PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997

Wave localization in generalized Thue-Morse superlattices with disorder
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In order to study an influence of correlations on the localization properties of classical waves in random
superlattices we introduce a generalized random Thue-Morse model as a four-state Markov process with two
parameters that determine probabilities of different configurations. It is shown that correlations can bring about
a considerable change in the transmission properties of the structures and in the localization characteristics of
states at different frequencig$1063-651X97)09810-3

PACS numbeps): 42.25.Bs, 03.40.Kf, 41.20.Jb

I. INTRODUCTION Morse (TM) sequences were considered. The Hendricks-

Teller model is a version of a dichotomous process, which is

The effects of correlation on localization properties of known to result in a stochastic structure with an exponential
electrons and classical waves in one-dimensi¢hB) disor-  correlation function. The main feature of Fibonacci and TM

dered systems recently have attracted a great deal of attepuperlattices compared to the HT model is the presence of
tion. For the canonical Anderson mod#] with uncorrelated ~ short-range order. It was found in R¢8] that the frequency
diagonal disorder, it is a well-established fact that almost aldependence of the transmission coefficient is quantitatively
states in 1D systems are localized, ensuring the absence @ifferent for the first two models and the last one. One can
transport through such systems. Correlation between, for exd@ssume that this difference is due to the difference in the
ample, random values of energy at different sites was proveghort-range structure of the systems.
to change this situation dramatically. This was shown in Ref. In the present paper we proceed with a detailed study of
[2], where the so-called random dimer model was intro-the effects of the short-range correlations on the localization
duced. In this model, the same value of energy was randomlproperties of 1D random systems. For the sake of concrete-
assigned to pairs of consecutive sites, which introducedess, we deal with scalar wave propagation through a ran-
“rigid” correlations between energies at consecutive sites. Itdom superlattice. Our results, however, can be applied to
was shown that in such a modgN, whereN is the number dimer models as well. We consider a random superlattice
of sites, states remain delocalized. These delocalized statgégnstructed from two layera andB with different charac-
appear in the vicinity of certain resonant values of energyteristics(dielectric constants, for instance, in the case of elec-
The random dimer model is in some aspects analogous téomagnetic wave propagatipstacked at random according
classical wave propaga‘[ion through a random Supeﬂattic@ the rules described in the first section of the paper. These
constructed from different layers with fixed thicknessrules introduce a generalized Markov Thue-Morse model.
stacked at random. It was shown in Rf3-5] that in the ~ This model can be reduced to the canonical random TM
superlattice with two randomly positioned layers there existnodel considered in Ref9] by selecting proper probabili-
two resonance frequencies at which the transmissivity of théies. Our model can also be reduced to the HT model with
system becomes equal to one. In both random dimer an@Xponential correlations, so we will be able to investigate an
random superlattice models, the dimers or layers themselvdBterplay between “soft” exponential correlations and a
were assumed to be distributed randomly without correlamore “rigid” short-range order introduced by Thue-Morse-
tion. It is interesting, however, to study how some additionallike rules.
correlations between different blocks of these models affect
the localization properties. For the_ dimer model this question |, 11\ MODEL AND ITS STATISTICAL PROPERTIES
was addressed in Refi§—8]. The first of these papers dealt
with the effects of thermally induced correlations on the lo- We consider the propagation of classical waves through
calization length of a random dimer harmonic chain. In Ref.one-dimensional random media. This model corresponds to
[7] a dependence of the localization length upon the correlapropagation of elastic or electromagnetic waves through a
tion radius of a Markov sequence of the product of randomayered medium that is random in the direction of propaga-
matrices was studied and in Rg®B] fluctuations of the tion of waves and homogeneous in the transversal direction.
Lyapunov exponent in the system of finite size were inves+or the case of normal incidence, the vector nature of waves
tigated. can be neglected since no conversion between different po-
The transmission coefficient and localization length oflarizations occurs and one can consider the scalar wave equa-
acoustic waves in random correlated superlattices were cotion
sidered in Ref[9]. Correlations in that paper were intro-
duced by constructing the superlattice according to three dif- 42E
ferent Markov processes. The Hendricks-TelldT) model, — +k2e(x)=0, (1)
the randomized Markov versions of Fibonacci, and Thue- 2
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whereky,= w/c is the wave vector of the wave with the fre- 10
guencyw propagating with speed in a homogeneous me-
dium surrounding a disordered material. The parame(tey

describes a superlattice composed of two different layers o4
with the same thicknessd, so thate(x) takes two different r
valuese; and e, for each of the layers. These layers are %[~
stacked together at random according to the following rules. EO i

If a layer is the first one in a sequence of similar layers, then L

the probability for the second like layer to appeapidf two 00 J \0 _ L
like layers already appear in a sequence, the probability for i \\/ . _

08

3@

the third consecutive like layer to occur is equabtoThese 2
rules introduce a four-state Markov process with the condi- ,

tional probabilitiesP(AB|B)=P(BA|A)=p and P(AA|A) @
=P(BB|B)=g. The conventional TM Markov superlattice 10
considered 9] corresponds t@=1/2,q=0. This choice g or
of parameterp andq “forbids” the occurrence of blocks of 08— -

S(q)

the same layers with a length of more than 2. Another inter- "
esting realization of this model, which in a sense is opposite ¢
to the TM model, arises if one takps= 1 andg=1/2. In this _
case blocks with the length less than 2 are forbidden. One & *¢
should not confuse, however, this case with a simple dimer- i
ization of layers. In the latter case only blocks with even
numbers of like layers can appear, which is obviously , | . | | .
equivalent to doubling of layers’ thicknesses. In the model | Tw 80 120 10
proposed here blocks with odd number of like layers and ,
blocks with even numbers of layers can occur. perq the (b)
model reproduces the properties of the so-called dichoto-
mous procesgtwo-state Markov procegswith p being the
transition probability from one state to another. This is
proven to result in a exponential correlation function with the
correlation lengtH ¢x,= (—In|2p—1J)~*. Hence we can con-
clude that the proposed model exhibits two kinds of correla- <
tions. First, we have short-range correlations determined by * o
the specific short-range order presumed in the model with
fixed correlation lengthg,=2d and with the degree of cor-
relation being proportional to the differen¢p—q|. For q
#1/2 we have exponentially decreasing correlations of the
HT kind. Figures 1a)—1(c) present the results of numerical
calculations of the correlation functionK(r,—r,)
=(e(r,)e(r,))—((€)?), where angular brackets denote av-
eraging over dnfferent real.lzatlons of the ra”don? fupctlon erent types of random superlattices. The insets represent the Fou-
e(r). For nymerlcal averaging we use '10 000 reallzatlon§ Ofier transforms of the functionk(r). (a) p=1, q=1/2; (b) p=1,

a superlattice constructed in accord with the rules described_ g: (¢) p=q=0.8.

above. Calculations were carried out for superlattices of dif-

ferent lengths and with different choices of the starting point. ] .

We found that correlation functions do not depend upon thénd cause its smoother decrease for lagéFig. 1(b)]. At

size of the system or upon the starting point. The insets ifl< 1/2 these correlations are actually “anticorrelations”
these figures present the Fourier transfotg) of the cor-  since they favor the appearance of different blocks at adja-
responding correlation functions. These results demonstragent positions. Two extreme cases wip=1, q=0 and

that the system indeed has both short-range and long-range=0, g=1 correspond to fully ordered periodic structures
correlations(We use the term “long-range correlations” to with periods 21 andd, respectively. The casg=1 results in
refer to exponentialcorrelations, which can have a correla- homogeneous structures consisting of one type of block only.
tion radius larger than the layer’s thickness. Short-range cot can be either blocl& or B, whichever block occurs first.
relations at the scale of several thicknesses of a layer cause Localization properties of a wave propagating through a
oscillations of the correlation functions and correspondingandom superlattice are determined by scattering from inter-
maxima on their Fourier transforms. In the system withfaces between blocks of the same layers. Therefore, an im-
short-range correlations only the functi®{q) takes zero portant statistical characteristic of the system relevant to
value atq=0 [Fig. 1(a)]. These correlations disappear whenwave propagation is the distribution of block lengtén),
|[p—g| —0. Long-range correlations exist for#1/2 only ~ wheren is the number of layers of the same kind constituting
and are responisble for the exponential tail of the correlatiora block andP is the probability of finding a block of length
functions. They reduce the maximum of the functiggq) n. For our model, this function can be shown to be
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FIG. 2. Average transmission rate for different types of random superlattices. Circles in this figure and in all figures that follow present
the results of computer simulations and the solid line shows the theoretical rgsuls=q=0.5 (model without correlations (b)
p=qg=0.8(HT mode); (c) p=1, g=0.5(short-range correlations onlyd) Markov TM model,p=0.5, q=0 (circles, and generalized TM
model,p=1, q=0.5 (squarey the number of layers is equal to 6&) p=1, q=0.8 (short-range and exponential correlations are present

P(1)=1-p, )

P(n)=p(1—q)q" 2 for n=2.
In the extreme casp=1, q=1/2, Eq. (2) takes the form

P(1)=0, P(n)=(1/2)"" %, n>1, which is quite similar to
the result for an uncorrelated superlattleén) = (1/2)". We

show, however, that a seemingly small discrepancy between
these two distributions results in a considerable qualitative

where the total length of the system is assumed to be infinite.
This expression diverges gt— 1, which merely reflects the
fact that atq=1 the entire superlattice is composed of the
same blocks, so the average length of this block is equal to
the total length of the system assumed to be infinite.

Ill. AVERAGE TRANSMISSION RATE
AND LYAPUNOV EXPONENT

In order to simulate wave propagation through the system,

difference between localization properties of waves propawe make use of the transfer-matrix method. A transfer-

gating in corresponding media. The average lengths ahd
B blocks(D 4 ) are equal to each other,

+p—q

1
(Da)=(Dg)=d 1-q ©)

matrix connects an amplitudg,, and its first derivative
E;=dE/dx of the field innth slab with the corresponding
values in the (+ 1)th slab:

Un+1= Thlp, (4)
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FIG. 3. Lyapunov exponents for models presented in Figm—2(d), respectively.

whereu,, is a vector with components, andE; and T, is 1+r
the transfer-matrix determined as Up= —irk,
cogk,d) isir‘(k d) corresponds to incident and reflected waves. The transmis-
n= Kn Ay (5)  sion rate is defined according ®=|t|2. The matrixTy is
—k,sin(k,d)  cogk,d) the product of allT matrices corresponding to each layer:
. . N
wherek,=kg\/e, is a wave number in thath layer. The # =TI T
transmission coefficient is determined by the equation NTAE T
un=TnUo, The Lyapunov exponeny is determined according to
where y=lim InTy (6)
N—ox
UN=( t ) and is known to be a self-averaging quantity in the limit of
itkg an infinite system. For a system of a finite size this is a

random variable. To characterize the statistical properties of
describes a wave transmitted through the superlattice and the Lyapunov exponent one can use its statistical momenta
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such as a mean value and mean-root-square fluctugédns nesses of corresponding blocks given by Ef). It is
Another approach exploited in RdB] uses the generalized straightforward to show that for this distribution
Lyapunov exponent. )

Our analytical calculations utilize the approach developed e = exp(— 2idk»‘l_ p+(p—g)exp —2idk) ©)
in Ref.[5]. Nishiguchi, Tamura, and Nori established a use- J )7 1—qgexp(—2idkj) '
ful relationship between the backscattering rate of waves

/(L,w) and the structure factor of a superlatticéw): where j=A,B. Frequencies for which &;=2mn,
n=0,1,2 ..., correspond to the resonant transmission with
2 T=1 in a system of any size. These frequencies are present
/(L,w)= Is(L,w). (7) in a system with any type of statistical distribution of layers;
(Da)+(Dg) therefore, we will call them fundamental resonances. The

short-range correlations, which occur wher#q, bring
about new characteristic frequencies associated with the term
exp(—4idk;). We will see later that these frequencies actually
manifest themselves as some additional maxima on fre-
' ®) quency dependences of the localization length and the trans-

missivity. The effect of this term is the most prominent for

p=1. The expression fars(w) in the general case is rather
where g ,=(exp(—2idkan,)), eg=(exp(-2idkgng)) and av- cumbersome, so we only show it for the special casel,
eraging is carried out over the distributidh(n) of thick- q=1/2:

The structure factor in an infinite system is given by the
expression

Is(w):Re[(l—sAxl—sB)

1_8ASB
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|- 4(1—-cosX,d)(1—cosxkgd)(5+2cosXkd+2coskgd)
® |4— 2exp — 21kad) — 2exp — 21kgd) + ex — 21(ka+ kg)d]—exd —41(ka+kg)d]|?

(10

The backscattering lengti(w) was shown in Refl5]to  these inhomogeneities become more important and wash out

determine the Lyapunov coefficiem{ w): some features caused by short-range correlations.
Figures 3a)—3(d) present the frequency dependence of
1 the Lyapunov coefficient for different situations shown in
Y= 2/ ()" (1) Fig. 2. One can see that a strong increase of the average

transmission reflects the corrisponding increase of the local-
With the localization length found one can calculate the av4ization lengthy 1. It was shown in Ref[5] that there exists
erage transmission rate, fluctuations of the transmission, arl universal critical value of the average transmission
other relevant characteristid#,5]. In Figs. 2 and 3 we (T),=0.26, which separates localized states from expanded
present results of numerical and analytical calculations fostates in systems with a finite length. For states with
the average transmission coefficient and the Lyapunov expdT)<(T) the localization length is less than the length of
nent for different kinds of superlattices. For simulations wethe system and the corresponding states are localized. In the
used superlattices with 300 layers and the ratio between lay@everse situation states are extended. One can see from the
parameterg,/eg=1.2. We averaged over 500 different ran- results presented that short-range correlations strongly influ-
domly chosen realizations of the system. Figuré® 2nd ence localization properties of states in finite disordered sys-
2(b) show the average transmission for uncorrelated and HTems. Correlations of the TM type do not support delocaliza-
superlattices, respectively. They reproduce results of Refgion, while the structure withp=1, gq=1/2 allows
[4,5,9. Figure Zc) presents the frequency dependence of thedelocalized states at frequencies inside forbidden bands of
average transmission for our model with the rigid short-the structure with no correlations. These new localized states
range correlatiorpp=1 and with no exponential correlation are different, of course, from states at fundamental resonance
g=1/2. One can see that the average transmission readirequencies because they do not survive in infinite systems.
sharply on the short-range order: New maxima appear beAt the same time these states contribute considerably to
tween fundamental resonance frequencies. The TM Markotransport properties of finite yet macroscopic systems.
superlattice also results in some structure in the frequency
dependence of the average transmission [f@teHowever, IV. ELUCTUATION PROPERTIES OF THE

the magnitude of the transmission at these new maxima for TRANSMISSION RATE AND LYAPUNOV EXPONENT
TM case is negligible for the lattice compounded of 300

layers. Nishiguchi, Tamura, and N¢@] used a system with In this section we consider the effect of correlations on
only 64 layers in their calculations. Therefore, in order tofluctuation properties of the transmission rate and the
compare effects of different kinds of short-range order welLyapunov exponent. Scaling properties of the distribution of
show in Fig. 2d) results of calculations of the average trans-the transmission rate were studied in R&f. These proper-
mission coefficient for the TM superlattice and our modelties are known to be universal in a sense that their depen-
with p=1, q=1/2 for the system with 64 layers. This drastic dence upon the scaling parameter yL, whereL is the
decrease in transmission rate for the TM model is obviouslyength of the system, remains the same for any kind of struc-
due to the sharp increase of scattering interfaces in it comfure of a superlattice. The distribution function of the trans-
pared to our situation. mission rateW(z,t), wherez=1/T, is determined ag10]

Figure Ze) presents the average transmission for the case
when both short-range and exponential correlations are 2 (o X )
present p=1, q=0.8). Such correlations favor like blocks ~ W(z,t)= exd — (t/4+x4/t) Jdx.
stacked together; therefore, we observe an overall increase of \/F Xo/costtx—z
the average transmission in accord with results for the HT
model[Fig. 2(b)]. At the same time these correlations affect For well-localized states witke>1 this distribution reduces
the shape of the dependence differently for different valueto the normal distribution for [fi”* with a mean value equal
of frequency. For frequencies below the first fundamentato the Lyapunov exponent and a standard deviation equal to
resonances, the general shape of the maximum is n&\t [10]. The transition between extended and localized
changed, while the split maxima between the first and thestates was investigated in R€5]. Nishiguchi, Tamura, and
second resonance is replaced by a smooth single maximuriori [5] suggested that=2 is the boundary between the
This difference reflects the fact that a correlation radius ofextended and localized regimes since at this point the aver-
exponential correlations becomes an additional length scalage localization length becomes equal to the size of the su-
in the system. Because of this, the behavior of the transmigerlattice. It can be shown, however, that the mean-square
sion as well as other characteristics should be different fofluctuation of the localization length at this point is also
wavelengths greater and smaller than the correlation radiugqual to the size of the system. Therefore, the fluctuations of
For larger wavelengths, the inhomogeneities associated witlocalization length wash out a distinctive boundary between
the exponential correlations tend to be averaged out and dibese two regimes a&t= 2. At the same time, one can notice
not affect the system considerably. For shorter wavelengthshat relative fluctuations of the transmission coefficient show




56 WAVE LOCALIZATION IN GENERALIZED THUE-MORSE . .. 4787

30

25

20

Ill[l\lllllllllllrll\ll

E 15
<
10
5
0
0 2 4 6 8 10
(a) t
15.0
o o
[+]
10,0 — °
o
o ° )
b | o o © ° o
9 ’ o
o
50 — & © °©
o OO
o]
_ o ®°
OO
0% °
° <]
0.0 ° ! | ! | ! | ! | !
0 2 4 6 8 10
(b) t

FIG. 4. Relative fluctuations of the transmission rate versus the scaling paran@iteies present the results of computing and the solid
line shows the theoretical results. The numerical data were obtain from averagino2600 realizations an¢b) 200 realizations.

a sharp increase when the average transmission becomes apnclude, therefore, that a sharp change in the behavior of
proximately half of its value at=2 [Fig. 4b) in Refs.[5]]. relative fluctuations of transmissiontat5 can be attributed
Based upon this observation, we find that it is interesting tdo the transition between extended and localized regimes in a
consider the scaling behavior of this parameter. Its deperfinite sample.

dence upon the scaling parametesbtained by simulations The universal relations described above do not imply,
along with the results of the corresponding theoretical calcuhowever, that localization properties of individual states at
lations is shown in Fig. @). We would like to point out a different frequencies are also universal. Below we present
sharp increase in relative fluctuations of the transmission aesults of our study of fluctuation properties of localization
t~5-6. It can be seen as an increase in the slope of thiengths at some characteristics frequencies of the system. We
averaged curve, but also as a drastic increase of scattering afe primarily interested in a dependence of these properties
points in the numerical experiment. Actually, in order to ob-upon the correlation characteristics of the system. In order to
tain a more or less smooth line in the region5 we had to  study this problem, we first fix the probability=1/2 and
increase the number of realizations for averaging from 20@onsider the dependence of the Lyapunov parameigson

for the regiont<<5 to 2000 fort>5. Figure 4b) presents the the probabilityp. This choice of parameters allows one to
same dependence with a smaller number of averaging equsiudy the influence of the short-range structure in which ex-
to 200. Att>2 the fluctuations of localization length be- ponential correlations are absent. The vapueO leads to
come smaller than the system’s size and localized states bperiodic ordering of the layers with the period equal @b, 2
gin to contribute more distinctively to such characteristics agp=1/2 describes the system without correlations, padl

the relative fluctuations of the transmission rate. One cafeads to the structure opposite to the TM model, as was ex-
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FIG. 5. Dependence of the Lyapunov coefficient versus the probability paraméterq=0.5. Circles and squares show results for
k=1.45%, and fork=3.9%,, respectively; solid lines present corresponding theoretical data.

plained in Sec. Ill. As reference frequencies we considenote, however, that an increase of the degree of a disorder
k=1.4%, and k=3.%,, where ky corresponds to the associated with the increase pfdoes not enhance localiza-
vacuum. In the system without correlations, these frequention of the states. One can see from Fig&) &nd &b) that
cies are positioned in the middle of forbidden bands, becomthe state at=1.4%, becomes “less” localized with in-
ing resonance frequenciesat 1 (see Fig. 2 creasingp. The reason for this behavior is that an increase of
Figure 5 present results of computer simulations of they destroys the periodicity of the structure washing out its
Lyapunov exponent versus the probability paramptatong  forbidden gaps and weakening opportunities for localization.
with theoretical curves based upon Eg). It is seen that the  States at other frequencies show almost delocalized behavior
Lyapunov exponent at these frequencies demonstratgsr smallp since they belong to a passband of the periodic
qualitatively different behavior. The Lyapunov exponent structure and become more localized when traces of period-
atk=1.4%, shows a monotonic decrease with an increase ofcity of the structure gradually disappear psapproaches
the parametep, while atk=3.9, it exhibits a nonmono- 1/2. Forp>1/2, both frequencies behave in approximately
tonic behavior with the minimum value at approximately the same way since a memory about their different origin is
p=1/2. The difference in behavior between these frequeniost in this situation.
cies can be understood if one recalls thatO corresponds It is interesting to note that results qualitatively similar to
to the periodic structure with a period oti2The frequency those presented in Fig. 5 were found in R&f, though that
k=23.%, falls into a transmission band of this periodic struc- paper dealt with a quite different model. Crisanti, Paladin,
ture; therefore, it demonstrates a small Lyapunov exponerdnd Vulpiani[7] studied the effect of “long-range” expo-
when p approaches 0. At the same time the frequencyhential correlations on localization properties of the nearest-
k=1.4%, falls in a forbidden band for the periodic structure neighbor tight-binding model with the two-state Markov-
arising atp=0 and hence their Lyapunov coefficient sharply type distribution of site energiethe HT model. It was
increases ap—0. Whenp approaches 1 both frequencies found that at the states far enough from the band edge and
belong to resonance regions associated with the resonanband center of the pure system the Lyapunov exponent ex-
transmission from blocks with doubled thickness of indi- hibits behavior similar to the curve presented by squares in
vidual layers. Though the structure wifi=1 does not lead Fig. 5 and states at the center of the band behave similarly to
to exact doubling of all layers, it does favor such a situationthe second line in this figure. This similarity can be under-
causing a decrease of scattering boundaries and consequerdtpod if one considers these two models in their extreme
maxima of transmission at these frequencies. Therefore, theealizations. We have already discussed that the state at
Lyapunov exponent at all frequencies considered decreasé&s-1.45, in our model falls into the forbidden band of the
whenp approaches 1. periodic structure arising gi=0. The same is valid for the
More detailed information about states corresponding tastates in the center of the band in RE#] in the case of
the selected frequencies can be obtained from Figs.e8d  extreme anticorrelation between adjacent values of the site
6(b), which present relative fluctuations of the Lyapunov ex-energies. This similar origin causes similar behavior when
ponent,Ay/y and relative fluctuations of the transmission the structures change. The second type of behavior is asso-
rate AT/T versus the probability parametpr SmallAy/y  ciated with states that belong to passbands of the respective
and big AT/T for k=1.45%, at small values ofp reflect models; therefore, they also demonstrate similar properties.
strong localization of the corresponding states. This is exThe third type of behavior of the Lyapunov exponent found
actly what one would expect for the states arising in a fordin Ref. [7], in which the Lyapunov exponent monotonically
bidden gap of a nearly periodic structure. It is interesting tancreases along with the Markov transition probability, does
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FIG. 6. Relative fluctuations ofa) the transmission rate ar(®) the Lyapunov coefficientb) versus the probability parametpr All
notations are the same as in Fig. 5.

not exist in our model with the paramefgiset equal to 1/2. We found that correlations between the constituent layers
The reason for this is that the second extreme structure aftrongly affect localization properties of superlattices and
Ref.[7] corresponds to an almost homogeneous structure, @an lead to a great variety of transmission patterns. This
situation, that cannot be realized in our model wath 1/2.  property can allow one to create superlattices with controlled
rates of transmission in different frequency regions.

We pointed out that relative fluctuations of the transmis-
sion rate increase sharply for a value of the scaling parameter

In this paper we carried out a detailed analysis of theof t~5. This point can be considered as a more exact thresh-
effects of correlations on localization properties of classicabld between localized and extended states in finite systems
waves in random superlattices. The correlations between difnstead of the =2 suggested in Ref5].
ferent layers of the superlattice were introduced within the We also considered the dependence of localization prop-
framework of the generalized random Thue-Morse modelerties of our model upon the type of short-range structure
The statistical properties of the model are controlled by twoassociated in the model with the probability parameder
parameterp andq. By changing the values of these param- Since knowing the value of the Lyapunov exponent itself is
eters we were able to consider different kinds of randonmot enough to determine whether the state considered is lo-
structures including the classical random Thue-Morse modetalized or extended, we also considered relative fluctuations
and the Hendricks-Teller model introduced in Rf] and  of this parameter along with relative fluctuations of the trans-
structures with weak random deviations from periodicity. mission rate. These quantities are size independent and there-

V. CONCLUSION
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fore are convenient for discussing localization properties. Weion properties of states in 1D systems depend strongly upon
found that there exist two kinds of states exhibiting differentproperties of deterministic systems, which are opposite ex-
behavior wherp changes from 0 to 1. The behavior of the tremes of the random systems considered, and upon the po-
states is mainly determined by their position in the spectrungition of the states in the spectra of these deterministic sys-

of the deterministic periodic structure arising@t0. The  tems and the localization properties are less sensitive to
states from passbands of this structure show a decrease @étails of the structure of a random system itself.

their localization length with an increase pf while states
from stop bands depend up@nin honmonotonic way. For
small values ofp, the localization length increases whpn
increases and reaches its maximum value der1/2; for

p>1/2 its dependence upop is similar to that of other We wish to thank A. Z. Genack for useful comments on
states of the system. Comparing these results with those othe manuscript. We also benefited from discussions with A.
tained in Ref[7], where the tight-binding model with corre- A. Maradudin and A. R. McGurn. This work was supported
lations of the Hendricks-Teller type were considered, showdy the NSF under Grant No. DMR-9311605, by a CUNY

a surprising similarity between them. The general conclusiorcollaborative grant, and by NATO Science Program and Co-
that one can draw from this comparison is that the localizaoperation Partner Linkage Grant No. HTECH LG 960919.
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