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Abstract. The propagation of surface electromagnetic waves
along photonic crystal (PC) boundaries is examined. It is
shown that in a number of cases, these are backward waves.
The nature of surface electromagnetic states localized at the PC
boundary is discussed; these states transfer no energy along the
boundary (their tangential wave number is zero). An analogy
with the well-known Tamm and Shockley surface states in solid
state physics is drawn. It is shown that in the case of a PC, both
types of states can be regarded as Tamm states. Experimental
results on the observation of surface states are presented. A
system using an external magnetic field to control a surface
state is considered.

1. Introduction

Recently, considerable attention in the literature has been
focused on the investigation of the properties of photonic
crystals (PCs) [1-3], which is primarily due to the prospect
of their application in quantum optics and optoelectronics.
However, the interaction of electromagnetic waves with PCs
is also interesting from the standpoint of conventional
natural-crystal optics. The main difference between PCs
and conventional optical materials is as follows: in the
passage of waves with wavelengths down to the ultraviolet
range, homogeneous media can be considered continuous
translation invariant, while PCs are invariant only under the
group of discrete translations of the corresponding lattice.
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Under these conditions, highly unusual laws of refraction
and reflection become applicable [4]. For instance, phenom-
ena such as negative refraction, which is vigorously studied
in metamaterials with a permittivity ¢ < 0 and a magnetic
permeability u < 0 [5], the superprism effect [6-9], and the
channeling of electromagnetic waves may be realized in PCs
[10]. In the reflection from a high-index interface [11], side
lobes may emerge even at low frequencies (the Borrmann
effect) [12, 13], and leaky waves may emerge in the passage
of waves through a bounded PC [14]. A close analogy
between PC electrodynamics and quantum mechanics of
ordinary electronic crystals plays an important role in the
study of PC properties. It has enabled researchers to readily
construct an adequate apparatus for the description of the
phenomena by borrowing it from solid-state physics. In
turn, the investigation of PCs has an impact on solid-state
physics: the absence of the interaction between photons in
linear electrodynamics allows studying the interference and
diffraction effects in their pure form. These are Anderson
localization [15], Berry oscillations [16—19], channeling [10],
and emergent surface states, which are the subject of our
review. In finite samples of homogeneous media, as well as
of PCs, surface solutions localized on both sides of the
boundary emerge [20-22] because the boundary breaks the
translational invariance.

In the recent literature concerned with PCs, a tendency
can be seen to draw a distinction between Tamm and
Shockley surface states in PCs [23-25]. In this review, we
consider both of them in detail and show that there are no
special reasons to distinguish between these states because the
physics underlying their occurrence is the same.

For clarity and for simplicity of computations, our
consideration is based on one-dimensional PCs (layered
systems). In the simplest case of isotropic materials, this is
a physical realization of the Kronig-Penney model. How-
ever, the vector nature of fields in electrodynamics makes
the one-dimensional problem much richer than the quan-
tum-mechanical one. This difference is most clearly exposed
in the consideration of PCs consisting of anisotropic
materials.
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2. Surface solutions at the interface between
homogeneous media

We begin with the problem of the propagation of surface
electromagnetic waves. As is commonly known [22, 26, 27], a
surface wave may propagate along the boundary between
isotropic media whose permittivities have opposite signs. The
field of this wave decreases exponentially with the distance
from the interface. The field decrease in a medium with a
negative permittivity (NP) is due to the purely imaginary
value of the wavenumber in this medium. The wave decrease
in a medium with a positive permittivity is due to the
condition for total internal reflection: the tangential compo-
nent of the wave vector of a surface wave (SW) exceeds in
modulus the wave vector k- in the medium with positive

permittivity €+ (see Ref. [22]):
LIS ULV I (1)
le<o|l — &0

It is noteworthy that the SW under consideration is TM
polarized (Fig. la). If a medium with a negative magnetic
permeability (NMP) is taken instead of an NP medium, the
SW is TE polarized.

The Poynting vectors on different sides of the interface are
oppositely directed [27], such that the Poynting vector is
antiparallel to the phase velocity in the NP medium (NMP
medium) and is parallel to the phase velocity in the medium
with positive permittivity and permeability. The total energy
transfer is aligned with the phase velocity: the SW is a direct
wave.

In addition to surface waves, other solutions localized
near the interface may exist. At the interface between an NP
medium and an NMP medium, a surface state exists with a
zero wavenumber along the surface if p;/e; = uy/e2 <0
[28, 29].

The requirement that the permittivity changes sign in
passing through the interface is needed to match the
continuity condition for the tangential field components to
the exponential field decrease on both sides of the interface.

Figure 1. Surface wave at the interface between two homogeneous media
(&1 = 1, &5 = —2). (a) Electric and magnetic field lines near the surface (the
medium with k,/ky = 1.414 is on top). (b) Coordinate dependence of the
magnetic field. The wave parameters is &k, /ky = 1.414.

The continuity of the tangential electric field component
E. ~ (1/¢)(0H,/0z) requires compensation of the change of
sign of the derivative 0H,/0z, which occurs due to the
exponential decrease in the magnetic field with the distance
from the interface (Fig. 1b).

3. Surface waves at the boundary
of a photonic crystal

PCs are noted for a wide variety of different surfaces modes.
The underlying reason is the difference between Bloch and
plane waves. While the propagation of a Bloch wave over
distances greater than the elementary cell size is well described
by the Bloch wave vector, a substantial difference in the field
distribution between plane and Bloch waves occurs on a scale
smaller than the elementary cell size, even though the wave
vectors of these waves may coincide.

For example, we consider a PC whose cell consists of two
homogeneous layers (Fig. 2). In the general case of an oblique
wave propagation with respect to the PC plane that is
perpendicular to the z axis, the problem is two-dimensional
and reduces to two scalar problems that correspond to the TE
polarization (with the nonzero field components E,, H, and
H.) and the TM polarization (with the nonzero field
components H,, E,, and E.) [30]. For the TE polarization,
the electric and magnetic fields of these waves in the nth layer
are given by

Eyy = Ayexp [iky(z — z,) + kx|
+ B, exp [ —ikoy(z — z4) + ikxx] ,

.c 0 c .
H., =i =3 E, = - kz,,{A,, exp [ikzy(z — zu) + kix]
— Byexp | — ikzy(z — z,) + ikyx] } , (2)
.c 0 . .
H., = —i 5 o E = é kx,,{An exp [1kz,,(z —z,) + lkxx]

+ Buexp [~ ikan(z — 2) + ko] }

where z, is one of the boundaries of the nth layer and
kz = (e714;k§ — k2)"/* is the normal component of the wave
vector in the jth layer.

We use the continuity condition for E, and H, at the layer
boundary and invoke the Floquet theorem (E(z+d) =
exp (ikpd) E(z), where kg is the Bloch wavenumber) to
obtain a homogeneous system of linear equations for the
coefficients A, and B, [31-35]. The condition that the
determinant of the corresponding matrix vanishes leads to a
dispersion equation that defines the Bloch wavenumber.
When the cell consists of two layers, the equation has the

<V
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Figure 2. Schematic diagram of a one-dimensional photonic crystal.
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where the indices 1, 2 denote the layer number and {, is the o L= <7 - | | Iy |
normal impedance ! of a layer [32]. For the TM polarization = T P
L. > — 20 40 60 80 100 120, 140 z,
¢y = k.n/ (kon), and for TE polarization, ¢, = —(kou,,)/kzn. > , L : _- 1 nm
It is important for the subsequent analysis that although B | .7
Eqn (3) defines the effective wavenumber kg of a Bloch wave » ! //
propagating through a PC, assigning this wave the effective : /
characteristic or normal impedance is impossible. This is 6 | //
|

because the ratio between the fields is uniquely related to
these quantities only for a plane wave propagating through a
homogeneous space. In every individual layer of a PC, the
Bloch wave is the sum of two counterpropagating plane
waves [31, 32, 34]. As a result, the ratio { = E\/H, varies
even within one layer. In general, this ratio is a periodic
function of the coordinate, which distinguishes the Bloch
wave from the plane one, for which the ratio { = E;/H; hasno
spatial dependence.

When the modulus of the right-hand side of Eqn (3)
exceeds unity at some frequency, kg acquires an imaginary
part, and there are no bounded solutions for an infinite PC.
These frequencies make up a forbidden band. When a PC fills
a semi-infinite space, bounded solutions exist at the frequen-
cies of the forbidden band; on average, these solutions
decrease exponentially with the distance from the boundary.
We emphasize that the Bloch wave does not transfer energy in
the forbidden band and that its impedance is a purely
imaginary quantity (we neglect losses). Being a periodic
function of the coordinate normal to the interface, the
quantity { = E,/H, takes all values from —ico to +ico within
a PC cell (Fig. 3) and is equal to the input impedance of a
semi-infinite PC whose boundary coincides with the corre-
sponding cell section. Therefore, { takes any purely imaginary
value, depending on the choice of the location of the
elementary cell boundary. At the lower edge of the forbidden
band, the pole of the input impedance is observed when the
elementary cell boundary passes through the middle of the
higher-¢ layer (the solid line in Fig. 3). As the frequency
increases, the pole shifts, and at the frequency of the upper
edge of the forbidden band, it is located in the middle of the
lower-¢ layer (the dashed line in Fig. 3).

The zero or infinite impedance values occur at the
positions of the electric and magnetic field nodes that appear
in the prefactor of the Bloch wave at forbidden band
frequencies. In the general case, the input impedance may
take any intermediate value, depending on the location of the
PC boundary. This ensures the existence of surface waves at
the interface between a PC and a medium with positive
permittivity and permeability. When the condition for total
internal reflection is satisfied, the solution in the medium with

! The characteristic impedance \//% must be distinguished from the
normal impedance, which appears in the problem of plane wave refraction
at the boundary of a semi-infinite space filled with a homogeneous
material. These impedances coincide only in the case of normal incidence.
2We emphasize that for the TE polarization, the normal impedance, which
is defined as the ratio E;/Hy, is a negative quantity equal to the negative
value of the impedance (;, which is introduced by the equality
E. = {;H xn [22], because when n=(0,0,1), this definition yields
Ey = —‘ELHX.

Figure 3. Coordinate dependence of the imaginary part of the impedance
within one elementary PC cell of the form {(e1,d1/2), (¢2,d>), (¢1,d1/2)}
for the lower (solid curve, frequency ko = 0.00807 nm~') and upper
(dashed curve, frequency ko = 0.0159 nm~") edges of the first forbidden
band for k, = 0. The higher-permittivity layer is shown in dark color. The
real part of the impedance is equal to zero because there is no energy
transfer. The parameters are ¢; = 10, &, = 1, d; = 50 nm, d> = 100 nm.

positive permittivity and permeability decreases exponen-
tially with the distance from the interface and has a purely
imaginary surface impedance at the interface. This solution
may be matched to the Bloch wave. This matching becomes
possible due to the oscillations of the Bloch wave field inside
the elementary cell. They have the effect that the sign of
0H,/0z may be positive at isolated points, despite the
exponential wave decay on the scale of an integer number of
cells, while the decreasing exponent by itself has a negative
derivative (Fig. 4) (see Ref. [36]).

The dispersion equation of a surface wave is the
previously mentioned condition for the equality of surface
impedances of waves that decrease with the distance from the
interface of a uniform medium and a photonic crystal.

X, nm 500

Figure 4. TE-polarized surface wave (the instantaneous value of the
electric field) at the interface between the vacuum and a PC with the cell
{(6[,(1[), (Sz,dz)} (S[ = 2, & = 10, d[ =232 nm, dz =100 nm, and
frequency ko = 0.00835 nm~"). The tangential wave vector component is
such that k,/ko = 0.8,/¢1, which ensures wave propagation in every PC
layer and an exponential decrease in the vacuum.
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For a crystal with a cell consisting of two uniform layers, it
follows from Eqns (2) and (3) that the surface impedance Z
for the TM polarization, or the surface admittance (the
inverse impedance) for the TE polarization, is given by [36]

Z=—¢ {(cz cosk.dy + il sink.idy ) exp (ik.adb)
— exp [ikn(d; + )] |
x {(gl coskzidy +ils sin k.1 dy) exp (ik-ods)

—{jexp [ikB(dl +d2)]}_l, 4)

where {; = k_;/(g;ko) is the normal impedance in the jth layer
for the TM polarization and {; = —k;/(u; ko) is the normal
admittance in the jth layer for the TE polarization.

The wave in a homogeneous semi-infinite space located to
the left of the PC should decrease in the negative direction of
the z axis, and hence the wavenumber corresponding to it is
—k. and the surface impedance is equal to the negative value
of the normal impedance.

By equating the surface impedances, we obtain the
condition for the existence of a TE-polarized surface wave
[31]:

Verks =k py (Tk. k.
V7O xR {{ 2 cos(k,1dy)+i el sin(kzldl)}
Il m L I
. k. .
X exXp (lkzgdz) — ﬂ_z exp [lkB(dl + dz)} }
2

k. k.
x { [i cos(kady) + i —= sin(k.1dy )}
" H

. k. . -
x exp (ikadsy) — M—l exp [1k3(d1 + dz)} } (5)
1

with k.j=/eiukd — k2 and k.o =/exprk¢ — k2, and the

condition for the existence of a TM-polarized surface wave:

Verks —kE e (T k.
A {[—2 cos(kydy) +i—4 sin(kzldl)}
. .

e &1 &

. k- .
x exp (ikdy) — F;; exp [1kB(d1 + dz)} }

X {|:@ COS(kzldl) +1 @ Sil’l(kzldl)]

€1 &
. k.1 . -
x exp (ikodh) — o exp [ikg(di +do)]p . (6)

When ¢ and u are positive in a homogeneous medium
bordering a PC, such waves localized near the PC boundary
are bound to have a nonzero tangential wavenumber, because
the formation of an inhomogeneous wave in a homogeneous
space requires the condition for total internal reflection. The
existence of an SW on the PC surface does not necessitate the
existence of a boundary at which the permittivity or the
permeability change sign. While the exponential decrease in
the SW in a homogeneous semi-infinite space is related to the
condition of total internal reflection (k2 > kg), the decrease
in the SW field in the direction to the interior of the PC is
related to the existence of a forbidden band. In this case, the
PC plays the role of a medium with negative permittivity
(permeability). We note that the SW at the interface with a PC
with positive permittivity and permeability exists when the
solution in at least one of the layers is a propagating solution
(kge: > k2 [31].

We note that a PC can maintain both TE and TM SWs
within one forbidden band, playing the role of either a
negative-permittivity medium or a negative-permeability
medium [36]. Because the TE- and TM-forbidden bands do
not generally coincide for nonzero values of the tangential
wavenumber, for greater clarity we consider the band
structure of a class of PCs with different first-layer thick-
nesses d;. We fix the value of y = k,/ky and introduce the
parameter

N a7

_d1\/81 —V2+d2\/82—"/2’

which has the meaning of the relative optical thickness of the
first layer and characterizes the PC cell structure. In Fig. 5,
the bands allowed for both polarizations are marked in dark
grey, the TE-forbidden bands in light grey, and the TM-
forbidden bands in white. It can be seen that TM-forbidden
bands are inside the TE-forbidden bands. The solid bold and
dotted lines respectively correspond to surface waves with
the TE and TM polarizations. Therefore, for the same PC
(with the value of D fixed) and the same forbidden band
number, we can observe SWs with both polarizations,
although at different frequencies. When the values of
y = ky/ko for TE and TM polarizations are different, it is
possible to obtain SWs with both polarizations at the same
frequency, but they then reside in forbidden bands with
different numbers.

As discussed above, an SW can propagate at the interface
between homogeneous media when |eo| > &¢-¢. Although
the Poynting vector in an NP medium is antiparallel to the
phase velocity of the SW, this inequality makes the surface
wave direct (the total Poynting vector is parallel to the phase
velocity of the SW). In the case of a PC-NP-medium interface
(with the PC acting as a medium with positive permittivities),
the above bound on the permittivities is absent, which has the
consequence that the backward SW may exist (both the total
Poynting vector and the group velocity are antiparallel to the

Figure 5. Evolution of the PC band structure as D; varies. The bands
forbidden for TM-polarized waves (shown in white) are inside the bands
forbidden for TE-polarized waves (shown in light grey and white). Dashed
and bold solid lines respectively correspond to TE and TM surface waves.
The abscissa shows the relative optical thickness D of the first layer. The
PCcell parameters {(e,d) ), (e2,da) } aree; = 2, = 10, exy = 1, the value
y = ky/ko = 0.8,/¢) ko ensures propagation through the dielectric with a
permittivity ¢; and an exponential decrease in the vacuum required for the
existence of a surface wave. The frequency is normalized by the quantity

Ko =n/(dy/e2 — ?).
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Figure 6. Dispersion curve for a TM-polarized surface state from the first
forbidden band of a PC with the cell {(e;,d), (e2,d>)} where ¢ =2,
& = 10, d; = 200 nm, and ¢ = 100 nm, which has an interface with an
NP medium with ¢ = —0.1. The negative slope of the dispersion curve
corresponds to a backward wave.

Figure 7. Tamm state at the interface between a PC (for which ¢ = 2,
& = l,d; = d» = 100 nm, ko = 0.0132 nm~" is the frequency of the Tamm
state, and the cell is symmetric {(e;,d|/2), (&2,d2), (¢1,d1/2)}) and a
medium with esng = —3. The tangential component of the wave is vector
ky=0.

phase velocity of the SW). This situation is illustrated in Fig. 6.
The existence of a negative-slope portion of the dispersion
curve (see Fig. 6) signifies that two surface waves may exist at
the same frequency for different values of k,: one of the waves
is direct and the other is backward. In one wave, more energy
is transferred through the PC, and in the other, through the
NP medium.

The existence of backward surface waves was first
considered in papers studying SWs at the interface between
a PC and a Veselago medium (a medium with negative
permittivity and negative permeability) [37-39]. As follows
from the foregoing, the negativeness of only one of them
would be sufficient for the existence of backward SWs;
however, backward SWs with only one polarization may be
observed in that case: TM for an NP medium and TE for an
NMP medium.

4. Tamm surface states

The surface waves considered in Section 3 travel along the
interface between a PC and a medium with positive
permittivity and permeability. By combining two such waves
traveling in opposite directions, it is possible to obtain a state
in the form of a standing surface wave, which does not
transfer energy. In this case, the tangential wavenumber k.
is not equal to zero, because the condition for total internal
reflection in the dielectric bordering the PC should be
satisfied. However, when a PC made of nonmagnetic
dielectrics has an interface with an NP material, this
condition does not have to be satisfied, and solutions with
k, = 0 may exist on the boundary that are uniform along the
surface (surface states) and do not transfer energy (Fig. 7). 3
Using the analogy to the previously mentioned Engheta
surface state [28] at the interface between NP and NMP
media, the PC may be considered a medium with u < 0.

We also note that the equation for the electric field is an
exact analog of the one-electron Schrodinger equation for a
semi-infinite crystal, whose solution is the Tamm surface

3 The possible existence of uniform surface states that do not transfer
energy was first considered in Refs [40, 41], where the problem of a PC at
an interface with a perfectly conducting surface was solved. Among the
waveguide-type solutions, a solution with &, = 0 was found. However,
this fact did not receive proper attention (see Fig. 10).

state [36]. # In this case, the Maxwell equations reduce to the
Helmholtz equation
2

and the boundary conditions require the continuity of E, and
H,. Because H, ~ 0F,/0z, there is the complete correspon-
dence with the quantum mechanical problem

2
%+2M(E2 U) "
0z 7

where ¢ and 0y /Oz are continuous at the boundary.

In the general case, the dispersion equation for the surface
state under consideration is defined by formula (5) with
ky=0.

We emphasize that we are dealing with a solution having a
zero tangential wavenumber. Only surface waves could exist
in all the above systems composed only of materials with
positive ¢ and u. Exciting these waves by an incident wave
requires a prism or a diffraction grating to ensure the total
reflection condition. Here, we are dealing with a surface state
(Fig. 10), which may be observed when a wave is incident on
the layers normally [26]. The Tamm state may be experimen-
tally discovered by measuring the wave transmittance of a
finite-thickness photonic crystal layer interfaced with a
material layer with ¢ < 0. At the frequency corresponding to
the Tamm state, a narrow transmittance peak (Fig. 8) arising
from the tunneling of light through the Tamm state is
observed [36, 44]. The transmittances of the homogeneous
layer alone and of the PC (at a frequency in the forbidden
band) alone, indeed, turn out to be much lower than the
transmittance of the coupled system (see Fig. 8), because on

41n 1932, Tamm [42] predicted a new quantum effect: the localization of
an electron near the surface of a crystal. While the localization of a
classical particle requires that the potential energy have a well in some
specific spatial domain and the height of the potential barrier at the edges
of the domain exceed the total particle energy, a quantum particle may be
‘stopped’ by a periodic potential even in the case of above-barrier
reflection. The treatment was performed in the framework of the
Kronig-Penney model. The role of negative permittivity was played by
the external potential, which exceeded the energy of the Tamm state (see,
e.g., Ref. [43]).



248 A P Vinogradov, A V Dorofeenko, A M Merzlikin, A A Lisyansky Physics— Uspekhi 53 (3)
i.O @Yo o= T ll‘ oo ' a 0.020
7] AN AL I -1
| \ \ /((), nm
0.8 - ll Ly Y [} I
Vg Mgt 0.015 [=
| (WY L \/ | ]
0.6 | vl \ |
: Vo 0.010
0.4 ! Vo '
| \
| \/
02 ! 0.005 |
1 I ol
0.005 0.010 0.015 0.020 0.025 ko, nm™! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1.0
b ky/ko
0.0030 |-
Figure 10. Frequency of a TE-polarized SW propagating along the
- 0.0025 - interface between two PCs as a function of the tangential wavenumber
g 0.0020 ky (bold curve). The solution with k, = 0 signifies the existence of a surface
~ HE - state. The common forbidden band of the photonic crystals is shown in
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E 0.0010 L to the first PC (the PC parameters are specified in the caption to Fig. 9).
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Figure 8. Tamm state at the interface between a PC (6 periods) and an NP
medium (thickness dsng = 709 nm), with the same parameters as in Fig. 7.
(a) Transmittance of the system of the PC and a homogeneous medium
(solid curve) as well as of the PC (dashed curve) and of the layer of the
homogeneous medium (dotted curve) taken separately. (b) Imaginary part
of kg, which defines the location of forbidden bands in the crystal. At the
frequency ko = 0.0132 nm~', the transmission of a wave residing in the
forbidden band of the crystal is observed.

average the light is exponentially attenuated in passing
through the PC or the NP medium.

We recall that a PC may act as both an NP medium and an
NMP medium. This has the consequence that surface states
may exist at the interface between two different PCs (Fig. 9)
[36, 44-51].

Clearly, such a state lies in the frequency range corre-
sponding to the intersection of the forbidden bands of these
crystals. This state attracts particular interest because it does
not require the existence of media with negative ¢ or p.

Figure 9. Tamm state at the interface between two PCs (parameters of the
first PC are ¢; = 1, & = 4, dj = 157 nm, d, = 91 nm; parameters of the
second PC are ¢ =4, ¢, =2, dy =79 nm, d, = 111 nm). The wave
number is kg = w/c = 0.01 nm~! and the tangential component of the
wave vector is k, = 0.

both crystals. These quantities are calculated by formula (4)
with k, = 0. Both Bloch wavenumbers should be complex
and the waves should decrease away from the boundary.

In the system of two interfaced photonic crystals, the
existence of a Tamm state may be experimentally discovered
by observing the peak of transmittance of a sample consisting
of finite PC pieces, at the frequencies of the overlap of the
forbidden bands of the crystals (Fig. 11).

The existence of a Tamm surface state at the interface
between two PCs was experimentally observed in Ref. [44].
The first PC samples consisted of five bilayer elementary cells,
each of them comprising a 138 nm thick SiO, layer and a
93.6 nm thick Ta,Os layer. The elementary cell of the second
PC comprised an 87 nm thick magnetooptical layer of
bismuth-substituted yttrium iron garnet and a 138 nm thick
SiO; layer (Fig. 12). In the experiment, the transmittance and
the Faraday rotation angle for transmitted wave polarization
were measured (Fig. 13).

The characteristic transmission peak observed in the
experiment is in agreement with theoretical predictions that
attribute this peak to the existence of a surface state (SS).

Interestingly, when a PC is magnetized, the permittivity of
layers made of a magnetooptical material assumes the form of
a gyrotropic tensor. As a consequence, the eigensolutions of
the Maxwell equations inside a magnetooptical layer are
circularly polarized waves with different wavenumbers [52].
This results in the removal of the polarization degeneracy of
Bloch waves and in the emergence of two SSs close in
frequency, while the resonance transmission of differently
polarized waves is observed at different frequencies. An
enhancement of the Faraday effect, as in the presence of a
defect, is observed at the frequency lying halfway between
these resonances [36, 53, 54] (Fig. 13Db).

5. Shockley’s approach

Tamm'’s work on surface states [20, 42] gave rise to a number
of papers [21, 55-61] (see also review [43]) where various
models of semi-infinite or bounded crystals were considered
under different approximations. In 1939, Shockley [21]
followed the evolution of eigenstates of a finite chain of one-
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Figure 11. Transmittance of the system of two PCs (the parameters are the
same as in Fig. 9). (a) Transmittance of the system of two crystals (solid
curve) and of each of the crystals separately (dashed and dotted curves).
(b) Imaginary part of kg for the two crystals. At the frequency
ko = 0.01 nm~!, the transmission of a wave located in the forbidden
band of the crystal is observed.
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Figure 12. (a) Photograph of the structure used in the experiment.
(b) Coordinate dependence of the permittivity and the calculated field
distribution in the structure.
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Figure 13. Calculated (solid curves) and experimental (circles) data.
(a) Transmittance of the PC/PC structure (the curve with a peak) and of
each of the two separate PCs. (b) Faraday angle for the PC/PC structure
(the curve with a peak) and for a homogeneous Bi:YIG layer of summary
thickness.

dimensional atoms as the distance between them decreased,
and predicted the formation of SSs from the atomic states. In
his opinion, the nature of the SSs was different from the
nature of Tamm states. According to Shockley, the new SSs
were formed due to the intersection of s- and p- bands.
Furthermore, the significant effect of boundary conditions
was emphasized. Allegedly, a perturbation of the potential at
the boundary was necessary for the formation of Tamm
states, while this was not required for the formation of the
new Shockley states.

The states obtained by Shockley emerge even in the
framework of the equations of a one-electron problem, but
to interpret their nature, Shockley resorted to the properties of
a many-electron system obeying the Fermi statistics, i.e.,
imposed additional constraints on the solutions not stem-
ming from the initial equations. Therefore, despite several
subtle points observed by Shockley, paper [21] did not give a
clear criterion for distinguishing between Tamm and Shockley
states [62, 63]. As a consequence, this paper by Shockley
generated a multitude of attempts to derive this criterion. In
particular, explanations emerged that attributed Shockley
states to the formation of dangling bonds at the crystal
boundary [64, 65].
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The condition for the existence of a PC surface state
requires an exponential field decrease with increasing the
distance from the interface. It follows from the foregoing that
there are only three possible reasons for such behavior: the
fulfillment of the total internal reflection condition (which
gives rise to surface waves), the existence of a purely
imaginary wavenumber in NP and NMP media, and the
existence of a forbidden band. Do Shockley’s requirements
give rise to a new mechanism?

We begin with the ‘intersection of transparency bands.’
Actually, what is important is not the intersection of
transparency bands [21, 66] but the intersection of the edges
of these bands. More recently [67, 68], this effect was
interpreted as the intersection of the edges of a forbidden
band separating transparency bands or, more precisely, as the
closing of the transparency bands and the formation of a zero
forbidden band. The essence of the effect is easiest to
understand in the example of a PC with the elementary cell
consisting of two layers. It turns out that when the optical
layer thicknesses are multiples of each other, their transpar-
ency conditions (the conditions for the optical path to be equal
to an integer number of wavelengths) may be satisfied
simultaneously:

di\/erko = mny
dz\/gko = TNy .

In this case, although the Bragg reflection condition required
for the formation of a forbidden band is satisfied,

d{ky = nn,

where d=d| + d, <k> = (d] \/ak() + dzﬁko)/(d] + dz),
and n; + ny = n, the forbidden band itself is not formed: the
T-matrix of the elementary cell is equal to the unit matrix up
to a sign (for more details, see Refs [67-70]), i.e., a wave
incident on the cell does not experience reflection. It is
noteworthy that for the simplest, two-layer cell, this effect is
possible only in the case of above-barrier scattering. For a
more complex potential like that used in Shockley’s work, a
forbidden band may close in the presence of small tunneling
segments, which emerge when the interatomic distance is
sufficiently long.

Although the effect of a zero forbidden band by itself does
not give rise to a new mechanism of state localization near the
crystal boundary, we show in what follows that it plays an
important role in the possible classification of Tamm surface
states as Shockley and non-Shockley states.

We now consider the problem of the necessity of ‘potential
perturbation at the boundary’ in greater detail. It is
commonly assumed that Shockley states exist in the absence
of this perturbation, and that Tamm states emerge for a
sufficiently strong perturbation (as this takes place, the
Shockley states may also exist) [23, 24, 71, 72]. We note that
a perturbation of boundary conditions (deposition of addi-
tional layers on the boundary, and so on) may change the
surface state frequency and the picture of the evolution as the
‘atoms’ approach one another, but not the physics of the
phenomenon. No new mechanism responsible for the
exponential field decrease with the distance from the surface
emerges. ’

5 In what follows, we assume that an NP medium is located to the left of a
PC.
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Figure 14. Permittivity versus coordinate in a PC bordering a metal layer
(gext < 0) for a symmetric (a, b) and asymmetric (c) cell.

As shown in Ref. [63], Shockley’s requirement for the
absence of perturbations at the boundary amounts to the
requirement that the elementary cell of a crystal be symmetric.
The elementary cell used in Tamm’s work was taken to be
asymmetric with respect to its central plane. ¢ Shockley used a
symmetric representation of the elementary cell. In the
consideration of a semi-infinite space filled with an integer
number of elementary cells, passing from the Tamm case to
the Shockley case is effected by adding an extra layer at the
boundary. In a semi-infinite sample consisting of asymmetric
cells, it is indeed possible to recognize a sequence of
symmetric cells, and in this case, a part of the asymmetric
elementary cell remains on the crystal boundary, which seems
like an additional ‘potential perturbation at the boundary’
(Fig. 14c). Shockley treated this effect as a violation of
periodicity. Later, this effect was treated as a perturbation

6 In particular, the Kronig-Penney potential, which corresponds to a two-
layer PC cell, may be represented as symmetric when we consider the
elementary cell as one of the layers edged by halves of the other layer.
Shockley’s requirements for the symmetry of the system then coincide with
the requirement that the system comprise an integer number of cells
(Figs 14a and 14b).
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of the potential at the crystal boundary. As a result, the Tamm
states were accidentally attributed to the existence of a
perturbation of the potential near the surface [62, 71-74].
The same classification was transferred to photonic crystals
[23-25]. Because all the difference between Tamm and
Shockley states within this approach reduces merely to the
choice of elementary cell representation, this classification of
SSs is too farfetched in our view.

However, because the division of SSs into Tamm and
Shockley states is widely used, we trace this approach back to
its source. By analogy with how it was done in Shockley’s
paper, we follow the evolution of the band structure and
surface states as the distance between ‘atoms’ varies. In our
case, the role of atoms is played by the layers with a high
permittivity ¢,.’ Layers with a permittivity &; (g; < &) act as
the interatomic spacing, with their thickness d; being varied.
Increasing the interatomic distance in Shockley’s work
resulted in the emergence of electron tunneling segments.
We therefore consider two cases that correspond to positive
and negative values of ¢;. The band structure and the location
of surface states in both cases are depicted in Fig. 15.

We first consider the case of above-barrier scattering,
which occurs in Shockley’s model when the atoms are
sufficiently close to one another and the electron energy is
above the potential inside the lattice. For a PC, this means
that 0 < &; < &. We characterize the elementary cell structure
by the previously introduced parameter D, considering that
for y = ky/ko = 0, this parameter is

_ di+/e1
di\/er +da\/er

The frequency is measured in units of Ky = n/(d»+/€2). The
Bragg condition ko(di\/e| + dr+/e2) = mn is described by a
linear dependence of the frequency ko on Di: ko/Ky =
n(l — Dy). The point d; = oo corresponds to D; = 1; for
ko = 0, this is the point of a zero forbidden band for all n.
The condition for the transformation of the nth forbidden
band to the zeroth one, di\/e1tko = nni, do\/e2ky = nny,
n = n; + ny, can be written as
nl/nz ni ny

D, = = = —
! l4+n/n nm+n n’

0<n <n.

In other words, the zeroth forbidden band points divide the
segment 0 < D; < 1into nequal parts. Each of these sections,
which start from and end with a point of a zeroth forbidden
band, is referred to as the existence domain of the nth
forbidden band. Figure 15a shows the evolution of the band
structure with varying D,: the allowed band domains are
shown in grey and the surface states of the PC with the
symmetric cell (as in Fig. 14a) are represented by continuous
bold lines.

In passing through the zeroth forbidden band points, the
imaginary part of the Bloch wavenumber passes through zero
and changes sign, while the impedance sign remains
unchanged. As a result, the solution that decreases in the
PC-inward direction becomes increasing (the solid lines in

7 For simplicity, we consider the surface state at one boundary of a semi-
infinite PC rather than at the two boundaries of a finite crystal, as in
Shockley’s paper. It is noteworthy that the band structure is independent
of the elementary cell representation: symmetric and asymmetric cell
representations yield the same band structure.

! —
0.25 0.50 d,/d>

Figure 15. Evolution of the PC band structure with varying ¢, (the distance
between the ‘atoms’). The allowed bands are marked in grey. The black
curves in forbidden bands correspond to surface states. (a) above-barrier
reflection (0 <& <¢&). Plotted on the axis is the quantity
D\ = dy\/e1/(di /&1 + dr\/e2), which varies from 0 to 1 as d; changes
from 0 to co. A symmetric PC cell has the form {(¢1,d\/2), (&2,da),
(e1,d1/2)}, &1 =1, & = 10, &y = —5. The lines in the forbidden bands
correspond to the equality of the impedances of the wave in the PC and the
decaying wave in an NP medium. Solid lines correspond to surface states
and dashed lines denote waves that increase in the PC-inward direction.
(b) The same for a PC with the cell {(e2,d2/2), (e1,d1), (¢2,d2/2)}.
(c) Tunneling (&) <0 < g). An asymmetric PC cell has the form
{(82,0‘8d2>, (81,d1), (82,0.2d2)}, & = 1, & = 72, d2 = 1, Eext = —5. There
are no surface states in the symmetric case. The frequency is normalized by
Ky = n/(dy\/e2) in all plots.

Fig. 15a turn into dashed lines) and the SS vanishes, because
the NP-medium impedance sign does not change (see Fig. 15).

For a PC with a symmetric cell, the SS evolution curve
may enter the domain of forbidden bands only at a zeroth
forbidden band (FB) point. Indeed, a symmetric-cell input
impedance corresponding to any other point of the boundary
isequal to 0 or oo (Fig. 16), and therefore the impedances may
not be equal for a finite and nonzero value of & for the
medium adjacent to the crystal.

For a symmetric cell, therefore, the curve that describes
the evolution of the surface state frequency under changes in
the cell structure goes in and out of the zeroth FB points
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Figure 16. Imaginary part of the input impedance of a wave which
decreases away from the boundary of a PC with a symmetric elementary
cell for different values of Dy = d,/e1/(d\\/&1 + d>+/€2). The second
forbidden band is shown in white. Other forbidden bands (see Fig. 15a)
are not shown.

(Fig. 15a) (to be compared with the intersection of s- and
p-bands according to Shockley). In this case, surface states
are present only in the even domains of existence of forbidden
bands (the Shockley FBs according to Klos’s terminology
[72]). According to [72], the existence domains of forbidden
bands without surface states are termed Tamm’s domains,
and an SS may emerge in them only under a perturbation of
the surface potential. We emphasize that this classification is
unambiguous only in Shockley’s formulation, whereby an
atom remains ‘indivisible.” In terms of the Kronig—Penney
problem with rectangular wells, which is physically realized in
semiconductor superlattices and PCs, the ‘indivisibility’ of an
atom corresponds to the ‘indivisibility’ of the higher-
permittivity layer. For such a crystal, the symmetric cell has
the form {(&2,d>/2), (¢1,dy), (e2,d>/2)}, and an asymmetric
elementary cell representation can then be written as
{(827613), (Sl,dl), (827 (d2 - (13))}, 0<d; <d,. Only a part
of the possible representations of the PC elementary cell is
considered in this approach. By allowing the cell boundary to
divide the ‘atom’ into parts, we obtain an additional set of
cells: {(81, d3), (82, dg), (81, d1 —d3)}, 0< d3 < dl, with the
symmetric cell {(e1,d1/2), (e2,dh), (e1,d1/2)}. Surface states
are now present only in odd domains of existence of forbidden
bands, which were previously referred to as Tamm’s domains
and should now be termed Shockley’s [72] (cf. Figs 15a
and 15b).

We now consider the PC boundary position correspond-
ing to the asymmetric representation of a binary cell. The cell
type is characterized by a parameter o: {(e1, (1 —a)d)/2),
(e2,da), (&1, (1 + ) dy/2)}. For =0, we have a symmetric
representation with the second layer edged with two halves of
the first layer (Fig. 14a), and for o = £1, the cell consists of
two neighboring layers (Fig. 14b). Clearly, the band structure
is independent of o, but the surface state frequencies depend
on o because the impedance of the wave in the crystal varies
inside the cell (see, e.g., Fig. 3).

For small o, the curve describing the surface state
evolution remains qualitatively the same as in the symmetric

cell case: it lies completely inside the Shockley forbidden
bands. On transition through some critical value of «, ‘phase
transitions’ commence at the point D; = 1: in forbidden
bands with even numbers, where an SS existed, the evolution
curve detaches from the point D; = 1 (the right point of the
zeroth FB) and its right end begins to slide along the FB
domain boundary toward the left point of the zeroth FB (the
second FB in Fig. 17a); in the bands where no SS existed, the
SS evolution curve emerges from the point D; = 1 and its left
end begins to slide along the boundary of the domain of
forbidden bands (the first FB in Fig. 17b). As o increases
further, motion occurs toward the point D; = 0, with the
different FD domains passed through according to the same
scenario: in the domains where SSs existed, they gradually
disappear, and in the domains void of SSs, they gradually
make their appearance (the second FB in Fig. 17b). In this
case, first, each domain of existence of forbidden bands
contains at most one evolution curve, which emerges from
the zeroth FB point, as in the symmetric cell case. As can be
seen from the frequency dependence of the impedance in the
asymmetric cell case, precisely one curve emerges from every
such point. Second, this process is inherently manifold: there
exist several critical parameters o that trigger the process out
of the point D; = 1.

The states that are formed at the asymmetric cell
boundary and lie in the ‘Tamm’ (according to Klos) FB
domains are commonly referred to as Tamm states. To be
more precise, these states would be more correctly termed
non-Shockley states, because these Tamm states and Shock-
ley states arise due to the same formation mechanism, the one
proposed in Tamm’s works. The division of Tamm states into
Shockley and non-Shockley states is related to their evolution
rather than the physics of their formation.

We next consider the case of subbarrier transmission,
when a PC consists of alternating layers of a dielectric and an

0 0.2 0.4 0.6 0.8 1.0
D,

Figure 17. Evolution of surface states due to the disappearance of the
central symmetry of the cell: (a) o = 0.150, (b) & = 0.508.




March 2010

Surface states in photonic crystals 253

NP medium. ® The NP-medium layer corresponds to a long
interatomic distance in the Shockley model, with the atom
energies lying in the domain of the discrete spectrum. Surface
states may then exist only in an asymmetric PC, where the
atom-imitating layer is divided. Naturally, a ‘part’ of the
atom appears only at the PC boundary; inside the PC, it joins
its complement. It is likely that this fact led Shockley to the
statement that the formation of a Tamm SS necessitates the
existence of a ‘defect’ atom on the boundary. From our
standpoint, it would be strange to apply the term “Tamm’ to
only these states because both cases, tunneling and above-
barrier transmission, were considered in Tamm’s work.

Therefore, all surface states that form at the PC-NP-
medium interface are of the same nature: they decrease both
in the PC-inward direction owing to the existence of a
forbidden band and inside the NP medium due to the purely
imaginary value of the wavenumber, and the frequency
corresponds to the condition that the surface impedances
are equal.

6. The case of anisotropic photonic crystals

Unlike in Schrodinger quantum mechanics, where the
electron behavior is described by a scalar psi-function, the
fields in electrodynamics are described not by a scalar but by
several vectors, which manifests itself, for instance, in the
absence of s-scattering in optics. The direction of these
vectors (polarization) may have a qualitative effect on the
propagation of electromagnetic waves. In the case of normal
incidence of electromagnetic waves on a layered structure, all
states are doubly degenerate: both polarizations have the
same wave vectors, and the problem reduces to a scalar one,
as discussed in Section 3. When the material of one of the
elementary cell layers is an anisotropic crystal (which we
assume uniaxial for simplicity) and the anisotropy axis is
parallel to the layer, the degeneracy is removed and two Bloch
waves exist, ordinary and extraordinary. Each of these Bloch
waves is a solution of the corresponding independent
subsystem of Maxwell equations. It is significant that the
boundary conditions are also separated. Due to the indepen-
dence of the subsystems and boundary conditions, a possible
intersection of the dispersion curves of these Bloch waves
does not lead to their interaction and hybridization,® nor
does it lead to the splitting of dispersion curves at their
intersection point (Fig. 18).

The removal of degeneracy does not lead to a qualitative
change in the band structure. For each polarization, altera-
tion of the allowed and forbidden bands is observed. The
forbidden bands are located at the boundaries of Brillouin
zones. The forbidden bands corresponding to Bloch waves of
different polarizations do not coincide, although they may
intersect.

The situation radically changes when isotropic layers are
replaced with gyrotropic ones. For clarity, we consider the
magnetization of a PC in the direction perpendicular to the
layers. We assume that the elementary cell of this PC consists
of an isotropic magnetooptical layer (the magnetizing field is

8 In optics, noble metals may fulfill the function of an NP medium.

9 We consider linear equations and of course no ‘interaction’ in terms of
nonlinear physics may occur. Interaction in terms of the theory of coupled
modes occurs when the initially independent subsystems are coupled. This
approach and terminology were elaborated in the pioneering work by
Zengerle [75].
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Figure 18. Dispersion curves of ordinary and extraordinary Bloch waves in
a PC made of isotropic and anisotropic layers, and the result of hybridiza-
tion under the emergence of gyrotropic properties in isotropic layers. The
PC period consists of a uniaxial crystal with permittivities ¢y, = 2.0 and
&, = 8.0 in the direction of the principal axes and a magnetooptical layer
with the permittivity egiag = 3.0, €ofr-diag = i = 0.51. For clarity, the matter
parameters (for instance, the gyrotropy) are artificially exaggerated.

perpendicular to the layers) and an anisotropic layer (the
anisotropy axis is parallel to the layers). Prior to magnetiza-
tion, the magnetooptical layer is an isotropic dielectric with a
permittivity &q; after magnetization, it becomes gyrotropic
and its permittivity becomes a tensor of the form

&4 —&ff 0
e= || & 0
0 0 &4

Prior to magnetization, two Bloch waves— ordinary
(linearly polarized in the direction perpendicular to the
anisotropy axis) and extraordinary (linearly polarized along
the anisotropy axis) —could propagate through the PC in the
direction perpendicular to the layers. After magnetization,
the ordinary and extraordinary waves are no longer eigen-
solutions for all PC layers, because they are not eigensolu-
tions for the gyrotropic layer. In these layers, the eigensolu-
tions are circularly polarized waves [52]. Clearly, boundary
conditions at the layer interfaces mix circularly polarized
waves in the magnetooptical layer with linearly polarized
waves in the anisotropic layer.'® The mixing of different
solutions at the layer boundaries has the effect that dispersion
curves reconnect at the intersection point of the dispersion
curves of the ordinary and extraordinary waves of the
corresponding nonmagnetized crystal (see Fig. 18). A for-
bidden band is formed in this case, which may lie not on the
boundary but inside the Brillouin zone [76-80]. A similar
forbidden band is observed in Solc’s periodic filter. This
crystal is a PC with the period formed by two different
anisotropic uniaxial materials whose axes are parallel to the
layers but form an angle with each other [75, 81-84].

This forbidden band forms simultaneously for all
solutions, !' while the location of the FBs formed in the

10 'We note that neither circularly nor elliptically polarized waves can
propagate through an anisotropic crystal.

' Here, we do not distinguish solutions by polarization, because there is
no way to unambiguously define the notion of polarization for a
hybridized Bloch wave (see Ref. [85]).
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Figure 19. System of two PCs in which Tamm’s state is observed inside the
Brillouin zone of one of them. The period of the first PC consists of a
uniaxial crystal with the permittivity &y, = 2.7, &, =& = 5.0 in the
directions of the principal axes and a magnetooptical (MO) layer with
the permittivity ey, = &y, = &.- = 3.0, &y, = —¢&,x = i = 0.02i. The layer
permittivity values in the second PCareg; = 3.1 and gy = 3.1,&, = 3.4. All
layers have the same thickness of 100 nm.

Brillouin boundary may depend on the choice of the solution
polarization (see Fig. 18). In other words, the formation of
additional bands is degenerate with respect to polarization
[85], and these bands are referred to as degenerate. It is
significant that the true degeneracy —the equality of the
wave vectors (reduced to the first Brillouin zone) of different
waves — occurs only at the boundary of a degenerate FB.
For the frequencies inside this band, the Bloch vector has a
special form for four solutions (two forward and two
backward): kya(ko) = £(a(ko) +1ib(ko)) and ksa(ko) =
+(a(ko) — ib(ko)) [85].

The formation of a degenerate FB under magnetization
allows controlling the emergence of Tamm’s states.

We consider a system consisting of two finite one-
dimensional photonic crystals (Fig. 19). The period of the
first PC consists of an anisotropic layer and a magnetooptical
one. The period of the second PC consists of two isotropic
layers. We consider the frequencies near the intersection of
the dispersion curves of the first PC. It is assumed that the
intersection point lies in the allowed band in the absence of
magnetization and that this frequency lies in the FB of the
second PC. Prior to applying the magnetic field, the
transmission through the system is suppressed due to the
existence of the FB in the second PC (Fig. 20).

Application of the magnetic field gives rise to an FB in the
first PC [85] (see the solid line in Fig. 20b) and the
consequential formation of a Tamm state at the boundary
between the two PCs. This Tamm state manifests itself as a
sharp peak in the transmission spectrum (see Fig. 20) [77].

Unlike the Tamm state in a magnetophotonic crystal
(MPC) involving isotropic components, considered in Sec-
tions 4 and 5, a Tamm state does not split here into two states
with different frequencies after application of the magnetic
field, but simply emerges. The state is not doubly degenerate
in polarization, as with a PC involving isotropic components
(in an MPC without magnetization); as a result, there is one
Tamm state, which does not split in the magnetic field. This
feature stems from the hybridization of solutions in inhomo-
geneous magnetic materials containing anisotropic compo-
nents.

The fundamental difference between hybrid and non-
hybrid solutions is as follows: when hybridization is absent,
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Figure 20. (a) Two-PC system transmittance (see Fig. 19) in the absence
(curve with circles) and in the presence (solid curve) of magnetization.
(b) Imaginary part of the Bloch wavenumber of an ordinary (curve with
circles) and magnetooptical (solid curve) PC in the presence of magnetiza-
tion. The parameters of the samples are the same as in Fig. 19.

it is possible to distinguish the solutions by polarization
(circularly right- and left-polarized, TE and TM modes, and
so on) and thus reduce the vector problem to two independent
scalar problems. To match the eigensolutions, it is possible to
introduce scalar (isotropic) input admittances, whose equal-
ity ensures the matching. The solution mixing at layer
boundaries results in the Bloch wave in each layer consisting
of four waves, which have different polarizations and
propagate in opposite directions. This solution is commonly
referred to as hybrid, because it does not consist only of waves
of a specific polarization. A characteristic feature of the
hybrid Bloch solution is that it has an anisotropic admittance.

We consider the structure of the hybrid solution in an
anisotropic layer. In the general case, the solution in an
anisotropic layer can be written as

E= (?) :A(:)) exp(ikoz)+B<(1)> exp (—ikoz)

+ C<?) exp (ikez) + D(?) exp (—ikez) ,

where 4, B, C, and D are the amplitudes of the corresponding
four plane waves that are solutions of the Maxwell equations
in the layer under consideration, k, is the wave vector of the
ordinary wave, and k. is the wave vector of the extraordinary
wave. At the interface between the anisotropic—gyrotropic PC
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and the PC with isotropic components, we should match the
tangential components of the electric and magnetic fields, i.e.,
the four components E,, E,, H,, and H,. Interestingly, when
it is required to solve an eigenvalue problem instead of a
scattering problem with a fixed incident wave amplitude, it
suffices to match not the absolute field values but simply their
ratios Y,=H./E, and Y,=-H,/E, (in quantum
mechanics, this corresponds to matching the logarithmic
derivative). The quantities ¥ have the meaning of the input
admittances. For any isotropic medium, its admittance is
isotropic, i.e., Yy = H\/E, = k/ky = —H,/E, = Y,, which
directly follows from the equation curl (E) = (1/¢) dH/dt.
For one hybrid wave, the admittances are not equal because

H, ki ,k H,

Yy=—" Z=-22

= = =Y,
E, ko ko E.

in the anisotropic layer, and therefore a single eigensolution
in the anisotropic—gyrotropic PC cannot be matched to the
solution in the PC with isotropic components; the solution in
the anisotropic—gyrotropic PC must be sought in the form of
the sum of two damped modes (with different wave vectors)
ki (k()) = a(ko) + lb(k()) and k4(ko) = —a(k()) + lb(ko)

E=4 (f 1 () ) exp (ikz) + B(f 2 (2) ) exp (ikaz) .

Siy (2) foy (2)
Accordingly, the magnetic field is
Y] yfl ) (Z) ) .
H=4 7 exp (ik;z
(_leflx (Z) p( 1 )
Y2vf2v (Z) > :
+B S exp (ikyz),
( - Y2xf2x (Z) P ( ? )
where
Jap
Yo( =ny, + . 5
d faﬁ ik

o = 1,2 is the solution number and the subscript = x,y
indicates the corresponding component.

By equating the corresponding field components in the
anisotropic MPC to the fields in the PC with isotropic
components at the PC interface (which is taken as the origin),

- E, . af (Z) :
E= (E»> = (bf(z)) exp (ikz),
f/
- ()-
fl
—a <n +_)Tk0 ) f
we obtain the system of equations
Six Jox _ af
A(fiy) " B(m) - (bf) 7

ot Jowsn o 25 ) - (4)
A(—leﬁx explikiz) +B( _y ) =\ Cayr)

We derive expressions for af(z) and bf(z) from the first
equation and substitute them in the second to obtain

exp (ikz) ,

A(Yly - Y)flt + B(Y2y - Y)th = 07

A(le - Y)le + B(YZx - Y)fZY =0.

This system has a nontrivial solution only when its determi-
nant is equal to zero:

(YU’ - Y)fl)

(Vo= V)P | _,
(Yix— Y)fix :

(YZ)’ - Y)fo N

It is precisely this expression instead of the usual equality of
impedances that defines the position of the Tamm resonance.

7. Conclusion

As with electronic crystals, the existence of surface states in
PCs is related to a significant variation of Bloch functions on
the elementary cell scale. In this case, the input impedance
changes significantly with changes in the PC boundary
relative to the elementary cell, as well as with frequency
variation inside the forbidden band (see Fig. 16), making it
possible to match the solution not only to solutions for NP
and NMP media but also to a solution for another PC that
has a forbidden band. At forbidden band frequencies, a PC
may manifest itself as a medium with positive magnetic
permeability and negative permittivity or as a medium with
positive permittivity and negative magnetic permeability, and
therefore the SS formed at the interface between two PCs may
be considered an analogue of the SS emerging at the interface
between NP and NMP media [36].

The SS localization at the PC interface is due to the
attenuation of the Bloch wave in the PC-inward direction at
forbidden band frequencies, which is exponential on average.
In accordance with this SS formation mechanism, all SSs at
PC boundaries are Tamm’s SSs. The division of Tamm’s
states into Shockley and non-Shockley states is related not to
the physical nature of these states but to the symmetry of the
elementary cell. This division manifests itself only in the
consideration of band structure evolution under the varia-
tion of PC parameters and has no fundamental importance
for a specific PC.
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