimal. Even though near the generation threshold, Gth,
the number of photons is small and the Schawlow-Townes
formula is not applicable, our statement is still correct because
GSE � Gth.

B. Maximum value of the photon number in the
mode with the lowest generation threshold

Above its generation threshold, for the mode with the
lowest threshold, the value of D̄ is approximately the same
as the threshold value D̄th

0i = γi/αiηiG > 0 for the population
inversion. We make an estimate

D̄ + 1

2D̄
≈ γi + αiηiG

2γi

. (25)

FIG. 6. The dependence of the linewidth of the lasing mode on
gain.

By using Eq. (21) we can express the number of photons in
the ith mode via the ratio �i

st /�i
sp and the population inversion

of the active medium as

ni = �i
st

�i
sp

D̄ + 1

2D̄
. (26)

Since according to Eq. (25) the factor (D̄ + 1)/2D̄ has
no singularities near GSE , the number of photons has a
maximum near the optimal gain G ≈ GSE where �i

st /�i
sp has

its maximum as well.

C. Transition from a single-mode to a multimode regime

When G differs from GSE , the ratio of the rates of
induced and spontaneous transitions decreases. This leads to
the transition from a single-mode to a multimode regime. In
the former regime, in the mode with the lowest generation
threshold, the number of photons is many times greater than
in other modes. This number decreases significantly when the
system transitions to the multimode regime.

Let us introduce the parameter

χi = ni∑
j nj

, (27)

showing the ratio of the number of photons in the ith mode
to the total number of photons in all modes. For the mode
with the lowest generation threshold, this parameter depends
on the gain coefficient nonmonotonically (Fig. 7). As shown
in Fig. 7, it reaches the maximum value when G ≈ GSE .

As one can see from Fig. 7, χi 
=0 also depends on G

nonmonotonically. Maxima of χi=1,2 are near Gth. Further
increase in the gain coefficient leads to a sharp increase in χ0

and a decrease in the number of photons in all other modes.
To summarize, when the gain coefficient reaches its

optimum value, G = GSE , the generation linewidth has a
minimum, and the ratio of the number of photons in the mode
with the lowest generation threshold to the total number of
photons in all modes reaches its maximum. Thus the system
transitions into a single-mode regime. In addition, in the mode
with the lowest generation threshold, the number of photons
is the greatest when G ≈ GSE .
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FIG. 7. The ratio of the number of photons in different modes to
the total number of photons in all modes. The solid red line shows the
number of photons in the mode with the lowest generation threshold
(χ0); dashed blue and dash-dotted green lines show the numbers of
photons in modes with the second (χ1) and the third (χ2) lowest
generation thresholds, respectively.

VII. CONCLUSION

In this paper, we have studied generation regimes of a
plasmonic multimode DFB laser for various parameters of
an active medium using a self-consistent model that takes into
account spontaneous transitions and the multimode character
of laser generation. We have shown that even when the pump
power is substantially higher than threshold, the laser is mul-
timode in a low-Q plasmonic structure. In turn, the intensity
and the width of the laser line depend nonmonotonically on
the gain coefficient of the active medium due to the nonlinear
interaction of a large number of modes within the gain medium.
We have demonstrated that there is an optimal value of the gain
coefficient, GSE ≈ 2.5 Gth, at which the ratio of the rates of
induced and spontaneous transitions has a maximum and the
generation linewidth is at minimum.

For the optimal value of the gain coefficient, a plasmonic
DFB laser supports a single mode in which the generation
occurs in the mode with the lowest generation threshold.
When G deviates from GSE , the ratio of the rates of induced
and spontaneous transitions decreases, and the laser works
in a multimode regime. This greatly reduces the generated
intensity.

Note that modes of DFB lasers are leaky waves radiating
at various angles to the slab of an active medium [24,28,32].
Usually, the structure of a DFB laser is optimized in a way
that the mode with lowest threshold radiates perpendicular
to the laser plane. For G = GSE the ratio of the number of
photons in the mode with the lowest generation threshold to
the total number of photons in all modes, χ0, is the largest,
χ0 > χi . Thus, for G = GSE , the plasmonic DFB laser has
the narrowest radiation pattern.

The optimal value of the gain coefficient for the plasmonic
DFB laser considered in our paper is GSE ≈ 265 cm−1. This
value corresponds approximately to the gain coefficient of
organic dye R101 [56,57]. We have used parameters of this
dye in our model. Thus one can use active media with gain
coefficients of the order of a few hundred inverse centimeters

in DFB lasers similar to the ones considered in our paper.
These could be organic dyes or colloids of quantum dots with
optical pumping or bulk semiconductors with current injection
[73].

The value of the optimal gain coefficient depends on the
detuning between the eigenmode with the smallest generation
threshold and the transition frequency of the gain medium. This
value is inversely proportional to the ratio of the energy of the
electric field of this mode in the volume of the amplifying
medium to the total energy of this mode. An optimal laser
can, therefore, be realized either by choosing the best active
material for a given laser structure or by changing the geometry
of the plasmonic structure. If the gain coefficient of the active
medium is smaller than optimal, this energy ratio can be
increased and vice versa.
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APPENDIX A: DERIVATION OF LASER EQUATIONS

In the Markovian approximation, the dynamics of two-level
atoms interacting with an external electromagnetic field may
be described with a master equation in the Lindblad form
[70,71],

∂ρ̂

∂t
= − i

h̄
[Ĥ ,ρ̂] + L̂a[ρ̂] + L̂D[ρ̂] + L̂σ [ρ̂] + L̂pump[ρ̂],

(A1)
where ρ̂ is density matrix; Ĥ is the Jaynes-Cummings
Hamiltonian [59,70], Eq. (2). The term

L̂a[ρ̂] =
∑

i

γi

2
(2âi ρ̂â+

i − â+
i âi ρ̂ − ρ̂â+

i âi)

describes dissipation in each ith mode with the dissipation
rate γi .

L̂D[ρ̂] =
∑
m

γD

2
(2σ̂mρ̂σ̂+

m − σ̂+
m σ̂mρ̂ − ρ̂σ̂+

m σ̂m)

and

L̂σ [ρ̂] =
∑
m

γσ

2
(D̂mρ̂D̂m − ρ̂)

describe energy and phase relaxations [70,71] with rates γD

and γσ , respectively. The last term in Eq. (A1),

L̂pump[ρ̂] =
∑
m

γpump

2

(
2σ̂+

m ρ̂σ̂m − σ̂mσ̂+
m ρ̂ − ρ̂σ̂mσ̂+

m

)
,

describes pumping of a two-level atom at the rate γpump [70,71].
By using master equation (A1) and the equality 〈Â〉 =

Tr(ρ̂Â), we can obtain a closed system of equations for
expectation values of the operator of the number of photons
in the ith mode, n̂i = â+

i âi ; the operator of the population
inversion of the m atom, D̂m = σ̂+

m σ̂m − σ̂mσ̂+
m ; the operator

of the energy flux from the mth atom to the ith mode
[66], Îim = −i(h̄�imâ+

i σ̂m − h̄�∗
imâi σ̂

+
m ); and the interaction

operator between the mth atom and the field in the ith mode,
V̂im = h̄�imâ+

i σ̂m + h̄�∗
imâi σ̂

+
m . On the right sides of these
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equations, the expectation values of products of the operators
appear. We have to obtain new equations for these products.
This leads us to an infinite chain of equations. In order to
terminate this chain, we uncouple correlators of operators
of the number of photons and the population inversion,
〈n̂iD̂m〉 = 〈n̂i〉〈D̂m〉 [58], and consider that 〈σ̂+

m σ̂l〉 = 0, m 
=
l and 〈â+

i âj 〉 = 0 , i 
= j . This procedure is similar to that
used in deriving the Maxwell-Bloch equations [59]. As a
result, we arrive at a closed system of equations for averages
ni = 〈n̂i〉, Dm = 〈D̂m〉, Iim = 〈Îim〉, and Vim = 〈V̂im〉 (see also
Ref. [66]):

dni

dt
= −γini +

∑
m

Iim, (A2)

dDm

dt
= (γpump − γD) − (γpump + γD)Dm − 2

∑
i

Iim, (A3)

dIim

dt
= −

(
γσ + γi + γpump + γD

2

)
Iim

+ (ωi − ωσ )Vim + |�im|2(2niDm + Dm + 1),

(A4)

dVim

dt
= −

(
γσ + γi + γpump + γD

2

)
Vim + (ωσ − ωi)Iim.

(A5)

Using the notations D0
m = (γpump − γD)/(γpump + γD) and

γd = γpump + γD , and taking into account that γσ ,γi �
γpump + γD , we obtain a system of dynamic equations gov-
erning the multimode regime of the laser:

dni

dt
= −γini +

∑
m

Iim, (A6)

dDm

dt
= −γd

(
Dm − D0

m

) − 2
∑

i

Iim, (A7)

dIim

dt
= −(γσ + γi/2)Iim + (ωi − ωσ )Vim

+ |�im|2(2niDm + Dm + 1), (A8)

dVim

dt
= −(γσ + γi/2)Vim + (ωσ − ωi)Iim. (A9)

Equations (A6)–(A9) allow for describing the spontaneous
emission with the accuracy of 1/N , where N is the number of
atoms [66,70].

APPENDIX B: EXPRESSING CONSTANTS OF LASER
EQUATIONS VIA PARAMETERS OF AN

AMPLIFYING MEDIUM

The interaction constant between a field and an atom of an
amplifying medium can be expressed as

h̄�im = −dm · Ei(rm), (B1)

where dm is the dipole moment of the mth atom at the transition
frequency and Ei(rm) is the electric field quantum in the ith
mode at the position of the mth atom. To normalize the electric
field Ei(rm), we equate the energy of one quantum to the energy

of the electric field in the resonator:

h̄ωi = 1

8π

∫
V

[
∂Re(εω)

∂ω

∣∣∣∣
ω=ωi

|Ei(r)|2 + |Hi(r)|2
]
d3r,

(B2)

where ε is the dielectric permittivity of the medium which is
considered as nonmagnetic. Equation (B2) gives Ei(rm) when
the field distribution in a resonant mode is known.

If the field distribution is sufficiently uniform, the electric
field in the position of each atom can be considered as
approximately equal to the average field in the amplifying
medium. In this case, in Eqs. (3)–(6) of the paper, one can
perform the summation over the number of atoms to obtain
system (7)–(10).

To calculate the coupling constant |�i |2 between the field
and an amplifying medium, we introduce the parameter ηi ,
which is the ratio of the energy of the electric field of the ith
eigenmode in the volume of the amplifying medium and the
total energy of this mode defined by Eq. (B2):

ηi = 1

8πh̄ωi

∫
VG

∂Re(ε(r)ω)
∂ω

∣∣∣∣
ω=ωi

|Ei |2d3r, (B3)

where VG is the volume of the gain medium. Again, as-
suming that |Ei |2 is approximately constant we obtain the
parameter ηi :

ηi = 1

8πh̄ωi

VG

∂Re(εω)

∂ω

∣∣∣∣
ω=ωi

|Ei |2. (B4)

Equation (B4) expresses the average amplitude of the
electric field in the gain medium via ηi :

|Ei | =
√

8πηih̄ωi

VG[∂Re(εω)/∂ω]ω=ωi

. (B5)

Now, using Eqs. (B1) and (B5) we can find |�im|2:

|�im|2 = 8πηiωi |d|2
h̄VG[∂Re(εω)/∂ω]ω=ωi

. (B6)

Equation (B6) allows one to obtain the coupling constant
between the ith resonator mode and the amplifying medium,
|�i |2 = N |�im|2:

|�i |2 = N |�im|2 = 8πηiωi |d|2nG

h̄[∂Re(εω)/∂ω]ω=ωi

, (B7)

where nG is the concentration of atoms of the amplifying
medium. The dielectric permittivity of the amplifying medium
is given by the expression [55]

εG(ω) = ε0 − 8πωσ nG|d|2
h̄
(
ω2

σ − ω2 − 2iωγσ

) , (B8)

where ωσ and γσ are the transition frequency and the rate of
the transverse relaxation of a two-level atom of the amplifying
medium, respectively. At the transition frequency, εG(ω) is

εG(ωσ ) = ε0 − i
4πnG|d|2

h̄γσ

. (B9)
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Equations (B7) and (B9) give the expression for the
interaction constant |�i |2:

|�i |2 = |ImεG(ωσ )| 2ηiγσωi

[∂Re(εω)/∂ω]ω=ωi

. (B10)

Now, using the expression for the gain coefficient
[5–7,74,75],

G = −ω

c

ImεG√
ReεG

, (B11)

we can finally obtain

|�i |2 = ηiG
2cγσ

√
ReεG

[∂Re(εω)/∂ω]ω=ωi

≈ ηiG
2cγσ√
ReεG

. (B12)

Using Eqs. (B9) and (B11) the gain G may be rewritten as

G = nG

ω

c

4π |d|2
h̄γσ

√
ReεG

= nGσG, (B13)

where σG is a cross section of an atom of the gain medium
with the electromagnetic wave with frequency ω [5–7,76].

APPENDIX C: THE DEPENDENCE OF THE RATE OF
INDUCED TRANSITIONS ON THE GAIN COEFFICIENT

The ratio of the rates of induced and spontaneous transitions
is given by Eq. (22):

�st

�sp

= 2niD̄

D̄ + 1
� 2niD̄. (C1)

Using Eqs. (15) and (18) we can estimate the right-hand
side of Eq. (22):

2niD̄ = 2ni

γdD̄0 − 1
N

∑
j αjηjG

γd + 1
N

∑
j αjηjG(2nj + 1)

� γdND̄0

G

ni∑
j αjηjnj j

� γdND̄0

G

ni

αiηini

= γdND̄0

G

1

αiηi

. (C2)

From inequalities (C1) and (C2) it follows that

�st

�sp

� γdND̄0

G

1

αiηi

= N

G

{
cγdD̄0

ηi

2π [∂Re(εω)/∂ω]ω=ωi

Re
√

εG

×
[
γ 2

σ + (ωσ − ωi)2
]

γ 2
σ

}
. (C3)

From Eq. (C3) one can see that when G → ∞, �st/�sp

approaches zero. In addition, an increase in the overlap integral
of the mode with the gain medium ηi and a decrease in the
detuning between the transition frequency of the gain medium
ωσ and the eigenmode of the resonator ωi also result in a
decrease of the ratio �st/�sp. On the other hand, this ratio is
not affected by a change in the concentration nG because an
increase in the concentration causes a simultaneous increase
in the number of active atoms N .

APPENDIX D: THE OPTIMUM VALUE OF THE
GAIN COEFFICIENT

First, we show that the maximum of the ratio �i
st /�i

sp is
reached for the optimum value of the gain coefficient GSE that
corresponds to the minimum of the denominator in Eq. (14).
This ratio can be expressed through variables φi = αiηiGD̄/γi

as [see Eqs. (14) and (22)]

�i
st

�i
sp

= 2niD̄

D̄ + 1
= 2D̄

D̄ + 1

(
1

2

αiηiG

γi

D̄ + 1

1 − αiηiGD̄/γi

)

= αiηiGD̄

γi

1

1 − αiηiGD̄/γi

= φi

1 − φi

. (D1)

The product GD̄(G) is limited due to nonlinearity of the
system. Also, GD̄(G) cannot be greater than GSED̄(GSE)
and therefore, φi = αiηiGD̄/γi < 1. Then the ratio �i

st /�i
sp

reaches its maximum when φi = αiηiGD̄/γi are maximal.
This happens for G = GSE . As both gain G and the population
inversion D̄ have the same value for each mode, φi =
αiηiGD̄/γi have maxima for the same G and D̄ in every mode.
Therefore, in each mode, the ratio of the rates of induced and
spontaneous transitions is maximal for the optimum value of
the gain coefficient. The values of these maxima for various
modes can be different.

Let us now find the value of GSE that corresponds to the
minimum of the denominator of Eq. (14), i.e., to the maximum
of φ0 = α0η0GD̄/γ0. From Eq. (15) we obtain

α0η0GD̄ = α0η0γdGD̄0 − α0η0G
1
N

∑
i αiηiG

γd + 1
N

∑
i αiηiG(2ni + 1)

= γ0φ0.

(D2)

Within the linewidth of the amplifying medium, all αi are
approximately the same. Therefore,∑

i

αiηi = α0η0K, (D3)

where K is the number of modes within the linewidth. Taking
into account that the greatest number of photons is in the mode
with the lowest threshold, we can assume∑

i

αiηini ≈ α0η0

∑
i

ni . (D4)

As follows from Eqs. (7) and (8), in the stationary state∑
i

γini = 1

2
Nγd (D̄0 − D̄). (D5)

Again, keeping in mind that the greatest number of photons
is in the mode with the lowest threshold, we obtain∑

i

ni ≈ 1

2γ0
Nγd (D̄0 − D̄). (D6)

Using Eqs. (D2)–(D4) and (D6) we arrive at

α0η0γdGD̄0 − α2
0η

2
0G

2 K

N
= γdγ0φ0 + α0η0γdG(D0 − D)φ0

+α0η0G
K

N
γ0φ0. (D7)
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Using the parameter φ0 we can rewrite α0η0γdGDφ as
γdγ0φ0

2. As a result, we obtain a quadratic equation for α0G

whose coefficients depend on the parameter φ0:

α2
0η

2
0G

2 K

N
+ α0η0G

[
K

N
γ0φ0 − γdD̄0(1 − φ0)

]
+ γdγ0φ0(1 − φ0) = 0. (D8)

The minimum of the denominator in Eq. (14) is achieved
when[

K

N
γ0φ0 − γdD̄0(1 − φ0)

]2

− 4K

N
γdγ0φ0(1 − φ0) = 0.

(D9)

Since the number of modes in the laser is much smaller
than the number of atoms in the gain medium, the term with
K2/N2 can be neglected. Then we obtain

γdD̄
2
0(1 − φ0) = 2K

N
γ0(D̄0 + 2)φ0, (D10)

and the solution of Eq. (D8),

α0GSE = γ0

η0
φ0

(
D̄0 + 4

2D̄0

)
. (D11)

From Eq. (D9), in the first approximation with respect to
the parameter K/N , we have

φ0 = γdD̄
2
0

γdD̄
2
0 + 2K

N
γ0(D̄0 + 2)

≈ 1 − 2K

N

γ0

γd

D̄0 + 2

D̄2
0

. (D12)

Equations (D11) and (D12) give the optimum value of the
amplification coefficient:

GSE = 1
2 (D̄0 + 4)Gth. (D13)

Note that in deriving Eq. (D13) we assume that the
number of atoms N remains constant when the amplification
coefficient changes.
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