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In one-dimensional (1D) systems it is well known that
the Lyapunov exponent (LE) has a normal distribution
and that its average value 〈γ1D〉 is related to its variance
σ2

1D by

σ2
1DL

〈γ1D〉
= 1. (1)

Here 〈. . .〉 represents a statistical average over realiza-
tions of the random potential. Expression (1) was first
conjectured by Anderson et al.

1) and later derived by
many different authors within the framework of the ran-
dom phase approximation. A correct and rigorous cri-
terion for the validity of (1) was established only much
later.2,3) For a sufficiently long 1D system the logarithm
of the dimensionless conductance g is approximately

ln g ' −2γL. (2)

Since a normal distribution is parameterised by its mean
and variance, (1) establishes the single parameter scaling
of the conductance distribution for 1D systems.

The objective of this paper is to establish a general-
isation of (1) for the two dimensional Anderson model
with diagonal disorder. We first investigate numerically
the behaviour of the ratio on the l.h.s. of (1) in quasi-1D
systems with length L and width M where L � M . (In
this case, strictly speaking, we mean the smallest posi-
tive LE.) Contrary to 1D, and as we shall see below, this
ratio is not a constant in quasi-1D systems. While at
first sight this seems to call into question the validity of
single parameter scaling, a careful analysis reveals that
the ratio obeys a one parameter scaling law of the form

σ2L

〈γL〉
= Fσ

(

ξ

M

)

. (3)

where ξ is the localisation length in 2D limit. This makes
it clear that a deviation from (1) does not, of itself, imply
a breakdown of one parameter scaling.

We consider a two-dimensional Anderson model de-
scribed by a tight binding Hamiltonian with diagonal
disorder and nearest neighbour hopping on a square lat-
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tice.

H =
∑

i

εic
†
i ci −

∑

〈i,j〉

c†i cj . (4)

Site energies εi are uniformly distributed on the interval
[−W/2,W/2].

Before proceeding we must extend the usual definition
of the LE, involving the taking of the limit L → ∞,
to finite length L. We consider a quasi-1D sample with
the length L and width M (L � M). In the trans-
verse direction we impose periodic boundary conditions.
Our definition takes as its starting point the transfer ma-
trix method of MacKinnon and Kramer.4) We consider a
transfer matrix TL which is a product of a transfer matrix
Xi for each slice up to the length L, TL =

∏L
i=1 Xi. We

prepare a random orthogonal 2M × 2M matrix U0. By
repetition of a process involving several transfer matrix
multiplication followed by a Gramm-Schmidt orthogo-
nalization, we can express the matrix TLU0 as the prod-
uct of an orthogonal matrix UL and a right triangular
matrix

TLU0 = UL
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(5)

We define the Lyapunov exponents γ
(i)
L for finite length

from the diagonal part of the right triangular matrix in
(5)

γ
(i)
L =

1

L
ln D

(i)
L . (6)

In the present work, we concentrate on the statistics of

the smallest positive Lyapunov exponent γL = γ
(M)
L .

The LE for finite length L, defined in this way, is a ran-
dom variable depending on the realisation of the random
potential.

We study the dependence of the average 〈γL〉 and its
variance σ2 on the strength of disorder W , the energy E,
the width M and the length L. The number of samples
in each ensemble ranges from 1000 to 3000.

We have taken L sufficiently large that the average
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〈γL〉 is independent of L. In this limit its value is equal
to the standard Lyapunov exponent defined in the limit
L → ∞

〈γL〉 ' γ = lim
L→∞

γL. (7)

Thus the inverse of 〈γL〉 is equal to the quasi-1D localisa-
tion length. Since, as is well known, this latter quantity
obeys a one parameter scaling law we deduce that

〈γL〉M = Fγ

(

ξ

M

)

(8)

In the limit that M � ξ we expect that

〈γL〉M →
M

ξ
(9)

Thus it seems reasonable to approximate the scaling
function (8) by the expansion

Fγ

(

ξ

M

)

=
M

ξ
+

nγ
∑

nγ=0

an

(

ξ

M

)n

. (10)

Fitting our numerical data to this function, truncated
at nγ = 1, we obtain the localisation length ξ for each
energy and disorder.

Next we consider the quantity σ2L. For small L, this
depends on L. However, we restrict attention here to L
sufficiently large that σ2L becomes independent of L to
within numerical accuracy. Since 〈γL〉 is also indepen-
dent of L in this limit, a one parameter scaling relation-
ship of the form (3) between the mean and variance of
LE is possible. Our numerical data are consistent with
Fσ(ξ/M) approaching a constant value for large M/ξ.
Given this an expansion of the form

Fσ

(

ξ

M

)

=

nσ
∑

nσ=0

bn

(

ξ

M

)n

(11)

is plausible. As none of the expansion coefficients is fixed,
the absolute value of ξ and the fitting parameters bn

cannot be determined by fitting only to (11). To obtain
their absolute values, we fix the localisation length at
E = 0.0 and W = 7.0 as ξ = 20.63 according to the
result of finite size scaling analysis of 〈γL〉M presented
above. After that we use (11), truncated at nσ = 4,
to find the absolute values of the coefficients bn and the
two-dimensional localisation length ξ for each value of
energy and disorder.

The data and scaling function Fσ(ξ/M) are shown in
Fig. 1. It is seen that, within the accuracy of the sim-
ulation, all the data fall on a single curve confirming

our assumption of a one parameter scaling for the vari-
ance as described by (3). The estimates of ξ obtained
from the two analyses, based on the scaling of σ2L/〈γL〉
and of 〈γL〉M , are in close agreement. This finding is
strong evidence that the distribution of the LE in the
two-dimensional Anderson model is described by a sin-
gle parameter.

With decreasing M/ξ, σ2L/〈γL〉 appears to approach
unity consistent with the relation (1) for 1D. For large
M/ξ, σ2L/〈γL〉 approaches the asymptotic value b0. We
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Fig. 1. σ2L/〈γL〉 vs M/ξ. The solid line is the scaling function

obtained by the analysis.

estimate

b0 = lim
M/ξ→∞

Fσ

(

ξ

M

)

= 0.13 ± .01. (12)

This value is significantly smaller than the value of unity
for one-dimensional systems indicating that the fluctua-
tions in 2D systems are much weaker than in 1D systems.
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