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Wave localization in generalized Thue-Morse superlattices with disorder

Lev I. Deych, D. Zaslavsky, and A. A. Lisyansky
Department of Physics, Queens College of the City University of New York, Flushing, New York 11367

~Received 12 June 1997!

In order to study an influence of correlations on the localization properties of classical waves in random
superlattices we introduce a generalized random Thue-Morse model as a four-state Markov process with two
parameters that determine probabilities of different configurations. It is shown that correlations can bring about
a considerable change in the transmission properties of the structures and in the localization characteristics of
states at different frequencies.@S1063-651X~97!09810-3#

PACS number~s!: 42.25.Bs, 03.40.Kf, 41.20.Jb
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I. INTRODUCTION

The effects of correlation on localization properties
electrons and classical waves in one-dimensional~1D! disor-
dered systems recently have attracted a great deal of a
tion. For the canonical Anderson model@1# with uncorrelated
diagonal disorder, it is a well-established fact that almost
states in 1D systems are localized, ensuring the absenc
transport through such systems. Correlation between, for
ample, random values of energy at different sites was pro
to change this situation dramatically. This was shown in R
@2#, where the so-called random dimer model was int
duced. In this model, the same value of energy was rando
assigned to pairs of consecutive sites, which introdu
‘‘rigid’’ correlations between energies at consecutive sites
was shown that in such a modelAN, whereN is the number
of sites, states remain delocalized. These delocalized s
appear in the vicinity of certain resonant values of ener
The random dimer model is in some aspects analogou
classical wave propagation through a random superla
constructed from different layers with fixed thickne
stacked at random. It was shown in Refs.@3–5# that in the
superlattice with two randomly positioned layers there ex
two resonance frequencies at which the transmissivity of
system becomes equal to one. In both random dimer
random superlattice models, the dimers or layers themse
were assumed to be distributed randomly without corre
tion. It is interesting, however, to study how some additio
correlations between different blocks of these models af
the localization properties. For the dimer model this quest
was addressed in Refs.@6–8#. The first of these papers dea
with the effects of thermally induced correlations on the
calization length of a random dimer harmonic chain. In R
@7# a dependence of the localization length upon the corr
tion radius of a Markov sequence of the product of rand
matrices was studied and in Ref.@8# fluctuations of the
Lyapunov exponent in the system of finite size were inv
tigated.

The transmission coefficient and localization length
acoustic waves in random correlated superlattices were
sidered in Ref.@9#. Correlations in that paper were intro
duced by constructing the superlattice according to three
ferent Markov processes. The Hendricks-Teller~HT! model,
the randomized Markov versions of Fibonacci, and Th
561063-651X/97/56~4!/4780~11!/$10.00
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Morse ~TM! sequences were considered. The Hendric
Teller model is a version of a dichotomous process, which
known to result in a stochastic structure with an exponen
correlation function. The main feature of Fibonacci and T
superlattices compared to the HT model is the presenc
short-range order. It was found in Ref.@9# that the frequency
dependence of the transmission coefficient is quantitativ
different for the first two models and the last one. One c
assume that this difference is due to the difference in
short-range structure of the systems.

In the present paper we proceed with a detailed study
the effects of the short-range correlations on the localiza
properties of 1D random systems. For the sake of concr
ness, we deal with scalar wave propagation through a
dom superlattice. Our results, however, can be applied
dimer models as well. We consider a random superlat
constructed from two layersA andB with different charac-
teristics~dielectric constants, for instance, in the case of el
tromagnetic wave propagation! stacked at random accordin
to the rules described in the first section of the paper. Th
rules introduce a generalized Markov Thue-Morse mod
This model can be reduced to the canonical random
model considered in Ref.@9# by selecting proper probabili
ties. Our model can also be reduced to the HT model w
exponential correlations, so we will be able to investigate
interplay between ‘‘soft’’ exponential correlations and
more ‘‘rigid’’ short-range order introduced by Thue-Mors
like rules.

II. THE MODEL AND ITS STATISTICAL PROPERTIES

We consider the propagation of classical waves throu
one-dimensional random media. This model correspond
propagation of elastic or electromagnetic waves throug
layered medium that is random in the direction of propa
tion of waves and homogeneous in the transversal direct
For the case of normal incidence, the vector nature of wa
can be neglected since no conversion between different
larizations occurs and one can consider the scalar wave e
tion

d2E

dx2
1k0

2e~x!50, ~1!
4780 © 1997 The American Physical Society
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56 4781WAVE LOCALIZATION IN GENERALIZED THUE-MORSE . . .
wherek05v/c is the wave vector of the wave with the fre
quencyv propagating with speedc in a homogeneous me
dium surrounding a disordered material. The parametere(x)
describes a superlattice composed of two different lay
with the same thicknessd, so thate(x) takes two different
valuese1 and e2 for each of the layers. These layers a
stacked together at random according to the following ru
If a layer is the first one in a sequence of similar layers, th
the probability for the second like layer to appear isp. If two
like layers already appear in a sequence, the probability
the third consecutive like layer to occur is equal toq. These
rules introduce a four-state Markov process with the con
tional probabilitiesP(ABuB)5P(BAuA)5p and P(AAuA)
5P(BBuB)5q. The conventional TM Markov superlattic
considered in@9# corresponds top51/2, q50. This choice
of parametersp andq ‘‘forbids’’ the occurrence of blocks of
the same layers with a length of more than 2. Another in
esting realization of this model, which in a sense is oppo
to the TM model, arises if one takesp51 andq51/2. In this
case blocks with the length less than 2 are forbidden. O
should not confuse, however, this case with a simple dim
ization of layers. In the latter case only blocks with ev
numbers of like layers can appear, which is obviou
equivalent to doubling of layers’ thicknesses. In the mo
proposed here blocks with odd number of like layers a
blocks with even numbers of layers can occur. Forp5q the
model reproduces the properties of the so-called dich
mous process~two-state Markov process!, with p being the
transition probability from one state to another. This
proven to result in a exponential correlation function with t
correlation lengthl exp5(2 lnu2p21u)21. Hence we can con
clude that the proposed model exhibits two kinds of corre
tions. First, we have short-range correlations determined
the specific short-range order presumed in the model w
fixed correlation lengthl sh52d and with the degree of cor
relation being proportional to the differenceup2qu. For q
Þ1/2 we have exponentially decreasing correlations of
HT kind. Figures 1~a!–1~c! present the results of numeric
calculations of the correlation functionK(r 12r 2)
5^e(r 1)e(r 2)&2^(e)2&, where angular brackets denote a
eraging over different realizations of the random functi
e(r ). For numerical averaging we use 10 000 realizations
a superlattice constructed in accord with the rules descr
above. Calculations were carried out for superlattices of
ferent lengths and with different choices of the starting po
We found that correlation functions do not depend upon
size of the system or upon the starting point. The insets
these figures present the Fourier transformsS(q) of the cor-
responding correlation functions. These results demons
that the system indeed has both short-range and long-r
correlations.~We use the term ‘‘long-range correlations’’ t
refer to exponentialcorrelations, which can have a correl
tion radius larger than the layer’s thickness. Short-range
relations at the scale of several thicknesses of a layer c
oscillations of the correlation functions and correspond
maxima on their Fourier transforms. In the system w
short-range correlations only the functionS(q) takes zero
value atq50 @Fig. 1~a!#. These correlations disappear wh
up2qu →0. Long-range correlations exist forqÞ1/2 only
and are responisble for the exponential tail of the correla
functions. They reduce the maximum of the functionS(q)
rs
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and cause its smoother decrease for largerq @Fig. 1~b!#. At
q,1/2 these correlations are actually ‘‘anticorrelation
since they favor the appearance of different blocks at a
cent positions. Two extreme cases withp51, q50 and
p50, q51 correspond to fully ordered periodic structur
with periods 2d andd, respectively. The caseq51 results in
homogeneous structures consisting of one type of block o
It can be either blockA or B, whichever block occurs first.

Localization properties of a wave propagating through
random superlattice are determined by scattering from in
faces between blocks of the same layers. Therefore, an
portant statistical characteristic of the system relevant
wave propagation is the distribution of block lengthsP(n),
wheren is the number of layers of the same kind constituti
a block andP is the probability of finding a block of length
n. For our model, this function can be shown to be

FIG. 1. Correlation functionK(r )5^e(0)e(r )&2^e2&, for dif-
ferent types of random superlattices. The insets represent the
rier transforms of the functionsK(r ). ~a! p51, q51/2; ~b! p51,
q50.6; ~c! p5q50.8.
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FIG. 2. Average transmission rate for different types of random superlattices. Circles in this figure and in all figures that follow
the results of computer simulations and the solid line shows the theoretical results.~a! p5q50.5 ~model without correlations!; ~b!
p5q50.8 ~HT model!; ~c! p51, q50.5 ~short-range correlations only!; ~d! Markov TM model,p50.5, q50 ~circles!, and generalized TM
model,p51, q50.5 ~squares!; the number of layers is equal to 64;~e! p51, q50.8 ~short-range and exponential correlations are prese!.
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P~1!512p,
~2!

P~n!5p~12q!qn22 for n>2.

In the extreme casep51, q51/2, Eq. ~2! takes the form
P(1)50, P(n)5(1/2)n21, n.1, which is quite similar to
the result for an uncorrelated superlatticeP(n)5(1/2)n. We
show, however, that a seemingly small discrepancy betw
these two distributions results in a considerable qualita
difference between localization properties of waves pro
gating in corresponding media. The average lengths ofA and
B blocks ^DA,B& are equal to each other,

^DA&5^DB&5d
11p2q

12q
, ~3!
en
e
-

where the total length of the system is assumed to be infin
This expression diverges atq→1, which merely reflects the
fact that atq51 the entire superlattice is composed of t
same blocks, so the average length of this block is equa
the total length of the system assumed to be infinite.

III. AVERAGE TRANSMISSION RATE
AND LYAPUNOV EXPONENT

In order to simulate wave propagation through the syste
we make use of the transfer-matrix method. A transf
matrix connects an amplitudeEn and its first derivative
En85dE/dx of the field in nth slab with the corresponding
values in the (n11)th slab:

un115Tnun , ~4!
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FIG. 2 ~Continued!.
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FIG. 3. Lyapunov exponents for models presented in Figs. 2~a!–2~d!, respectively.
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whereun is a vector with componentsEn andEn8 andTn is
the transfer-matrix determined as

Tn5S cos~knd!
1

kn
sin~knd!

2knsin~knd! cos~knd!
D , ~5!

where kn5k0Aen is a wave number in thenth layer. The
transmission coefficientT is determined by the equation

uN5T̂Nu0 ,

where

uN5S t

i tk0
D

describes a wave transmitted through the superlattice an
u05S 11r

2 irk 0
D

corresponds to incident and reflected waves. The trans
sion rate is defined according toT5utu2. The matrixT̂N is
the product of allT matrices corresponding to each layer:

T̂N5)
1

N

T i .

The Lyapunov exponentg is determined according to

g5 lim
N→`

lnT̂N ~6!

and is known to be a self-averaging quantity in the limit
an infinite system. For a system of a finite size this is
random variable. To characterize the statistical propertie
the Lyapunov exponent one can use its statistical mome
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FIG. 3 ~Continued!.
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such as a mean value and mean-root-square fluctuations@5#.
Another approach exploited in Ref.@8# uses the generalize
Lyapunov exponent.

Our analytical calculations utilize the approach develop
in Ref. @5#. Nishiguchi, Tamura, and Nori established a us
ful relationship between the backscattering rate of wa
l (L,v) and the structure factor of a superlatticeI s(v):

l ~L,v!5
2R2

^DA&1^DB&
I s~L,v!. ~7!

The structure factor in an infinite system is given by t
expression

I s~v!5ReF ~12«A!~12«B!

12«A«B
G , ~8!

where «A5^exp(22idkAnA)&, «B5^exp(22idkBnB)& and av-
eraging is carried out over the distributionP(n) of thick-
d
-
s

nesses of corresponding blocks given by Eq.~2!. It is
straightforward to show that for this distribution

« j5exp~22idkj !
12p1~p2q!exp~22idkj !

12qexp~22idkj !
, ~9!

where j 5A,B. Frequencies for which 2dkj52pn,
n50,1,2, . . . , correspond to the resonant transmission w
T51 in a system of any size. These frequencies are pre
in a system with any type of statistical distribution of laye
therefore, we will call them fundamental resonances. T
short-range correlations, which occur whenpÞq, bring
about new characteristic frequencies associated with the
exp(24idkj). We will see later that these frequencies actua
manifest themselves as some additional maxima on
quency dependences of the localization length and the tr
missivity. The effect of this term is the most prominent f
p51. The expression forI s(v) in the general case is rathe
cumbersome, so we only show it for the special casep51,
q51/2:
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I s5
4~12cos2kAd!~12cos2kBd!~512cos2kAd12cos2kBd!

u422exp~22ıkAd!22exp~22ıkBd!1exp@22ı~kA1kB!d#2exp@24ı~kA1kB!d#u2
. ~10!
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The backscattering lengthl (v) was shown in Ref.@5# to
determine the Lyapunov coefficientg(v):

g5
1

2l ~v!
. ~11!

With the localization length found one can calculate the
erage transmission rate, fluctuations of the transmission,
other relevant characteristics@4,5#. In Figs. 2 and 3 we
present results of numerical and analytical calculations
the average transmission coefficient and the Lyapunov ex
nent for different kinds of superlattices. For simulations
used superlattices with 300 layers and the ratio between l
parameterseA /eB51.2. We averaged over 500 different ra
domly chosen realizations of the system. Figures 2~a! and
2~b! show the average transmission for uncorrelated and
superlattices, respectively. They reproduce results of R
@4,5,9#. Figure 2~c! presents the frequency dependence of
average transmission for our model with the rigid sho
range correlationp51 and with no exponential correlatio
q51/2. One can see that the average transmission re
sharply on the short-range order: New maxima appear
tween fundamental resonance frequencies. The TM Mar
superlattice also results in some structure in the freque
dependence of the average transmission rate@9#. However,
the magnitude of the transmission at these new maxima
TM case is negligible for the lattice compounded of 3
layers. Nishiguchi, Tamura, and Nori@9# used a system with
only 64 layers in their calculations. Therefore, in order
compare effects of different kinds of short-range order
show in Fig. 2~d! results of calculations of the average tran
mission coefficient for the TM superlattice and our mod
with p51, q51/2 for the system with 64 layers. This drast
decrease in transmission rate for the TM model is obviou
due to the sharp increase of scattering interfaces in it c
pared to our situation.

Figure 2~e! presents the average transmission for the c
when both short-range and exponential correlations
present (p51, q50.8). Such correlations favor like block
stacked together; therefore, we observe an overall increa
the average transmission in accord with results for the
model@Fig. 2~b!#. At the same time these correlations affe
the shape of the dependence differently for different val
of frequency. For frequencies below the first fundamen
resonances, the general shape of the maximum is
changed, while the split maxima between the first and
second resonance is replaced by a smooth single maxim
This difference reflects the fact that a correlation radius
exponential correlations becomes an additional length s
in the system. Because of this, the behavior of the transm
sion as well as other characteristics should be different
wavelengths greater and smaller than the correlation rad
For larger wavelengths, the inhomogeneities associated
the exponential correlations tend to be averaged out and
not affect the system considerably. For shorter waveleng
-
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these inhomogeneities become more important and wash
some features caused by short-range correlations.

Figures 3~a!–3~d! present the frequency dependence
the Lyapunov coefficient for different situations shown
Fig. 2. One can see that a strong increase of the ave
transmission reflects the corrisponding increase of the lo
ization lengthg21. It was shown in Ref.@5# that there exists
a universal critical value of the average transmiss
^T&cr50.26, which separates localized states from expan
states in systems with a finite length. For states w
^T&,^T&cr the localization length is less than the length
the system and the corresponding states are localized. In
reverse situation states are extended. One can see from
results presented that short-range correlations strongly in
ence localization properties of states in finite disordered s
tems. Correlations of the TM type do not support delocali
tion, while the structure with p51, q51/2 allows
delocalized states at frequencies inside forbidden band
the structure with no correlations. These new localized sta
are different, of course, from states at fundamental resona
frequencies because they do not survive in infinite syste
At the same time these states contribute considerably
transport properties of finite yet macroscopic systems.

IV. FLUCTUATION PROPERTIES OF THE
TRANSMISSION RATE AND LYAPUNOV EXPONENT

In this section we consider the effect of correlations
fluctuation properties of the transmission rate and
Lyapunov exponent. Scaling properties of the distribution
the transmission rate were studied in Ref.@5#. These proper-
ties are known to be universal in a sense that their dep
dence upon the scaling parametert5gL, where L is the
length of the system, remains the same for any kind of str
ture of a superlattice. The distribution function of the tran
mission rateW(z,t), wherez51/T, is determined as@10#

W~z,t !5
2

Apt3
E

x0

` x

Acosh2x2z
exp@2~ t/41x2/t !#dx.

For well-localized states witht@1 this distribution reduces
to the normal distribution for lnT21 with a mean value equa
to the Lyapunov exponent and a standard deviation equa
2At @10#. The transition between extended and localiz
states was investigated in Ref.@5#. Nishiguchi, Tamura, and
Nori @5# suggested thatt52 is the boundary between th
extended and localized regimes since at this point the a
age localization length becomes equal to the size of the
perlattice. It can be shown, however, that the mean-squ
fluctuation of the localization length at this point is als
equal to the size of the system. Therefore, the fluctuation
localization length wash out a distinctive boundary betwe
these two regimes att52. At the same time, one can notic
that relative fluctuations of the transmission coefficient sh
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FIG. 4. Relative fluctuations of the transmission rate versus the scaling parametert. Circles present the results of computing and the so
line shows the theoretical results. The numerical data were obtain from averaging over~a! 2000 realizations and~b! 200 realizations.
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a sharp increase when the average transmission become
proximately half of its value att52 †Fig. 4~b! in Refs.@5#‡.
Based upon this observation, we find that it is interesting
consider the scaling behavior of this parameter. Its dep
dence upon the scaling parametert obtained by simulations
along with the results of the corresponding theoretical ca
lations is shown in Fig. 4~a!. We would like to point out a
sharp increase in relative fluctuations of the transmissio
t'5 –6. It can be seen as an increase in the slope of
averaged curve, but also as a drastic increase of scatterin
points in the numerical experiment. Actually, in order to o
tain a more or less smooth line in the regiont.5 we had to
increase the number of realizations for averaging from 2
for the regiont,5 to 2000 fort.5. Figure 4~b! presents the
same dependence with a smaller number of averaging e
to 200. At t.2 the fluctuations of localization length be
come smaller than the system’s size and localized states
gin to contribute more distinctively to such characteristics
the relative fluctuations of the transmission rate. One
ap-
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he
of
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0

al
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s
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conclude, therefore, that a sharp change in the behavio
relative fluctuations of transmission att'5 can be attributed
to the transition between extended and localized regimes
finite sample.

The universal relations described above do not imp
however, that localization properties of individual states
different frequencies are also universal. Below we pres
results of our study of fluctuation properties of localizati
lengths at some characteristics frequencies of the system
are primarily interested in a dependence of these prope
upon the correlation characteristics of the system. In orde
study this problem, we first fix the probabilityq51/2 and
consider the dependence of the Lyapunov parameterg upon
the probabilityp. This choice of parameters allows one
study the influence of the short-range structure in which
ponential correlations are absent. The valuep50 leads to
periodic ordering of the layers with the period equal to 2d,
p51/2 describes the system without correlations, andp51
leads to the structure opposite to the TM model, as was
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FIG. 5. Dependence of the Lyapunov coefficient versus the probability parameterp for q50.5. Circles and squares show results f
k51.45k0 and fork53.9k0, respectively; solid lines present corresponding theoretical data.
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plained in Sec. III. As reference frequencies we consi
k51.45k0 and k53.9k0, where k0 corresponds to the
vacuum. In the system without correlations, these frequ
cies are positioned in the middle of forbidden bands, beco
ing resonance frequencies atp51 ~see Fig. 2!.

Figure 5 present results of computer simulations of
Lyapunov exponent versus the probability parameterp along
with theoretical curves based upon Eq.~9!. It is seen that the
Lyapunov exponent at these frequencies demonstr
qualitatively different behavior. The Lyapunov expone
at k51.45k0 shows a monotonic decrease with an increase
the parameterp, while at k53.9k0 it exhibits a nonmono-
tonic behavior with the minimum value at approximate
p51/2. The difference in behavior between these frequ
cies can be understood if one recalls thatp50 corresponds
to the periodic structure with a period of 2d. The frequency
k53.9k0 falls into a transmission band of this periodic stru
ture; therefore, it demonstrates a small Lyapunov expon
when p approaches 0. At the same time the frequen
k51.45k0 falls in a forbidden band for the periodic structu
arising atp50 and hence their Lyapunov coefficient sharp
increases atp→0. Whenp approaches 1 both frequencie
belong to resonance regions associated with the reson
transmission from blocks with doubled thickness of in
vidual layers. Though the structure withp51 does not lead
to exact doubling of all layers, it does favor such a situat
causing a decrease of scattering boundaries and consequ
maxima of transmission at these frequencies. Therefore
Lyapunov exponent at all frequencies considered decre
whenp approaches 1.

More detailed information about states corresponding
the selected frequencies can be obtained from Figs. 6~a! and
6~b!, which present relative fluctuations of the Lyapunov e
ponent,Dg/g and relative fluctuations of the transmissio
rate DT/T versus the probability parameterp. Small Dg/g
and big DT/T for k51.45k0 at small values ofp reflect
strong localization of the corresponding states. This is
actly what one would expect for the states arising in a f
bidden gap of a nearly periodic structure. It is interesting
r
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note, however, that an increase of the degree of a diso
associated with the increase ofp does not enhance localiza
tion of the states. One can see from Figs. 6~a! and 6~b! that
the state atk51.45k0 becomes ‘‘less’’ localized with in-
creasingp. The reason for this behavior is that an increase
p destroys the periodicity of the structure washing out
forbidden gaps and weakening opportunities for localizati
States at other frequencies show almost delocalized beha
for small p since they belong to a passband of the perio
structure and become more localized when traces of per
icity of the structure gradually disappear asp approaches
1/2. For p.1/2, both frequencies behave in approximate
the same way since a memory about their different origin
lost in this situation.

It is interesting to note that results qualitatively similar
those presented in Fig. 5 were found in Ref.@7#, though that
paper dealt with a quite different model. Crisanti, Palad
and Vulpiani @7# studied the effect of ‘‘long-range’’ expo
nential correlations on localization properties of the neare
neighbor tight-binding model with the two-state Marko
type distribution of site energies~the HT model!. It was
found that at the states far enough from the band edge
band center of the pure system the Lyapunov exponent
hibits behavior similar to the curve presented by square
Fig. 5 and states at the center of the band behave similar
the second line in this figure. This similarity can be und
stood if one considers these two models in their extre
realizations. We have already discussed that the stat
k51.450 in our model falls into the forbidden band of th
periodic structure arising atp50. The same is valid for the
states in the center of the band in Ref.@7# in the case of
extreme anticorrelation between adjacent values of the
energies. This similar origin causes similar behavior wh
the structures change. The second type of behavior is a
ciated with states that belong to passbands of the respe
models; therefore, they also demonstrate similar proper
The third type of behavior of the Lyapunov exponent fou
in Ref. @7#, in which the Lyapunov exponent monotonical
increases along with the Markov transition probability, do
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FIG. 6. Relative fluctuations of~a! the transmission rate and~b! the Lyapunov coefficient~b! versus the probability parameterp. All
notations are the same as in Fig. 5.
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not exist in our model with the parameterq set equal to 1/2.
The reason for this is that the second extreme structur
Ref. @7# corresponds to an almost homogeneous structur
situation, that cannot be realized in our model withq51/2.

V. CONCLUSION

In this paper we carried out a detailed analysis of
effects of correlations on localization properties of classi
waves in random superlattices. The correlations between
ferent layers of the superlattice were introduced within
framework of the generalized random Thue-Morse mod
The statistical properties of the model are controlled by t
parametersp andq. By changing the values of these param
eters we were able to consider different kinds of rand
structures including the classical random Thue-Morse mo
and the Hendricks-Teller model introduced in Ref.@9# and
structures with weak random deviations from periodici
of
, a

e
l
if-
e
l.
o
-

el

.

We found that correlations between the constituent lay
strongly affect localization properties of superlattices a
can lead to a great variety of transmission patterns. T
property can allow one to create superlattices with contro
rates of transmission in different frequency regions.

We pointed out that relative fluctuations of the transm
sion rate increase sharply for a value of the scaling param
of t'5. This point can be considered as a more exact thre
old between localized and extended states in finite syst
instead of thet52 suggested in Ref.@5#.

We also considered the dependence of localization pr
erties of our model upon the type of short-range struct
associated in the model with the probability parameterp.
Since knowing the value of the Lyapunov exponent itself
not enough to determine whether the state considered is
calized or extended, we also considered relative fluctuati
of this parameter along with relative fluctuations of the tra
mission rate. These quantities are size independent and th
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fore are convenient for discussing localization properties.
found that there exist two kinds of states exhibiting differe
behavior whenp changes from 0 to 1. The behavior of th
states is mainly determined by their position in the spectr
of the deterministic periodic structure arising atp50. The
states from passbands of this structure show a decreas
their localization length with an increase ofp, while states
from stop bands depend uponp in nonmonotonic way. For
small values ofp, the localization length increases whenp
increases and reaches its maximum value forp51/2; for
p.1/2 its dependence uponp is similar to that of other
states of the system. Comparing these results with those
tained in Ref.@7#, where the tight-binding model with corre
lations of the Hendricks-Teller type were considered, sho
a surprising similarity between them. The general conclus
that one can draw from this comparison is that the locali
e
t

of

b-

s
n
-

tion properties of states in 1D systems depend strongly u
properties of deterministic systems, which are opposite
tremes of the random systems considered, and upon the
sition of the states in the spectra of these deterministic s
tems and the localization properties are less sensitive
details of the structure of a random system itself.
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