Scaling and Fluctuations of the Lyapunov Exponent in a 2D Anderson Localisation Problem

Yoichi Asada¹, Keith Slevin¹, Tomi Ohtsuki², Lev I. Deych^{3*}, Alexander A. Lisyansky³, and Boris L. Altshuler⁴

¹Department of Physics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka-city, 560-0043 Osaka, Japan

²Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan

³Department of Physics, Queens College of CUNY, Flushing, NY 11367, USA

⁴Physics Department, Princeton University and NEC Research Institute, Princeton NJ 08540, USA

(Received August 14, 2002)

KEYWORDS: localisation, Anderson model, fluctuation, scaling

In one-dimensional (1D) systems it is well known that the Lyapunov exponent (LE) has a normal distribution and that its average value $\langle \gamma_{1D} \rangle$ is related to its variance σ_{1D}^2 by

$$\frac{\sigma_{1D}^2 L}{\langle \gamma_{1D} \rangle} = 1. \tag{1}$$

Here $\langle ... \rangle$ represents a statistical average over realizations of the random potential. Expression (1) was first conjectured by Anderson *et al.*¹⁾ and later derived by many different authors within the framework of the random phase approximation. A correct and rigorous criterion for the validity of (1) was established only much later.^{2,3)} For a sufficiently long 1D system the logarithm of the dimensionless conductance q is approximately

$$ln g \simeq -2\gamma L.$$
(2)

Since a normal distribution is parameterised by its mean and variance, (1) establishes the single parameter scaling of the conductance distribution for 1D systems.

The objective of this paper is to establish a generalisation of (1) for the two dimensional Anderson model with diagonal disorder. We first investigate numerically the behaviour of the ratio on the l.h.s. of (1) in quasi-1D systems with length L and width M where $L \gg M$. (In this case, strictly speaking, we mean the smallest positive LE.) Contrary to 1D, and as we shall see below, this ratio is not a constant in quasi-1D systems. While at first sight this seems to call into question the validity of single parameter scaling, a careful analysis reveals that the ratio obeys a one parameter scaling law of the form

$$\frac{\sigma^2 L}{\langle \gamma_L \rangle} = F_\sigma \left(\frac{\xi}{M} \right). \tag{3}$$

where ξ is the localisation length in 2D limit. This makes it clear that a deviation from (1) does not, of itself, imply a breakdown of one parameter scaling.

We consider a two-dimensional Anderson model described by a tight binding Hamiltonian with diagonal disorder and nearest neighbour hopping on a square lat-

tice.

$$H = \sum_{i} \epsilon_{i} c_{i}^{\dagger} c_{i} - \sum_{\langle i,j \rangle} c_{i}^{\dagger} c_{j}. \tag{4}$$

Site energies ϵ_i are uniformly distributed on the interval [-W/2, W/2].

Before proceeding we must extend the usual definition of the LE, involving the taking of the limit $L \to \infty$, to finite length L. We consider a quasi-1D sample with the length L and width M ($L \gg M$). In the transverse direction we impose periodic boundary conditions. Our definition takes as its starting point the transfer matrix method of MacKinnon and Kramer.⁴⁾ We consider a transfer matrix T_L which is a product of a transfer matrix X_i for each slice up to the length L, $T_L = \prod_{i=1}^L X_i$. We prepare a random orthogonal $2M \times 2M$ matrix U_0 . By repetition of a process involving several transfer matrix multiplication followed by a Gramm-Schmidt orthogonalization, we can express the matrix $T_L U_0$ as the product of an orthogonal matrix U_L and a right triangular matrix

$$T_{L}U_{0} = U_{L} \begin{pmatrix} D_{L}^{(1)} & R_{L}^{(1,2)} & \cdots & R_{L}^{(1,2M)} \\ 0 & D_{L}^{(2)} & \ddots & R_{L}^{(2,2M)} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & D_{L}^{(2M)} \end{pmatrix}$$
(5)

We define the Lyapunov exponents $\gamma_L^{(i)}$ for finite length from the diagonal part of the right triangular matrix in (5)

$$\gamma_L^{(i)} = \frac{1}{L} \ln D_L^{(i)}. \tag{6}$$

In the present work, we concentrate on the statistics of the smallest positive Lyapunov exponent $\gamma_L = \gamma_L^{(M)}$. The LE for finite length L, defined in this way, is a random variable depending on the realisation of the random potential.

We study the dependence of the average $\langle \gamma_L \rangle$ and its variance σ^2 on the strength of disorder W, the energy E, the width M and the length L. The number of samples in each ensemble ranges from 1000 to 3000.

We have taken L sufficiently large that the average

^{*} lev_deych@qc.edu

 $\langle \gamma_L \rangle$ is independent of L. In this limit its value is equal to the standard Lyapunov exponent defined in the limit $L \to \infty$

$$\langle \gamma_L \rangle \simeq \gamma = \lim_{L \to \infty} \gamma_L.$$
 (7)

Thus the inverse of $\langle \gamma_L \rangle$ is equal to the quasi-1D localisation length. Since, as is well known, this latter quantity obeys a one parameter scaling law we deduce that

$$\langle \gamma_L \rangle M = F_\gamma \left(\frac{\xi}{M} \right)$$
 (8)

In the limit that $M \gg \xi$ we expect that

$$\langle \gamma_L \rangle M \to \frac{M}{\xi}$$
 (9)

Thus it seems reasonable to approximate the scaling function (8) by the expansion

$$F_{\gamma}\left(\frac{\xi}{M}\right) = \frac{M}{\xi} + \sum_{n_{\gamma}=0}^{n_{\gamma}} a_n \left(\frac{\xi}{M}\right)^n. \tag{10}$$

Fitting our numerical data to this function, truncated at $n_{\gamma} = 1$, we obtain the localisation length ξ for each energy and disorder.

Next we consider the quantity $\sigma^2 L$. For small L, this depends on L. However, we restrict attention here to L sufficiently large that $\sigma^2 L$ becomes independent of L to within numerical accuracy. Since $\langle \gamma_L \rangle$ is also independent of L in this limit, a one parameter scaling relationship of the form (3) between the mean and variance of LE is possible. Our numerical data are consistent with $F_{\sigma}(\xi/M)$ approaching a constant value for large M/ξ . Given this an expansion of the form

$$F_{\sigma}\left(\frac{\xi}{M}\right) = \sum_{n_{\sigma}=0}^{n_{\sigma}} b_n \left(\frac{\xi}{M}\right)^n \tag{11}$$

is plausible. As none of the expansion coefficients is fixed, the absolute value of ξ and the fitting parameters b_n cannot be determined by fitting only to (11). To obtain their absolute values, we fix the localisation length at E=0.0 and W=7.0 as $\xi=20.63$ according to the result of finite size scaling analysis of $\langle \gamma_L \rangle M$ presented above. After that we use (11), truncated at $n_{\sigma}=4$, to find the absolute values of the coefficients b_n and the two-dimensional localisation length ξ for each value of energy and disorder.

The data and scaling function $F_{\sigma}(\xi/M)$ are shown in Fig. 1. It is seen that, within the accuracy of the simulation, all the data fall on a single curve confirming

our assumption of a one parameter scaling for the variance as described by (3). The estimates of ξ obtained from the two analyses, based on the scaling of $\sigma^2 L/\langle \gamma_L \rangle$ and of $\langle \gamma_L \rangle M$, are in close agreement. This finding is strong evidence that the distribution of the LE in the two-dimensional Anderson model is described by a single parameter.

With decreasing M/ξ , $\sigma^2 L/\langle \gamma_L \rangle$ appears to approach unity consistent with the relation (1) for 1D. For large M/ξ , $\sigma^2 L/\langle \gamma_L \rangle$ approaches the asymptotic value b_0 . We

Fig. 1. $\sigma^2 L/\langle \gamma_L \rangle$ vs M/ξ . The solid line is the scaling function obtained by the analysis.

estimate

$$b_0 = \lim_{M/\xi \to \infty} F_{\sigma} \left(\frac{\xi}{M} \right) = 0.13 \pm .01.$$
 (12)

This value is significantly smaller than the value of unity for one-dimensional systems indicating that the fluctuations in 2D systems are much weaker than in 1D systems.

- P. W. Anderson, D. J. Thouless, E. Abrahams, D. S. Fisher, Phys. Rev. B, 22, 3519 (1980).
- L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev. Lett. 84, 2678 (2000).
- L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev B 64, 224202 (2001).
- A. MacKinnon and B. Kramer, Z. Phys. B Condensed Matter, 53, 1 (1983).