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bstract

We consider the relaxation of an excited two-level system (TLS) positioned near a spherical plasmonic nanoparticle (NP). The
ransition frequency of the TLS is assumed to coincide with the frequency of the condensation point of NP plasmonic resonances.

e show that the relaxation of the TLS excitation is a two-step process. Following an initial exponential decay, the TLS breaks in

o Rabi oscillations. Depending upon the distance between the TLS and NP, the probability of the TLS being in the excited state
xhibits either chaotic or nearly regular oscillations. In the latter case, the eigenfrequency of the TLS-NP system coincides with one
f NP multipole modes.

2014 Elsevier B.V. All rights reserved.
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. Introduction

The problem of the giant decrease of the radiative
elaxation time of atoms near metallic NPs has attracted
onsiderable interest in the last decade due to explosive
rowth of nanoplasmonics [1–6]. In the case of inter-

ction with countable number of high multipole modes
he relaxation is much more complicated than in simple
ases of dipole moment relaxation, which may be the
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exponential fall-off of a TLS excitation into a continuum
of modes [7] or the Rabi oscillations when the TLS
energy is transferred into a single resonant mode [8]. It
has been shown recently [9], that the rate of spontaneous
exponential nonradiative decay in a TLS, which is in
resonance with the dipole mode of a lossy plasmonic
sphere, increases by several orders of magnitude thanks
to accounting of higher non-resonant multipole modes.
This qualitatively agrees with ideas of Ref. [10] that
though the contribution of higher multipoles to photon
radiation is smaller than that of the dipole, Joule dissi-
pation of higher multipoles is significantly greater than

the dissipation of the dipole. The increase of dissipation
leads to a decrease of the life-time of the emitter.

In the case of a metallic NP, the energy can be trans-
ferred into an infinite but countable set of modes which
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α(q) = 1

2π

∫ ∞

0
A(t) exp(iqt)dt, (6)
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spectrum has a condensation point. It is not intuitively
clear how a TLS, which is in resonance with the NP con-
densation point would decay. One might expect that the
relaxation of this system due to coupling to an infinite
number of modes is similar to the case of coupling to a
continuum of modes. On the other hand, the relaxation
into the condensation point may resemble the relaxation
into a single resonant mode.

In this paper, we study the spontaneous relaxation
of a TLS, with a transition frequency in resonance with
the frequency of the condensation point of higher multi-
pole resonances. We show that the relaxation of the TLS
into a condensation point of the NP plasmonic spec-
trum is quite unusual. It occurs in three stages. In the
initial stage, it has the exponential character due to the
existence of infinite albeit countable number of modes
to which it couples. This is similar to the case of contin-
uum of modes. However, the system relaxes not into the
ground state but toward a quasi-stationary state. Then, in
the second stage, the exponential decay transforms into
the Rabi oscillations. In the latter stage, the probabil-
ity of the TLS to be in the excited state, exhibits either
chaotic or nearly regular oscillations depending upon the
distance between the TLS and NP. Finally, at the third
stage, the relaxation is again exponential due to Joule
losses in metal.

The problem of atomic relaxation near a metallic NP
requires a quantum description of the field and radiat-
ing system [11–14]. The simplest approach using the
Fermi Golden Rule does not produce the radiation spec-
trum unless an additional assumption is made about the
Lorentzian line shape, which arises from the interaction
of the TLS with continuum of modes [7]. To obtain the
decay law from the first principles without additional
assumptions we use the Weisskopf–Wigner [8,14].

2. Time evolution in the limiting cases of
continuum of modes and single mode

The general analysis of a TLS interacting with cavity
modes is given in Ref. [7]. Let us consider a set |k〉 of
resonator modes and excited |e〉 and ground |g〉 states
of the TLS. In order to describe the relaxation of the
excited state of the TLS, we assume that each resonator
mode can interact with a continuum of modes kk′ of some
reservoir. If the corresponding kk′ modes are phonons in
metal, the interaction reduces to the Joule losses in the
NP. So we may take the Hamiltonian of system in the

form

Ĥ = �ωTLSσ̂†σ̂ + �
∑

k

ωkâ
†
kâk + �

∑
k

γk

(
â
†
kσ̂ + σ̂†âk

)
+ �
∑
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In the Hamiltonian (1), the first term corresponds to
the TLS energy (ωTLS is the TLS transition frequency,
σ̂ is the transition operator between ground and excited
states of the TLS), the second term describes the energy
of each multipole (ωk is the resonance frequency of
the kth multipole mode of the NP, âk is the plasmon
annihilation operator), the third term corresponds to the
interaction of the TLS and the kth multipole mode (γk
is the interaction constant), the fourth term corresponds
to the energy of the thermal reservoir (ωk is the eigen-
frequency of k′th multipole mode of the NP, b̂k′ is the
annihilation operator of this mode), and the last term
describes the interaction between kth and k′th multi-
pole modes of the thermal bath (Γ kk′ is the interaction
constant).

Let us expand the wave function of the system
“atom + resonator modes + reservoir modes” over the
stationary states in absence of interactions

Ψ (t) = A(t) exp(−iωTLSt) |e, 0, 0〉
+
∑

k

Bk(t) exp(−iωkt) |g, 1k, 0〉

+
∑
k,k′

Ckk′ (t) exp(−iωkk′ t) |g, 0, 1kk′ 〉 , (2)

where |e, 0, 0〉 denotes the state in which only the atom
is excited, |g, 1k, 0〉 is the state in which only the kth
mode of the resonator is excited, and |g, 0, 1kk′ 〉 denotes
the state in which only k′th wall mode of the kth mode
of the resonator is excited.

Using the Schrödinger equation with Hamiltonian (1)
and expansion (2) we obtain the system of equations

iȦ(t) =
∑

k

γ∗
k Bk(t) exp(−i(ωk − ωTLS)t), (3)

iḂk(t) = γkA(t) exp(i(ωk − ωTLS)t)

+
∑
k′

Γ ∗
kk′Ckk′ (t) exp(−i(ωkk′ − ωk)t), (4)

iĊkk′ (t) = Γkk′Bk(t) exp(i(ωkk′ − ωk)t). (5)

Taking into account the initial conditions A(0) = 1,
Bk(0) = 0, Ckk′ (0) = 0 and using the Fourier transforma-
k′
ωk′ b̂†k′ b̂k′ + �

∑
kk′

Γkk′
(
â
†
kb̂kk′ + b̂

†
kk′ âk

)
. (1)
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k(q) = 1

2π

∫ ∞

0
Bk(t) exp(−i(ωk−ωTLS)t) exp(iqt)dt,

(7)

kk′ (q) = 1

2π

∫ ∞

0
Ckk′ (t) exp(−i(ωkk′ − ωTLS)t)

× exp(iqt)dt, (8)

e obtain an algebraic system of equations

i

2π
+ qα(q) =

∑
k

γ∗
k βk(q), (9)

q − Δk)βk = γkα(q) +
∑
k′

Γ ∗
kk′Skk′ (q), (10)

q − (Δkk′ + Δk))Skk′ (q) = Γkk′βk, (11)

here Δk = ωk − ωTLS and Δkk′ = ωkk′ − ωTLS.
The solutions to Eqs. (10) and (11) are

kk′ (q) = Γkk′βk

q − (Δk + Δkk′ )
, (12)

k(q) = γkα(q)

q − Δk −∑k′
|Γkk′ |2

q−(Δk+Δkk′ )+i0

. (13)

In our case, the resonator modes are all multipole
lasmonic modes. They are collective excitations of
lectrons interacting with boson modes of the thermal
eservoir (i.e., with phonons). This interaction represents
he Joule losses in metal. In Eq. (13), the interaction
etween modes and the reservoir is described by the sum
n the denominator which can be expressed as

k′

|Γkk′ |2
q − (Δk + Δkk′ )

=
∫

dk′ρ(k′)
|Γkk′ |2

q − (Δk + Δkk′ )
,

(14)

here ρ(k′) is the density of states of the ther-
al bath. Using the standard regularization procedure,

x + i0)−1 = −iπδ(x) + P(1/x), and neglecting the
amb shift we obtain the effective relaxation rate gk,
hich is equal to the linewidth of the kth mode

dk′ρ(k′)
|Γkk′ |2

q − (Δk + Δkk′ )

≈ −iπρ(k′)|Γkk′ |2
∣∣∣
Δkk′=q−Δk

= −igk. (15)
Thus, the thermal bath with the continuum of bosonic
odes induces the exponential decay to the kth mode of

he system which interacts with this bath [4,8].
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Using Eq. (15) we obtain the following solution for
Eqs. (9)–(11):

α(q) = i

2π

1

q −∑k
|γk |2

q−Δk+igk

, (16)

βk(q) = α(q)γk

q − Δk + igk

. (17)

Substituting Eqs. (16) and (17) into Eqs. (6) and (7)
and using the inverse Fourier transform we obtain the
probability amplitudes

A(t) = 1

2πi

∫ iδ−∞

iδ+∞
exp(−iqt)dq

q −∑k
|γk |2

q−Δk+igk

, (18)

Bk(t) = 1

2πi

∫ iδ−∞

iδ+∞

× γk exp(−iqt) exp(−it/k)dq

(q − Δk + igk)
(
q −∑k

|γk |2
q−Δk+igk

) . (19)

The value of δ in Eqs. (18) and (19) should be greater
than real parts of any pole of the integrands in these
equations. Then, all the poles are inside of the integra-
tion contour, which is the straight line (iδ + ∞, iδ − ∞)
closed into the lower half-plane.

Form Eqs. (18) and (19) we can obtain the main
results concerning atom dynamics. As an example, we
consider two limiting cases. In the first one, we obtain
the relaxation of a two-level atom in free space (|γk|2 =
ωkμ

2
TLS cos2 θ/2ε0�V ) with continuum of modes [4,7].

To begin with, one can use the standard summation pro-
cedure on free space modes,

∑
k

→ 2
V

(2π)3

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
k2dk, (20)

and then use the regularization procedure described
above to obtain:

∑
k

|γk|2
q − Δk

→ μ2
TLS

6π2ε0�c3

∞∫
0

ω3dω

q − (ω − ωTLS)

≈ −i
μ2

TLSω3
TLS

6πε0�c3 + μ2
TLS

6π2ε0�c3 P

∞∫
0

ω3dω

ω − ωTLS
= −iγ/2 + ΔωL, (21)

where we γ and �ωL represent the dissipation rate and
the Lamb shift, respectively. Now, Eq. (18) takes the form



res – Fu
390 E.S. Andrianov et al. / Photonics and Nanostructu

A (t) = 1

2πi

iδ−∞∫
iδ+∞

exp (−iqt) dq

q − Δω + iγ/2

= exp (− (γ/2 + iΔω) t) , (22)

which corresponds to the exponential decay to free space
modes.

The second case corresponds to decay of a TLS in a
single mode cavity [8]. In this approximation, |γk|2 =
ω2

R, gk = 0 and we can find poles of the integrand of Eq.
(18): q = ±ωR which corresponds to oscillation with the
Rabi frequency:

A(t) = cos(ωRt). (23)

Thus, as expected, the interaction with system with
continuous number of modes results in the exponential
decay while the interaction with single mode results in
the Rabi oscillations and absence of decay.

3. Multipole modes of the nanoparticle

Now, we consider the relaxation of the TLS inter-
acting with the countable number of modes whose
spectrum has a condensation point. It is hard to pre-
dict the behavior of this system qualitatively because, on
the one hand, we have an infinite number of modes that
should cause an exponential decay, on the other hand,
the set of modes is discrete and one can expect that the
interaction with each mode may lead to the Rabi oscilla-
tions. As an example we consider a spherical plasmonic
NP with the dielectric permittivity ε = −1.

In this and the next subsections, we discuss the mode
structure of a plasmon spherical NP and perform its quan-
tization. These modes are determined by eigensolutions
of the Laplace equation for the scalar potential ϕ

∇ (ε (r) ∇ϕ (r)) = 0 (24)

with the boundary conditions on the sphere surface

εin
∂ϕin

∂n

∣∣∣∣∣|r|=a

= εout
∂ϕout

∂n

∣∣∣∣|r|=a

, (25)

where a is the radius of the sphere, εin, ϕin and
εout, ϕout are dielectric permittivities and scalar poten-
tials inside and outside of the sphere, respectively. For
the sake of simplicity, we assume that εout = 1. Then the
solution of Eq. (24) with boundary condition (25) has the
form [5]
ϕnm =
{

(r/a)nYnm(θ, ϕ), r ≤ a

(r/a)n+1Ynm(θ, ϕ), r > a
, (26)
ndamentals and Applications 12 (2014) 387–397

where Ynm(θ, ϕ) are spherical functions. The nth fre-
quency is determined by the condition

εin(ωn) = −n + 1

n
. (27)

Below, we assume that the dispersion of the metal NP
is described by the Drude formula

εin(ω) = 1 − ω2
pl

ω2 , (28)

where ωpl is the plasmon frequency of metal. Eqs. (27)
and (28) determine resonance frequencies

ωn = ωpl

√
n

2n + 1
. (29)

Note that eigenfunctions determined by Eq. (26) are
degenerated: 2n + 1 eigenfunctions corresponds to the
nth resonant frequency as parameter m runs from −n to n.
When n → ∞, the resonant frequency ωn → ωpl/

√
2,

which is the condensation point of eigenfrequencies.

3.1. Quantization

Before we start quantizing electromagnetic field of
the spherical NP, we have to note that since the Laplace
equation only describes the static (near) field of the NP,
in this approximation, the electric field does not change
in time and the magnetic field is equal to zero. Because
quantization of the electromagnetic field and the concept
of the excitation quant are related to the part of the vector
potential which depends on time, in this approximation,
the quantization seems impossible. This can be resolved
if one considers the quasistatic approximation in which
the dependence of the potential on coordinates is given
by Eq. (26), while the dependence on time is simply
harmonic oscillation with the frequency of the corre-
sponding resonance. That is, the electric field has the
form Enm(r, t) = −∇ϕnm(r) exp(iωnt). Then the elec-
tric field is a harmonic oscillator that can be quantized
in a standard way (see, e.g., Ref. [12]).

At the frequency of the nth plasmon resonance, the
corresponding mode of the electric field of the NP obeys
the harmonic oscillator equation with the frequency of
the plasmonic resonance

Ënm + ω2
nEnm = 0. (30)
Now, we can introduce creation, ˆ̃a
†
nm(t), and annihi-

lation, ˆ̃anm(t), Bose-operators of the dipole moment of
the surface plasmon excited at the NP. These operators
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atisfy the commutation relation

[∧
ãnm(t),

∧
ã
†
nm(t)

]
= 1.

he operator of the electric field can be expressed as

ˆ
nm = −Ẽnm∇ϕnm

(∧
ãnm + ∧

ã
+
nm

)
/
√

2, (31)

here the dimensional factor Ẽnm is the “quant” of the
lectric field. The Hamiltonian of the harmonic oscillator
as the form Ĥnm = �ωn

(
ˆ̃a
+
nm

ˆ̃anm + 1/2
)

.

In order to obtain Ẽnm, one can compare the energy
f one quant with the energy of nth plasmon mode:

ωn = 1

8π

∫
V

∂(ωReε(ω))

∂ω

∣∣∣∣
ωn

∣∣Ẽnm

∣∣2∇ϕnm · ∇ϕ∗
nmdV.

(32)

Integral (32) can be expressed as

1

8π

∫
V

∂(ωReε(ω))

∂ω

∣∣∣∣
ωn

∣∣Ẽnm

∣∣2∇ϕnm · ∇ϕ∗
nmdV

=
∣∣Ẽnm

∣∣2
8π

(∫
V

ω
∂(Reε(ω))

∂ω

∣∣∣∣
ωn

∇ϕnm · ∇ϕ∗
nmdV

+
∫

V

Reε(ω)|ωn
∇ϕnm · ∇ϕ∗

nmdV

)
. (33)

Since the scalar potential satisfies the Laplace equa-
ion, ∇(Reε(ωn)∇ϕ) = 0, and the boundary conditions
25), the second term in the right hand part of Eq. (33)
s equal to zero:

V

Reε(ω)|ωn
∇ϕnm · ∇ϕ∗

nmdV

=
(∫

Vin

dVin+
∫

Vout

dVout

)
ϕ∗

nm∇(Reε(ω)∇ϕnm)
∣∣
ωn

+
∫

∂V

ϕ∗
nm

(
εin

∂ϕin
nm

∂r
− εout

∂ϕout
nm

∂r

)
· ndA = 0,

(34)

here the second integral in the right hand part of

q. (34) is calculated over the surface of the NP. We
ssume that the medium outside the NP is dispersion-
ess, εout = 1, therefore, ∂εout/∂ω = 0. Substituting ϕnm

efined by Eq. (26) into the first term in the right hand
art of Eq. (34) and assuming that inside the NP, the
ielectric permittivity does not depend on coordinates
nd is described by Eq. (27) we obtain
ndamentals and Applications 12 (2014) 387–397 391

1

8π

∫
Vin

ω
∂Reε(ω)

∂ω

∣∣∣∣
ωn

∇ϕnm · ∇ϕ∗
nmdV

= ω2
pl

4πω2
n

∫
Vin

∇ϕ∗
nm∇ϕnmdV

= ω2
pl

4πω2
n

(∫
∂Vin

ϕ∗
nm

∂ϕnm

∂n
dS −

∫
Vin

ϕ∗
nmΔϕnmdV

)

= ω2
pl

4πω2
n

∫
Ω

naY∗
nmYnmdΩ = 2n + 1

4π
a. (35)

When obtaining Eq. (35) we use the normalization
of the spherical functions,

∫
Ω

Y∗
nmYnmdΩ = 1, and Eq.

(29). Finally, we arrive at

�ωSP = ∣∣Ẽnm

∣∣2a(2n + 1)/4π, (36)

so that Ẽnm = √
4π�ωnm/a (2n + 1) = Enm

√
2. Thus,

the operator of the electric field of the nth mode of the
NP is

Ênm = −Enm∇ϕnm

(∧
ãnm + ∧

ã
†
nm

)
. (37)

3.2. NP–TLS interaction

The Hamiltonian of a TLS can be represented as

ĤTLS = �ωTLS
∧
σ̃
†∧
σ̃, (38)

where
∧
σ̃ = |g〉 〈e| is the operator of the transition

between the ground |g〉 and excited |e〉 states of the TLS.
We assume that the atom has a dipole moment only,

which is equal to d̂TLS = μTLSeTLS

(∧
σ̃(t) + ∧

σ̃
†
(t)

)
,

where μTLS = 〈e| er |g〉 is the value of the dipole tran-
sition and eTLS is the unit vector in the direction of
the TLS dipole moment. When the TLS transition fre-
quency ωTLS is in resonance with the frequency of the
condensation point, it is convenient to represent oper-

ators
∧
ã(t) and

∧
σ̃(t) as

∧
ã(t) = â(t)e−iωTLSt and

∧
σ̃(t) ≡

σ̂(t)e−iωTLSt , where â(t) and σ̂(t) are slowly varying
operators. Now, we apply the rotating wave approxima-
tion [8] in which fast oscillating terms proportional to
e±2iωTLSt are neglected. In this approximation, the inter-
action V̂ = −d̂ · Ê of the TLS dipole moment with the

NP field, Ê = −
∑
nm

Enm∇ϕnm

(∧
ãnm + ∧

ã
+
nm

)
, has the
form [8]

V̂ = �
∑
nm

γnm

(
â†nmσ̂ + σ̂†ânm

)
, (39)
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with the characteristic frequency ΩR (see Fig. 1). For
392 E.S. Andrianov et al. / Photonics and Nanostructu

where the Rabi interaction constant of the TLS dipole
moment with the nmth mode of the NP field, γnm, has to
be determined.

In the problem under consideration, there are two
characteristic vectors: the vector of the direction of the
dipole moment of the atom, which we assume is deter-
mined by the atom’s structure, and the vector directed
from the center of the atom to the center of the NP. Below,
for the sake of simplicity, we assume that these vectors
are collinear, i.e. the dipole is positioned “over” the NP.
The convenient reference frame for this geometry is such
that the z-axis passes through the centers of the atom and
the NP, so that θ = 0. In this reference frame, the atom’s
dipole interacts with radial component of the field only.
In addition, the atom only interacts with symmetric con-
figurations of the NP field for which m = 0. The latter
can be shown by using the representation of the spherical
functions via Legendre polynomials:

Ynm(θ, ϕ) =
√

2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ) exp(imϕ).

(40)

Since θ = 0, we have P0
n (1) = 1 and Pm

n (cos θ) =
sinm θ(dm/d(cos θ)m)P0

n (cos θ) = 0, so that only
the harmonic with m=0 survives. Then, because
Enm r(θ, ϕ) ∝ Ynm(θ, ϕ), only En,m=0 should be taken
into account. This allows us to represent the interaction
constant in the form

|γn|2 =
∣∣∣∣En0∇ϕn0μTLS

�

∣∣∣∣
2

= 2πωn

�a(2n + 1)

(n + 1)2

a2

(a

r

)2(n+2) 2n + 1

4π
|μTLS|2

= |μTLS|2ωpl

2�a3 ξ2(n+2)(n + 1)2n1/2(2n + 1)−1/2,

(41)

where ξ = a/r0, a is the radius of NP and r0 is the
distance between the NP and the TLS.

The full Hamiltonian of the TLS interacting with the
NP has the form

Ĥ = �
∑

n

ωnâ
†
nân + �ωTLSσ̂†σ̂ + �

∑
n

γn(â†nσ̂ + σ̂†ân), (42)
where ωn and γn are defined by Eqs. (29) and (41),
respectively.
ndamentals and Applications 12 (2014) 387–397

4. Time evolution of the two-level system near the
condensation point of eigenmodes of nanoparticle

Now, we consider the problem of the excitation of
plasmonic modes having a condensation point. In this
case, Δk = ωk − ωTLS and Δkk′ = ωkk′ − ωTLS. Since
Δk = ωpl

√
k/(2k + 1) − ωpl/

√
2 ≈ −ωpl/(4

√
2k), we

express all the frequencies in the units of ω0 = ωpl/4
√

2,
so that

Δk = −ω0/k, |γk|2 = γ2ξ2k(k + 1)2k1/2(2k + 1)−1/2, (43)

where γ2 = |μTLS|2ωplξ
4/2�a3 =

16|μTLS|2ξ4ω2
0/(ωpl�a

3). Using the explicit depend-
ence of γk and �k on the mode number k, Eq. (31), we
obtain

A(t) = 1

2πi

∫ iε−∞

iε+∞
exp(−iqt)dq

q − γ2
∑

k
ξ2k(k+1)2k1/2(2k+1)−1/2

q+1/k+igk

,

(44)

Bk(t) = 1

2πi

∫ iε−∞

iε+∞

γξk(k + 1)k1/4(2k + 1)−1/4 exp(−iqt) exp(−it/k)dq

(q + 1/k + ig)
(

q − γ2
∑

k

ξ2k (k+1)2k1/2(2k+1)−1/2

q+1/k+igk

) .

(45)

In the next section, we use the obtained equations to
investigate the atomic relaxation into multipole modes
of a plasmonic NP.

Let us, first, consider the time dynamics of probability
amplitudes when attenuation is neglected (g = 0). This
reflects the physics of the system for small time intervals
in which attenuation is not important.

From Eqs. (44) and (45) one can see that the control-
ling dimensionless parameter of the problem is the ratio
of the radius a of the spherical NP to the distance r0
between the two-level atom: ξ = a/r0. In order to study
the dynamics of probabilities of excitations of the TLS,
|A(t)|2, and the kth mode of resonator |Bk(t)|2, we solve
Eqs. (22)–(24) numerically for g = 0 for fixed values of
ξ. The results of the numerical calculations are shown in
Fig. 1.

The numerical analysis shows that along with the
exponential decay there are irregular Rabi oscillations
the times smaller than the Rabi period, γ−1, the prob-
ability |A(t)|2 falls off exponentially until it reaches
a quasi-stationary value, F (∞) = lim

T→∞
1
T

∫ T

0 |A(t)|2dt;
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ig. 1. The time dependence of the probability, |A(t)|2, of the two-level
toms to be in the excited state for ξ = 0.8.

fter that the oscillations begin. When obtaining these
esults we assumed that the decay time of the free TLS
s much larger than the time interval under consideration.
hus, the exponential decay may be associated with exci-

ation of an infinite number of plasmonic modes.
Let us analyze the behavior shown in Fig. 1 ana-

ytically. For this we estimate the Fourier-transform
f the probability amplitude α(q) for the popu-
ation of the excited state of the TLS, defined
y Eqs. (6) and (44). Using an estimate |γn|2 =
2ξ2n(n + 1)2n1/2(2n + 1)−1/2∼γ2n2ξ2n for large n,
(q) = 1

2π

∫∞
0 A(t) exp(iqt)dt, can be expressed as

(q) = i

2π

1

q −∑k
|γk |2

q−Δk+igk

∼1

q

1

1 − γ2

q

∑∞
k=1

ξ2kk2

q+1/k

.

(46)

The asymptotic expansion of the Fourier transform
ear an infinitely remote point gives the asymptote of
he original function near zero. Assuming that in the
enominator of Eq. (46) q � 1/k, we can qualitatively
nderstand the dynamics of the process at initial time
� k. We have

(q)∼1

q

1

1 − γ2

q

∑∞
k=1

ξ2kk2

q+1/k

= 1

q

1

1 − γ2

q

∑∞
k=1

ξ2kk2

q

∑∞
l=0

(−1)l

klql

= 1

q

1

1 − γ2

q

∑∞
l=0

(−1)l

ql+1

∑∞
k=1

(ξ2)k

kl−2

= 1

q

1

1 − γ2

q

∑∞
l=0

(−1)lLil−2(ξ2)
ql+1

, (47)

∑∞ k k
where Lil(x) = k=1x /l is polylogarithmic func-
ion. Since we are interested in the case when the TLS is
ear the NP, we assume that ξ ∼ 1. Then, the main term in
he denominator of expression (47) is the polylogarithm
ters (blue dashed line) for ξ = 0.8. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version
of this article.)

with l=0, while the terms with l = 1, 2, ... produce cor-
rections. Then Eq. (47) can be evaluated as

α(q)∼ 1

q − γ2

q
Li−2(ξ2) + γ2

q2 Li−1(ξ2)

= 1

q − γ2

q
ξ2(1+ξ2)

(1−ξ2)3 + γ2

q2
ξ2

(1−ξ2)2

.

The pole of α(q) is equal to the root q = (ΩR + iΓ ) /2
of the equation

q − γ2

q

ξ2(1 + ξ2)

(1 − ξ2)3 + γ2

q2

ξ2

(1 − ξ2)2 = 0. (48)

Thus, the imaginary part of the pole characterizes the
rate of the exponential decay of A(t). Fig. 2 shows the
rate of the exponential transition to the quasi-stationary
value as a function of ξ.

In order to retrieve the characteristic relaxation
time from computer simulation data, we consider the
function P(t) = |A(t)|2 − F (∞) (shown in Fig. 3)

and assume that at short times P(t) = (|A(0)|2 −
F (∞)) exp(−Γt) cos(ΩRt). The characteristic parame-
ters, � and �R, can found by minimizing the quantity
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The behavior shown in Fig. 8 abruptly changes when
atom to be in the excited state on ξ.

∣∣∣∫ T

0 (|A(0)|2 − F (∞)) exp(−Γt) cos(ΩRt) − (|A(t)|2−
F (∞))dt|. As one can see from Fig. 3, the exponential
decay modulated by cosine provides a fairly good fit to
numerical calculations.

It turns out that the rate at which the system relaxes to
the quasi-stationary state, the parameter Γ in the probe
function, practically does not depend on ξ (Fig. 2). This
can be understood if one takes into account that the expo-
nential character of the decay is usually related to the
presence of an infinite number of modes. Since the den-
sity of states of multipole modes does not depend on ξ,
one can expect a weak dependence of Γ on ξ as well.
Unlike Γ , the quasi-stationary state F(∞) does depend
on ξ (see Fig. 4).

For an infinitely large distance between the NP and
the TLS, ξ = 0, we arrive at the free excited TLS, which
should emit a photon and decays exponentially [7]. As
we point out above, the characteristic time of this pro-
cess, τfree, is much larger than the time intervals that
we consider. For finite ξ, during the characteristic time
τ � τfree, the TLS relaxes to a quasi-stationary state,
F(∞), which decreases when ξ grows. Concurrently, due
to an increase of coupling constants the frequency of the
oscillations (an effective Rabi frequency) increases and
the amplitudes of these oscillations grow reaching unity.

For ξ ≥ 1, the characteristic decay constant Γ

becomes smaller than ΩR, and since the averaging oblit-
erates information of the system evolution, our approach
ceases to work. Now, to study the system oscillations we
should directly investigate |A(t)|2. These oscillations are
related to the TLS interaction with an infinite number
of higher multipole modes. Our calculations show that
for certain distances between the TLS and NP, the prob-
ability |A(t)|2 can exhibit almost harmonic oscillations
with fixed frequencies. For these distances, peculiarities

of the dependence of |A(t)|2 on ξ occur. For ξ>0.9, such
peculiarities, the nature of which is discussed below, can

be seen in Fig. 4. The oscillations corresponding to the
peculiarity at ξ = 0.93 are shown in Fig. 5.
Fig. 6. The dependence of the mode number with maximum energy
on ξ.

Since the eigenfrequencies of non-interacting NP and
TLS coincide, an increase in the coupling constants leads
to the splitting of the eigenfrequency of the joint sys-
tem. Thus, the eigenfrequencies of the joint system move
away from the point of condensation. Consequently, the
latter eigenfrequencies get into the range where the joint
system feels the discrete character of the plasmonic
spectrum. If the eigenfrequency coincides with one of
multipole resonance we observe almost regular Rabi
oscillations. At such values of ξ the amplitude of the cor-
responding multipole oscillation predominates the ones
of the other multipoles (see Fig. 9).

We can estimate the number of efficiently interacting
modes. When ξ is small, the interaction constant depends
on the mode number as γn∼nξn. The mode interacting
the most has the number nmax∼ − 1/ log ξ which cor-
responds to the interaction constant γmax∼ − 1/e log ξ.
The width of the peak is Δnmax∼ − 1/ log ξ. Thus, when
the TLS approaches the NP, the peak and its width grow
and the peak position is shifted to higher n; as ξ → 1,
γmax → ∞ and nmax → ∞ (see Fig. 6). This means that
the TLS interacts with of higher multipole modes and the
number interacting mode increases (see Fig. 7). This is
confirmed by numerical calculations. In Fig. 8, in which
average probabilities of excitations of the resonator kth

mode, |Bk(t)|2, for k = 1, 2, 3, and 6 are shown.
the distance between the TLS and NP decreases further
(see Fig. 9). At a distance ξ = ξ∗ ≈ 0.8, the probability
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f the excitation of the k=6-mode peaks out; it follows

y peaks of |B3(t)|2 at ξ ≈ 0.87, then |B2(t)|2 at ξ ≈ 0.9,
nd finally by a sharp peak of the excitation probability of
he dipole mode at ξ ≈ 0.93 (Fig. 9). For further decrease
f ξ, the mode behavior is reversed again: the peculiari-

ies disappear and |Bk(t)|2 is maximal for the mode that
as the strongest interaction with the TLS (see Fig. 10).

This unexpected result can be explained qualitatively.
hen ξ increases, the interaction with higher multi-

ole modes also increases because the maximum of the
nteraction constant grows with ξ (see Fig. 7). How-

ver, the eigenfrequencies of the multipole modes have
he condensation point ωn → ωpl/

√
2. Therefore, since

e assume that ωTLS = ωpl/
√

2, the interaction of the
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Fig. 9. The same as in Fig. 8 for 0.8 < ξ < 1.
Fig. 10. The same as in Figs. 8 and 9 for 0.94 < ξ < 0.99.

TLS with higher modes is reduced to the interaction
of two oscillators with equal frequencies. The interac-
tion removes the degeneracy. The greater the interaction
between oscillators the greater is the difference between
eigenfrequencies of the joint system [15]. At some dis-
tance between the TLS and NP, the eigenfrequency of the
joint system may coincide with one of the lower multi-
pole modes. In this case, the energy is transferred to this
particular mode causing near regular Rabi oscillations.

This qualitative argument is supported by analytical
estimate. Let us consider Eq. (16) for the Fourier-
transform of the probability amplitude α(q) for the
population of the TLS excited state at infinite time and
ξ → 1. For the Fourier-transform this means that we
should evaluate α(q) at zero point:

α(q)∼1

q

1

1 − γ2

q

∑∞
k=1

ξ2kk2

q+1/k

≈ 1

q

1

1 − γ2

q

∑∞
k=1

ξ2kk2

1/k

= 1

q

1

1 − γ2

q
Li−3(ξ2)

= 1

q

1

1 − γ2

q
ξ2(1+4ξ2+ξ4)

(1−ξ2)4

≈ 1

q

1

1 − 6γ2

(1−ξ2)4
q

(49)

The poles of the last expression are at

q∼ ± γ(1 − ξ2)
−2

. (50)

When ξ → 1, the value of q at the pole grows. The
Fourier-transform for the kth mode, Eq. (16), shows that
the resonance occurs at qk = −1/k. Thus, when the TLS
approaches the NP, the effective frequency of oscilla-
tions detunes from the frequency ωTLS = ωpl/

√
2. When

it coincides with qk = −1/k, the resonance with the
kth mode occurs. There are no resonances for q < −1,
because modes with the corresponding frequencies do

not exist. This explains the fact that after the dipole res-
onance is reached, the maximum energy is transformed
into the mode with the strongest interaction.
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Fig. 11. The same as in Fig. 9 for a lossy system.

5. The effect of Joule losses

In this section we take into account the influence of the
Joule losses on the plasmonic mode excitation described
above. Firstly, we recall that for a single mode cavity, dis-
sipation leads to either the monotonic exponential decay
of the excited state of the TLS, in the weak coupling
regime, or the exponential decay of the Rabi oscillation,
in the strong coupling regime. To show this we use Eq.
(18) with |γk|2 = ω2

R, gk = γCM. So we can find poles
of the integrand of Eq. (18), q = ω2

R/(q + iγCM).
In the weak coupling regime, ωR � γCM, at which

q ≈ −iω2
R/γCM, we have the exponential decay with the

rate ω2
R/γCM:

A(t) = exp(−ω2
Rt/γCM). (51)

In the strong coupling regime, ωR � γCM, at which
q ≈ ±ωR − iγCM/2,

A(t) = exp(−(γCM/2 + iωR)t). (52)

In Fig. 11, we show the results of the numerical solu-
tion of Eq. (45) in which the Joule losses are taken
into account. The characteristic relaxation time of the
photon radiation of the TLS is much larger than all
other times. Indeed, a typical value of the radiation
time for an atom and a quantum dot are τσ∼10−9 s
and τσ∼10−11–10−10 s, respectively, while the relax-
ation time due to the Joule losses in the NP is of the order
of τ∼10−13–10−12 s. Thus, we can neglect the photon
radiation because the exponential decay due to radiation
into the free space is not noticeable on the considered
timescales. We assume that gk∼1012 s−1 for each NP
mode. In addition, there is strong loss, g∼1013 s−1, due
to radiation in the dipole mode. Loss in the TLS is much
smaller than in the NP, therefore it can be neglected.
Fig. 11 shows the same average probabilities of excita-
tion of the resonator mode, |Bk(t)|2, as shown in Fig. 9.
As one can expect, when the Joule losses are taken

into account, the smaller fraction of the TLS energy
ndamentals and Applications 12 (2014) 387–397

is transferred to the NP modes. In addition, the dipole
mode is excited much less intensively due to the loss
for radiation. However, qualitatively the character of
the resonances and the mode energy distribution is not
changed.

6. Conclusion

In this paper, we consider spontaneous relaxation of a
TLS into a condensation point of the plasmon resonances
of a spherical NP. We show that when the TLS excita-
tion frequency coincides with the condensation point, the
interaction with an infinite number of higher multipole
modes plays the main role in the relaxation process. This
differs from previous studies in which higher multipoles
were considered as corrections.

An infinite countable set of modes plays the role of
a reservoir for the TLS relaxation. This reservoir serves
as a parallel channel for the exponential decay of TLS
excitation and causes an increase in the relaxation rate.
We show, however, that only a fraction of the TLS energy
is transferred to the NP and that the rest of the energy
oscillates. The envelope of the excited state population
of the TLS decays exponentially. The closer the TLS is to
the NP, the smaller the oscillating fraction of the energy.
At the same time, even though the interaction of the TLS
with higher modes is strong, the remaining energy is not
transferred into the condensation point but rather into
lower modes. The reason for this is the resonant partici-
pation of the lower modes in energy transfer. The choice
of the resonance frequency is controlled by the distance
between the TLS and NP.

Relaxation of a TLS occurs in three stages. At the
first stage, the TLS decays exponentially into countable
number of multipole modes located near the conden-
sation point. The characteristic time of this process
is τexp = Γ −1∼0.1/ωpl∼10−15 s. At the second stage,
the Rabi oscillations with the characteristic period of
τRabi∼10−14 s arise. Finally, at the third stage, the relax-
ation is again exponential with τJoule∼10−13 s due to
Joule losses in metal.

This agrees with the results of Ref. [9] in which
it is shown that the decay rate of a TLS placed near
a metallic spherical particle increases by a few orders
of magnitude when higher multipoles are taken into
account, τmulti

relax ∼10−13 s. For comparison: the relaxation
time of an isolated quantum dot is τQD∼10−10 s, when
the dipole–dipole interaction is taken into account it

d-d −12
is τrelax∼10 s, and with the Rabi oscillation it is
τRabi∼10−13 s. This decrease of the τrelax is due to
the Purcell effect caused by the interaction with higher
multipoles that becomes significant when the distance
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etween a NP and a TLS decreases. As opposed to the
ipole–dipole interaction, the role of the Joule losses
ncreases so that the TLS relaxation is mainly determined
y the Joule losses. So that the characteristic relaxation
ime of the atom coincides with the Joule relaxation time
Joule∼10−13 s.

The relaxation of a quadrupole mode into reservoir
as been considered in Ref. [6]. It has been shown that
aking into account a non-markovian interaction of the
uadrupole mode with the continuum set of reservoir
odes results in the appearance of the Rabi oscilla-

ions between excitations of the quadrupole mode and
he reservoir modes, whereas the markovian descrip-
ion of the interaction predicts exponential decay. In our
ase, the Rabi oscillations exist between excitations of
he plasmons and the quantum dot. On this background,
he Rabi oscillation predicted in Ref. [6] can hardly be
bserved.

The physical picture considered differs from usual
adiation quenching of a TLS positioned near a plas-
onic structure in which TLS radiation into the free

pace is suppressed and most of the energy is trans-
erred into plasmons because the probability of plasmon
xcitation is much higher than radiation of photons. In
ur system, the radiation is still suppressed, however
y changing the distance between the TLS and NP, the
nergy can be selectively transferred into a desired mode.
his result suggests that it may be possible to create a

unable frequency converter in nano-optics.
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