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Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam

A. P. Vinogradov,1,2,3 A. V. Dorofeenko,1,2,3 A. A. Pukhov,1,2,3 and A. A. Lisyansky4,5

1Institute for Theoretical and Applied Electromagnetics of Russian Academy of Sciences, 13 Izhorskaya, Moscow 125412, Russia
2Dukhov Research Institute of Automatics, 22 Suschevskaya, Moscow 127055, Russia

3Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, Dolgoprudniy 141700, Moscow Region, Russia
4Department of Physics, Queens College of the City University of New York, Queens, New York 11367, USA

5The Graduate Center of the City University of New York, New York, New York 10016, USA

(Received 17 July 2017; revised manuscript received 15 April 2018; published 6 June 2018)

We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common
belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not
excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam
composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge
of the beam as a result of interference of reflected plane waves.
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I. INTRODUCTION

The Kretschmann configuration (KC) is one of the first
setups with which surface plasmon polariton (SPP) resonances
were observed [1–6]. This configuration along with the Otto
configuration [7] was used for measuring dielectric permittivi-
ties [8–14]. In the KC, a metal film and then the material under
investigation (analyte) are deposited on the base of a dielectric
prism. A beam of p-polarized light is transmitted through the
prism (Fig. 1). Since the dielectric permittivity of the prism εp

is greater than that of the analyte, there is a critical angle at
which total internal reflection occurs. At some angle greater
than the angle of total internal reflection, a sharp minimum is
observed in the reflection coefficient due to losses in the metal.
This phenomenon is commonly referred to as attenuated total
reflection (ATR) [2]. The tangential component of the wave
vector kx of the incident light corresponding to the ATR is
close to the wave number of the SPP that may travel along the
metal surface. Even though these wave numbers are somewhat
different, the possibility of resonant coupling of the incident
wave with an SPP is customarily postulated, and excitation of
the SPP is assumed to be the cause of the ATR [2,3].

It is well known that a plane wave propagating in a
uniform medium cannot excite an SPP that travels along the
interface between vacuum and metal. Indeed, the translational
invariance along the interface requires the conservation of
tangential components of the momentum, but the tangential
component of the wave vector of the incident wave is smaller
than that of an SPP [15]. Thus, an SPP can only be excited if the
translational invariance of the system is violated. An example
of such a violation is a local corrugation of the metal film.
Then an SPP is part of the field scattered on this corrugation
[3,4,13,16–19].

The reflection of a plane wave in the KC has a resonant
nature. Due to the resonance, the reflection coefficient r(kx)
has a pole for kx = kSPP [3]. It seems that due to this fact it is
usually presumed that in the KC, an SPP can be excited by a
plane wave [1–3,7,15,20,21]. This is often justified by the fact
that in the KC, the wave numbers of the incident wave and the

SPP coincide [3,15] (see also [2]), providing the possibility of
momentum conservation.

In the KC, the SPP is a leaky wave (see Ref. [15] and Sec. II);
the tangential and normal components of the SPP wave vector
have imaginary parts even in a lossless system. Consequently,
the amplitude of such an SPP should decrease in the direction
of propagation and increase away from the interface. The
latter feature distinguishes an SPP from a reflected plane wave
observed in the KC. Therefore, we consider that an SPP is
excited when a contribution to the scattered field, the amplitude
of which increases away from the interface, arises. Since such
an increase is not observed in the experiment, a plane wave
does not excite the SPP and the latter cannot be a cause for
ATR. Though the resonant nature of r(kx) and matching real
parts of tangential wave numbers are necessary for the SPP
excitation, these conditions are not sufficient. In Sec. III, we
discuss the relationship between the ATR dip and SPPs in
detail. We show that ATR arises not due to the resonance of
the reflection coefficient but due to its zero at kx = kSPP .

In this paper, we consider the KC for an incident narrow light
beam. We demonstrate that if the ATR condition is fulfilled,
then just beyond the geometrical edge of the beam, interference
of the reflected plane waves composing the beam results in the
formation of an SPP. We also show that evanescent waves play
no role in forming ATR.

II. LEAKY SURFACE PLASMON POLARITONS AT
DIELECTRIC–METAL–VACUUM SANDWICH

Let us consider the properties of an SPP propagating in a
layered dielectric–metal–vacuum system. For simplicity, let us
begin with a lossless system.

If the metal film is sandwiched by the vacuum, then two
types of SPPs can arise. These are SPPs with symmetric and
antisymmetric distributions, with respect to the central plane
of the film, of the magnetic field [Figs. 2(a) and 2(b)] [2,22].
In SPPs of both types, the intensities of the field on opposite
film surfaces are the same, and away from the film the field
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FIG. 1. The Kretschmann setup. Blue lines show profiles of
resonantly excited fields.

decays exponentially [2]. In a lossless system, the tangential
wave numbers of these SPPs are real and are greater than the
vacuum wavenumber k0. In this geometry, an incident plane
wave can excite neither of these SPPs.

In a dielectric–metal–vacuum system, the symmetries men-
tioned above are broken [13]. The symmetric SPP is deformed
in a way that at the metal–vacuum interface, the field intensity is
higher than at the metal–dielectric interface [Fig. 2(c)]. Below,
we refer to this SPP as to the pseudosymmetric (pS). The
antisymmetric SPP becomes the pseudoantisymmetric (pA)

SPP with the maximum field intensity at the metal–dielectric
interface [Fig. 2(d)].

In a lossless case, even if the value of the permittivity εD

of the dielectric differs significantly from unity, the pA-SPP
remains a surface wave; its field decreases exponentially away
from the film, and the tangential component of its wave vector
kx = kpA is a real number which is always greater than the
wave number kε = k0

√
εD of a plane wave in the dielectric

of the prism [Fig. 2(d)]. If losses in the metal are taken into
account, kpA becomes a complex number. The intensity of the
field of the pA-SPP decays as the wave propagates along the
film. The field is no longer evanescent, but it still decays away
from the metal surface. Moreover, it transfers the energy into
the metal film [2,3] from both sides of the film.

In contrast to the pA-SPP, the wave number kpS of the
pS-SPP becomes complex even in the lossless case. The real
part of kpS is smaller than the wave number of a plane
wave propagating through the dielectric prism, k0 < RekpS <

k0
√

εD = kε. As a result, in the prism, an exponential decay of
the SPP field changes to oscillations and the SPP becomes a
leaky wave [23–25], the amplitude of which grows away from
the interface [see inset in Fig. 2(c)]. This wave loses energy by
radiating it at an angle α = sin−1(RekSPP /k0) into the prism
[15]. The normal component of the Poynting vector of this
wave is directed outward from the vacuum toward the metal
film and further into the prism. On the interface, simultaneously
with the energy loss, the magnetic field of a leaky wave
decreases in the direction of propagation. The magnetic field
H (x0,0) at some point x0 on the interface (z = 0) is smaller

FIG. 2. Plasmonic solutions in (a, b) a symmetric (vacuum/metal/vacuum) system and (c, d) an asymmetric (vacuum/metal/dielectric)
system. The inset shows the field amplitude increase in the dielectric away from the interface.
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than the field H (x0,z0) at a distance |z0| above the interface,
H (x0,z0) > H (x0,0), i.e., the amplitude of the leaky wave
increases in the direction of the normal component of the
Poynting vector. Such a behavior occurs because H (x0,z0)
arises from the point (x0 − |z0| tan α,0). Due to damping
of the leaky wave when it propagates along the interface,
H (x0 − |z0| tan α,0) > H (x0,0). The behavior of this plasmon
is similar to the behavior of the resonant eigenmode for a one-
dimensional (1D) dielectric slab resonator, the field of which
leaks with time. These two problems are related to one another
via mapping {x,z}KC ⇒ {t,z}DSR. Since a dielectric slab is an
open resonator, it radiates. The radiated field is proportional
to exp(−iωt + ikx). Even for a lossless dielectric, due to
radiation, the amplitude of the field in the eigenmode inside
the slab diminishes over time. Therefore, the eigenfrequency
is a complex value with a negative imaginary part, and the
amplitude of the radiated field emitted at the time moment t2
is smaller than that emitted at a previous time moment t1 < t2.
At a fixed time t > t1,t2 these radiated fields reach the points
z1 = c(t − t1) and z2 = c(t − t2), respectively. Since t1 < t2,
we have that z1 > z2. As mentioned above, the field in the
point z1 is larger than that in the point z2. Thus, at a fixed
time moment, the radiated field increases as going away from
the slab. The same increase is characteristic of the leaky surface
plasmon.

The situation with a leaky plasmon is analogous to a
quantum mechanics problem of a slow particle scattering at
a shallow well [26]. Treating the situation with a shallow well
implies that though there is no real energy level, the scattering
is resonant due to an existence of the virtual level. The pole
that corresponds to this virtual level lies on a nonphysical sheet
of the Riemann surface. As a consequence, the wave function
of the virtual state grows at the infinity similar to the field of a
leaky plasmon.

For a gold film, frequency dependencies of real and imag-
inary parts of kpS are shown in Fig. 3. It is important that in
lossy films, a pS-SPP is always a leaky wave whose dispersion
curves lie above the light cone of the prism.

FIG. 3. Dispersions of real (red thick curves) and imaginary
(blue thin curves) parts of the wave number of the pS-SPP in
a vacuum/gold/dielectric system with (solid curves) and without
(dashed curves) losses. The horizontal dotted line corresponds to
the free space wavelength λ = 800 nm, which is used in further
calculations, and inclined dotted lines show the light cones of the
vacuum (curve 1: k0 = kx) and dielectric (curve 2: k0 = kx/

√
εD).

The metal (Au) thickness is dM = 45 nm, and the dispersion is taken
from Ref. [27]. The dielectric permittivity is εD = 2.22.

Thus, the main features of a pS-SPP that distinguish it from
a common plasmon and a reflected plane wave is that even
in a lossless medium, the wave number is complex, because
this plasmon is a leaky wave. Its field increases away from the
dielectric–metal interface. We use this feature as the criterion
for the pS-SPP excitation.

III. THE KRETSCHMANN EFFECT

It is commonly believed that in the KC the phenomenon of
ATR [2] is caused by an excitation of SPPs [2,3]. In this section
we show that this is not so.

Let us consider the reflection coefficient r(kx) in the KC as a
function of the complex tangential wave number of an incident
wave kx ,

r(kx) = (ζD − ζM )(ζV + ζM )exp(−ikzMd) − (ζD + ζM )(ζV − ζM )exp(ikzMd)

(ζM + ζD)(ζV + ζM )exp(−ikzMd) + (ζM − ζD)(ζV − ζM )exp(ikzMd)
, (1)

where d is the thickness of the metal layer, and kzV =√
k2

0 − k2
x , kzM =

√
εMk2

0 − k2
x , and kzD =

√
εDk2

0 − k2
x are

normal to the surface components of the wave vectors
in the vacuum, metal, and dielectric, respectively; ζV =
kzV /k0, ζM = kzM/k0εM , and ζD = kzD/k0εD are the surface
impedances in the same media.

The function r(kx) may have poles and branching points.
The poles of the reflection coefficient r(kx) arise due to zeros
of the denominator in Eq. (1):

(ζD + ζM )(ζV + ζM ) exp (−ikMd)

+ (ζM − ζD)(ζV − ζM ) exp (ikMd) = 0. (2)

Equation (2) coincides with the dispersion equations of the
pA- and pS-SPPs on the metal film [13,28]. As shown in the next

section, the pole at point kx = kpS corresponds to the pS-SPP
that is a leaky wave, while the pole at kx = kpA corresponds to
the pA-SPP. Below we focus on pS-SPP.

The reflection coefficient, being a function of the impedance
values, has branching points kx = ±k0 and kx = ±k0

√
εD due

the square roots kzV =
√

k2
0 − k2

x and kzD =
√

k2
0εD − k2

x . In
order to find a single-valued branch of r(kx), we should make
cuts on the complex plane and define impedances at some
point. Usually one makes a cut along the negative part of the
real axis of kx . Such a cut provides an increase (decrease)
of the amplitude of the plane wave in the direction of its
phase velocity when this wave travels through a dissipative
(active) medium. For r(kx), the corresponding cuts are shown
in Fig. 4(a). In this case, the pole of the function r(kx) is on

235407-3



VINOGRADOV, DOROFEENKO, PUKHOV, AND LISYANSKY PHYSICAL REVIEW B 97, 235407 (2018)

FIG. 4. Singularities of the reflection coefficient r(kx): poles that correspond to SPPs are shown by dots and cuts are shown by dashed lines.
(a) and (b) show, respectively, conventional and modified cuts for the square root.

the unphysical branch of the Riemann surface of the reflection
coefficient [see Fig. 5(a)]. The situation in which a singular
point (pole) of a function is on the unphysical Riemann surface
sheet of r(kx) is well known in quantum mechanics (resonant
scattering from a quasidiscrete level [29] and in the theory
of spontaneous emission in media with spectral peculiarities
[30]).

Even though a pole of the function r(kx) is on the unphysical
Riemann sheet, it strongly affects the behavior of the reflection
coefficient on the real axis. Below we demonstrate that the
position of this pole along with the zero of the reflection
coefficient affects ATR. For this purpose, it is convenient to
deform cuts and to redefine the analytical branch of r(kx) so
that the values of this function on the real axis remain the same,
but the poles would be on a newly formed sheet of the Riemann
surface. The new cuts for the square root function should be
made in the direction along the negative imaginary axis. The
corresponding cuts for r(kx) are shown in Fig. 4(b). In this
case, we can observe the poles [see Fig. 5(b)].

Equation (1) can now be rewritten as [31]

r(kx) = rDM + rMV exp (−2κ)

1 + rDMrMV exp (−2κ)
, (3)

where the subscripts D, M, and V indicate that the corre-
sponding quantity belongs to dielectric, metal, and vacuum,
rab = (ζa − ζb)/(ζa + ζb) is the reflection coefficient of the
incident wave on the interface between two half-spaces a and

b (a and b stand for D, M, or V), ζa =
√

k2
0εa − k2

x/(k0εa)
is a surface impedance of the ТМ-polarized wave, and κ =√

k2
x − k2

0εMdM is the complex-valued attenuation coefficient.
The transmission and reflection coefficients for the amplitude,
tab = 2ζa/(ζa + ζb) and rab, respectively, are connected via the
relation tab = 1 + rab that results from the continuation of the
fields on the interface. This allows us to rewrite Eq. (1) as

r(kx) = rDM + tDMrMV tMD exp (−2κ)

1 − rMV rMD exp (−2κ)
. (4)

All coefficients rab and tab are analytical functions of the
tangential wave number kx ; they vary slowly at the length scale
of the width of the plasmon resonance. A sharp resonance
dependence of r(kx) arises due to the pole in Eq. (4). This
pole corresponds to an SPP. It arises when the denominator in
Eq. (4) is zero,

1 − rMV rMD exp (−2κ) = 0. (5)

One of the solutions of Eq. (5), kx = kpS , corresponds to the
pS-SPP. Since even in lossless media, kpS is a complex number,
there are no real solutions of Eq. (5). However, due to the
smallness of the imaginary part of kpS and a slow dependence
of r(kx) on kx near the pole, the denominator in Eq. (5) can
be expanded into the Taylor series, [1 − rMV rMD exp(−2κ)] ≈
(kx − kpS). This allows us to reduce Eq. (5) to

r(kx) � rDM + α

kx − kpS

, (6)

where

α = − tDMrMV tMD exp (−2κ)

∂[rMV rMD exp (−2κ)]/∂kx

∣∣∣∣
kx=kpS

(7)

is the residue of the pole at kx = kSPP . This result is a
generalization of well-known Eq. (2.18) in Ref. [3] (see also
[15]). Equation (6) differs from Eq. (2.18) in Ref. [3] in that
the former is obtained for the amplitude reflection coefficient,
whereas the latter concerns the intensity reflection coefficient.
Therefore, Eq. (6) in addition to the amplitude takes into
account the phase of the reflected signal.

Equation (6) shows that the reflected wave can be consid-
ered as a result of interference of two waves. The first term of
this equation, rDM , is nonresonant while the second is resonant.
Such a response is known as the Fano resonance, which
is characterized by asymmetric line shape with a minimum
[32,33]. To emphasize this fact, it is convenient to rewrite
Eq. (6) as

r(kx) ≈ rDM

kx − kzero

kx − kSPP

, (8)

where kzero = kSPP − α/rDM is the position of the zero of the
reflection coefficient. In a lossless medium, kzero and kSPP are
mutually complex conjugated [see Fig. 6(a) and the points
labeled by “a” in Fig. 7]. Generally, this is not the case. If
the zero is on the real axis, then it leads to a maximum of ATR
(see Ref. [3]).

Let us go back to Eq. (1) to consider how losses in metal
affect the position of the zero of the reflection coefficient.
When losses are absent, due to the symmetry in the positions
of the pole and the zero with respect to the real axis, one
observes unitary values |r(kx)| = 1 at the real axis [solid line
in Fig. 6(a)]. Losses result in shifting kzero toward the real axis
(open circle labeled by “b” in Fig. 7), and kSPP shifts away from
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FIG. 5. The absolute value of the reflection coefficient |r(kx)| calculated for (a) standard and (b) modified cuts, respectively. The jump of
|r(kx)| on the cut is shown by the vertical line shading. The solid thick green line corresponds to the cross section of the |r(kx)| surface by the
plane Imkx = 0.

FIG. 6. Changes of the absolute value of the reflection coefficient |r(kx)| at different levels of loss in a metal. The metal permittivity is taken
in the form ε = ε′ + iγ ε′′. (а) A hypothetical lossless case, γ = 0 (εM = −14.3 at λ = 630 nm); (b) the case of real losses in silver, γ = 1
(εM = −14.3 + 1.18i); (c) a hypothetical system with loss twice as large as that in silver, γ = 2 (εM = −14.3 + 2.36i); (d) a hypothetical
system with an active metal, γ = −1 (εM = −14.3 − 1.18i). The solid thick green line denotes the cross section of the surface |r(kx)| with the
plane Imkx = 0.
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FIG. 7. The positions of kpS (solid red circles) and kzero (open blue
circles) for different losses. Letters correspond to the cases shown in
Fig. 6.

the real axis. As a result, the compensation due to symmetry in
the positions of the pole and the zero does not happen, and the
reflection coefficient decreases [Fig. 6(b)]. The value of kx at
which the zero crosses the real axis corresponds to the equality
of Joule and radiation losses. A further increase in losses moves
kzero into the upper half-plane (open circle labeled by “c” in
Fig. 7), resulting in smoothing of the minimum [see Fig. 6(c)].
Similar behavior of the minimum of the reflection coefficient
is observed in experiment [5].

Finally, let us consider a hypothetical case of an active metal
that amplifies the field (circles labeled by “d” in Fig. 7). One
can see that the pole-zero couple moves down in Fig. 7. In this
case, instead of the minimum, a maximum in the dependence
|r(kx)| at real axis arises (see also [14]). At the amplification
that exactly compensates for radiation losses, ImkpS becomes
zero, the leaky SPP becomes a plane wave, and the maximum
of the reflection coefficient tends to infinity. It indicates the
beginning of lasing.

To conclude, the ATR arises due to the Fano resonance when
kzero reaches the real axis. An excitation of an SPP (kpS crosses
the real axis) is possible in the hypothetical gain system. In this
case, instead of ATR, the lasing occurs.

IV. EXCITATION OF A SURFACE PLASMON POLARITON
IN THE KRETSCHMANN CONFIGURATION

As discussed in Introduction, to excite SPPs, translational
invariance of a system should be broken by inhomogeneity
of the surface or of an incident wave. Below, we consider an
excitation of an SPP by a bounded beam. When the beam angle
of incidence is near the angle corresponding to ATR, an addi-
tional field that extends far beyond the geometrical boundary
of the reflected beam arises. In the Kretschmann geometry,
this field has been observed in computer simulations [34]
and experiments [35]. This effect has been interpreted as the
excitation of an SPP. Let us consider this phenomenon in detail.

We assume that the beam is formed by a plane wave with
kx = kinc

x passing through a slit X0 − a/2 � x � X0 + a/2
that is situated in the plane z = Z0 < 0 [Fig. 8(a)]. The slit

position X0 = Z0k
inc
x /

√
k2

0εD − (kinc
x )2 is chosen so that at the

metal surface, z = 0, the center of the beam is at point x = 0.

FIG. 8. (a) The geometry of the system for observing an excitation
of an SPP at the edge of a beam. (b) Magnetic field intensity profiles
in the incident wave at the slit level, z = Z0 < 0 (the top figure), and
at the metal film, z = 0 (the bottom figure).

The distance |Z0| between the slit and the metal surface is
taken large enough (10λ) to assure that an SPP is not excited
by the near field of the slit. In the slit plane, the magnetic field
Hi(x,Z0) is equal to H0 exp[ikinc

x (x − X0)] inside and to zero
outside the slit [the upper part of Fig. 8(b)]. This field may be
presented as a sum of plane waves:

Hi(x,Z0) =
∫ ∞

−∞
hi(kx,Z0)exp(ikxx)dkx, (9)

where the spatial spectrum of the field just beyond the screen,

hi(kx,Z0) = 1

2π

∫ ∞

−∞
Hi(x,Z0)exp(−ikxx)dx

= H0

2π

∫ X0+a/2

X0−a/2
exp

[
ikinc

x (x − X0)
]
exp(−ikxx)dx,

(10)

evaluates to

hi(kx,Z0) = H0
sin

[(
kx − kinc

x

)
a/2

]
π

(
kx − kinc

x

) exp (−ikxX0). (11)

By using the dispersion relation for the plane wave in
vacuum, it is possible to write the expression for the incident
field at some plane z > Z0 = const,

Hi(x,z) =
∫ ∞

−∞
hi(kx,z)exp(ikxx)dkx, (12)

with

hi(kx,z) = hi(kx,Z0)exp
[
i

√
k2

0εD − k2
x(z − Z0)

]
. (13)

In particular, at the prism/metal interface (z = 0) we obtain

hi(kx,0) = H0
sin

[(
kx − kinc

x

)
a/2

]
π

(
kx − kinc

x

)

× exp
(−ikxX0 − i

√
k2

0εD − k2
xZ0

)
. (14)

The incident beam at the same interface,

Hi(x,0) =
∫ ∞

−∞
hi(kx,0)exp(ikxx)dkx, (15)

is evaluated numerically [the lower part of Fig. 8(b)]. As
one can see, even though at the prism–metal interface, the
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field intensity distribution |Hi(x,0)|2 is similar to the initial
distribution |Hi(x,Z0)|2, and the beam shape is markedly
blurred by diffraction. This effect is more obvious at larger
scale [see the solid curve in Fig. 12(a)].

Let us note that the distance |Z0|, which equals 10λ (λ =
2π/k0) in our calculations, is large enough for evanescent
waves (kx > k0) to decay. This is confirmed by an additional
calculation in which the amplitudes of all the evanescent

waves are manually set to zero. In this calculation, the fields
obtained are not noticeably different from those obtained with
the full calculation in which the evanescent waves are taken
into account.

By representing the total field of a plane wave, we reduce
the problem of an incidence of a bounded beam to the problem
of an incidence of a plane wave that has a well-known solution
for the magnetic field g(kx,z):

g(kx,z) =

⎧⎪⎨
⎪⎩

exp(ikzDz) + r(kx)exp(−ikzDz) z < 0,

a(kx)exp(ikzMz) + b(kx)exp(−ikzMz), 0 < z < d,

t(kx)exp[ikzV (z − d)], z > d.

(16)

where the complex amplitudes a, b, t , and r can be found by matching solutions on the boundaries [31,36,37]. In particular, the
amplitude of the reflected wave is given by Eq. (1). The total field of the beam can be found from Eqs. (14) and (16) by using the
following relation:

H (x,z) =
∫ ∞

−∞
hi(kx,0)g(kx,z)exp(ikxx)dkx. (17)

In particular, the reflected field Hr is

Hr (x,0) =
∫ ∞

−∞
hi(kx,0)r(kx)exp(ikxx)dkx. (18)

We consider a scattered part of the magnetic field, which is defined as the total field without the incident field:

gS(kx,z) =

⎧⎪⎨
⎪⎩

r(kx)exp(−ikzDz), z < 0,

a(kx)exp(ikzMz) + b(kx)exp(−ikzMz), 0 < z < d

t(kx)exp[ikzV (z − d)], z > d,

, (19)

and

HS(x,z) =
∫ ∞

−∞
hi(kx,0)gS(kx,z)exp(ikxx)dkx. (20)

The absolute value of the intensity of the scattered magnetic
fieldHS(x,z) on thexz-plane calculated with the use of Eq. (20)
is shown in Fig. 9. Recall that the angle of incidence of the
beam is chosen in the way that it would provide the minimum
in the reflection coefficient. In this case, the reflected field is
very weak inside the geometric optics boundaries of the beam
(see the area between the dashed lines in Fig. 9), except for the
regions near the geometrical boundaries of the beam.

Inside the geometric boundaries of the beam, |x| < a/2, due
to symmetric properties of the integrand, integral (20) is very
small. This becomes evident if we consider the point x = 0.
Note that the spatial spectrum of the field hi(kx,0) is a sym-
metric function with respect to kx = kinc

x (see Fig. 10), while
the reflection coefficient is nearly antisymmetric (Fig. 11).
Therefore, at the point x = 0, the total field is very small.
Since the integrand includes the factor exp(ikxx), this con-
dition changes and the field slightly increases as we move
toward the boundaries of the beam (see the dashed line in
Fig. 10).

Outside the geometric boundaries of the beam (|x| > a/2),
the reflected field emerges due to interference in the plane

waves.1 Our numerical calculations show [see Fig. 9(b)] that
in this region, the field increases with the distance from the
metal surface. This behavior is a feature of a leaky wave, such
as a pS-SPP. To prove that this field coincides with the field of
the pS-SPP, we should consider the integrand of Eq. (18) on
the complex plane of kx . This integrand tends to zero as Im kx

tends to infinity. Thus, integral (18) reduces to the residue at
the point kx = kpS ,

Hr (x,0) =
∫ ∞

−∞
hi(kx,0)r(kx)exp(ikxx)dkx

≈ 2πihi(kpS,0)Res[r(kpS)]exp(ikpSx). (21)

1Indeed, if |Z0| � λ (in our calculations, we use |Z0| = 10λ), the
evanescent waves in Hi(x,0) nearly vanish at the metal surface. Our
calculations show that in this case the value of the integral in Eq. (18)
is practically independent of the upper limit k(up)

x for k(up)
x > k0(εD)1/2.

In particular, even if traces of the evanescent waves composing the
beam are removed, with the computer accuracy, the reflected field
would not change.
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FIG. 9. The distribution of the intensity of the scattered part of
the magnetic field of the light beam (λ = 0.8 μm) in the Kretschmann
effect: (a) a general view and (b) a magnified view of the dotted
rectangle in (a). The regions z < 0, 0 < z < 0.045 μm, and z >

0.045 μm are filled by the dielectric, metal, and vacuum, respectively.
The dashed lines show the geometrical boundaries of the beam.

The field described by Eq. (21) coincides with the field of
a leaky pS-plasmon.

In obtaining Eq. (21) we take into account contributions
from residues only. To evaluate the accuracy of this approach,
we have calculated integrals (15), (18) numerically. As we can
see from Fig. 12, the incident field (15) yields a rather sharp
beam edge (the solid line in Fig. 12) near the geometrical beam
boundary x = a/2. As one can see from Fig. 12(a), the results
given by Eqs. (18) and (21) (shown by dashed and dotted lines,
respectively) differ slightly for the reflected wave.

The interference of the plane waves (18) results in the field
of a plasmon, Eq. (21), if and only if the pole of the reflection

FIG. 10. The spatial spectrum of the wave at the dielectric–
metal interface in terms of the functions h0(kx) (the solid red line)
and ϕ(kx) (the dashed blue line). These functions are introduced
as h0(kx) = H0 sin[(kx − kinc

x )a/2]/[π (kx − kinc
x )] and ϕ(kx,0) =

−kxX0 − √
k2

0εD − k2
xZ0, so that hi(kx,0) = h0(kx)exp[iϕ(kx)] [see

Eq. (14)].

FIG. 11. The reflection coefficient r(kx), Eq. (1). Vertical lines
show the values of the wave numbers kx = kinc

x , kx = kinc
x − π/a, and

kx = kinc
x + π/a. The magnitude and the argument of the reflection

coefficient are shown by the solid red line and the dashed blue line,
respectively.

coefficient is inside the light cone. In this case, integral (18) is
mainly determined by the residue of this pole. At the same
time, the SPP becomes a leaky wave. We emphasize that
this situation is general: if the field of the reflected beam is
determined by a pole, a leaky wave is formed at the edge of
this beam.

FIG. 12. The distribution of the magnetic field intensity (normal-
ized by that in the slit) at a dielectric–metal interface, z = 0, upon
incidence of a wave transmitted through a slit with the width of
a = 200λ situated at the distance of 10λ from the metal film: (a) actual
losses and (b) losses decreased by a factor of 10. The wavelength in
the free space is λ = 0.8 μm. Fields of the reflected beam, Eq. (18),
and an SPP, Eq. (21), are shown by blue dashed and green dotted lines,
respectively. The vertical line indicates the geometrical boundary of
the beam, x = a/2.
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V. CONCLUSIONS

We have shown that in the Kretschmann configuration,
an SPP can only be excited if the translational invariance
of the system is broken. This can be due to either surface
inhomogeneity or the finite width of the light beam. In the latter
case, interference of the reflected waves composing the beam
results in an additional field outside the geometrical edge of the
reflected beam. We demonstrate that if the angle of incidence
of the beam is close to the Kretschmann angle, this additional
field and the field of the SPP coincide.

Each of the plane waves composing the beam does not
excite an SPP, but altogether the sum (interference) of the
reflected waves results in an SPP running out of the beam.
It is essential that there is an edge that violates translational
invariance, resulting in a possibility of an SPP excitation.

For a leaky wave, the field propagates at an acute angle with
respect to the direction of the SPP propagation. In this wave, the
field increases, above the point of observation, due to radiation
by surface currents of segments located before the observation
point. In these segments, the surface current, which decays with

the propagation of the SPP along the surface, is much greater
than the current at the point of observation. Since the SPP
originates at the beam edge, the increase in the field amplitude
is limited by the SPP amplitude at this point. Therefore, the field
vanishes at large distances from the metal surface. Though the
plasmon, as an eigensolution, has an infinite value, the field
formed at the geometrical boundary of the beam coincides
with the eigensolution in a bounded volume, and the problem
of energy divergence does not arise.

Our computer simulation shows that the formation of a pS-
SPP on the beam edge occurs even in lossless media. In this
case, the minimum in the reflection coefficient does not arise.
Thus, no energy is transferred to the excitation of the pS-SPP
that emerges from the interference of reflected waves.
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