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Abstract. Light propagation through a single gain layer and a
multilayer system with gain layers is studied. Results obtained
using the Fresnel formulas, Airy’s series summation, and the
numerical solution of the nonlinear Maxwell-Bloch equations
by the finite difference time domain (FDTD) method are ana-
lyzed and compared. Normal and oblique propagation of a wave
through a gain layer and a slab of a photonic crystal are
examined. For the latter problem, the gain line may be situated
in either the pass or stop band of the photonic crystal. It is shown
that the monochromatic plane-wave approximation is generally
inapplicable for active media, because it leads to results that
violate causality. But the problem becomes physically mean-
ingful and correct results can be obtained for all three ap-
proaches once the structure of the wavefront and the finite
aperture of the beam are taken into account.

1. Introduction

The problem of light propagation through a system of gain
layers is of great applied and fundamental importance.
Applied problems are related to the development of semi-
conductor vertical cavity surface-emitting lasers (VCSELs)
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[1-6]. Multilayer gain systems are often used as model media
for studying Anderson localization of light [7-17] and lasing
in random media [18-20]. Fundamental investigations of
metamaterials [21-23] have rekindled recent interest in
problems of light propagation through multilayer gain
systems. In addition, this problem is of great methodological
importance because the neglect of diffraction phenomena and
the one-dimensionality of the problem allow obtaining
analytic solutions.

The choice of the scope of phenomena considered in this
review assumes the use of the results obtained here for
analyzing the properties of metamaterials containing layers
with gain elements [23-27].

The unique properties of metamaterials (negative values
of the magnetic permeability and the dielectric constant)
appear due to a plasmon resonance in metal nanoparticles
embedded into materials. The signs of the impedance and
refractive index are not important in the phenomena
considered here, and therefore we do not focus on media
with negative absorption, referring to recent reviews [28, 29],
where different approaches to the solution of this problem are
discussed.

Almost all potential applications require metamaterials
with very low losses [30], which cannot be achieved in passive
systems at present. To reduce losses, it was proposed to
combine metamaterials with gain media (see [23, 25, 26, 31—
34] and review [35] and the references therein). In particular,
the authors of [23] proposed alternating metamaterial layers
with gain-medium layers (the Pendry—Ramakrishna scheme).
In [33, 36], it was proposed to embed gain elements directly
into a metamaterial matrix.

The aim of this review is to describe the physical picture of
the propagation of an electromagnetic wave through multi-
layer systems containing gain layers. Special attention is
devoted to the linear stage of interaction with the field of the
incident wave, i.e., before the onset of lasing. For this, we
describe gain media using the dielectric constant with a
negative imaginary part. The interaction of the system with
the wave is calculated by two methods: based on boundary
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conditions for the total field (Fresnel’s method) and by
analyzing the propagation of the wave as the rereflection
process (Airy’s method). The results are controlled by
comparing them with the numerical solution of ‘straightfor-
ward” nonlinear Maxwell-Bloch equations describing the
interaction of a classical electromagnetic field with a
quantum-mechanical system (atom, molecule, or quantum
dot) with inverted population [37]. In what follows, for
clarity, we take the quantum mechanical system to be a
quantum dot (QD). As is shown here (see also [24, 38, 39]),
in the absence of lasing in the limit of weak fields, the
propagation of a wave can be described by the Maxwell
equations by introducing a negative imaginary part Ime¢ < 0
of the dielectric constant. The simplicity of such an approach
makes it attractive for theoretical studies of gain media [40—
44]. In addition, this approach is most often used for
analyzing experiments with metamaterials [25, 26, 45].

The possibility of describing the propagation of an
electromagnetic wave through a sample in terms of a linear
dielectric constant eg,in (), which we consider in this review,
is very important both for applications (considerably simpli-
fying the design of particular devices) and for processing
experimental results (the electromagnetic properties of
metamaterials are described in modern models by introdu-
cing the effective dielectric constant of metamaterials).
Indeed, most investigations of the properties of metamater-
ials with gain components assume that these metamaterials
are linear media [27, 46—48]. In other words, the authors of
these papers considered either subthreshold or intermediate
states before the onset of stationary lasing in metamaterials.
Such an approach is exhausted by these two cases, because
lasing transforms a metamaterial with gain into a nonlinear
object.

Typically, the coefficients of transmission 7 and reflection
R of light from a layer are measured in experiments. The
algorithm for determining the refractive index and impedance
or, alternatively, the dielectric constant and magnetic perme-
ability of a material from data for R and T'is based on Fresnel
formulas: more precisely, on the solution of a one-dimen-
sional wave equation [49-55]. In the case of ‘right-hand’
media, no problems appear. In the case of ‘left-hand’ media,
where the dielectric constant and magnetic permeability are
negative [22], the procedure for obtaining homogenized
values of the effective dielectric constant eer(e) and p(e)
from R(¢) and T(¢) is ambiguous. This is because of the
ambiguity of the separation of the analytic branch of the
square root of a function of two complex variables [28]. In
contrast to the case of one complex variable [56], the complex
analysis does not give an unambiguous recipe for separating
the analytic branch of a function of two complex variables. A
physically consistent approach was developed for passive
media: the square root of a product of complex factors
VZ1Z, is defined as the product of square roots of each
factor, v/Z1v/Z, [57]. The ‘correct’ branch of the square root
is chosen based on physical considerations: the real part Re Z
of the input impedance should be positive [58]. In the case of
gain media, the question of the sign of the real part of the
input impedance remains open [28] because the amplitude of
the reflected wave can exceed that of the incident wave.
Indeed, the authors of [59, 60] studied the oblique incidence
of light on a gain medium under the conditions of total
internal reflection and observed a reflection coefficient
higher than unity. This fact in itself is not unexpected because
in the case of total internal reflection, a wave, before

reflecting, partially enters into the gain medium [61, 62]. But
the question of whether an energy flux can emerge from a
sample toward the incident wave (ReZ < 0) in the case of
small angles of incidence (in particular, in the case of normal
incidence) requires a separate consideration.

The description of a gain medium using the dielectric
constant is well justified for the Pendry—Ramakrishna
scheme, where regions with a gain material and regions
containing plasmon nanoparticles are separated. But when
inverted QDs are embedded directly into a matrix surround-
ing metal nanoparticles, a quantum problem of the excitation
of an inverted QD of a surface plasmon localized on a
nanoparticle arises. In fact, a nanoparticle + QD pair forms
a spaser (an acronym for surface plasmon amplification by
stimulated emission of radiation) [63], which has been
extensively studied recently. The solution to the problem of
the interaction of a system of spasers above the lasing
threshold with an electromagnetic wave propagating in a
metamaterial requires other approaches taking both quan-
tum and nonlinear properties of the spaser into account.
These questions are not considered here, and have been
analyzed in [64-70].

We note that the interpretation of experimental data
obtained at present [25, 71] is complicated by the fact that
samples used in [25, 71] had features of both schemes: as a
rule, inverted QDs are deposited on a prepared sample of a
metamaterial [71].

Interest in states preceding the onset of lasing is explained
by the fact that losses and gains are equally destructive for
applications of metamaterials. Indeed, devices based on
metamaterials, in particular, a superlens [21], which uses
metamaterials to go beyond the diffraction limit, are
typically near-field devices. Energy transfer by near fields
(inhomogeneous waves or evanescent modes) has a certain
specificity [72, 73]: one inhomogeneous wave does not
transfer energy because the electric and magnetic fields in it
are shifted by a quarter of a period [74], and the Poynting
vector identically vanishes. To transfer energy, a second
(reflected) near-field wave is required. The contribution to
the energy transfer is given by cross (interference) terms
appearing due to the overlap of the magnetic field of one
wave and the electric field of another; we note that the
nonzero energy flux can form only if these waves have a
phase difference [72]. The converse is also true: the appear-
ance of an energy flux leads to a phase shift between
‘interfering’ near fields. The presence of losses or gains
produces the energy flux in this system. As a result, a phase
shift appears in a layer of a metamaterial, which is not
envisaged in the ‘scheme without losses’ and typically
depends on the wave number of the evanescent harmonic.
The destructive interference appearing in this case results in a
partial or complete destruction of a super image [75]. Hence,
an exact compensation of losses is needed, and subthreshold
states are of most interest here. In this case, there is hope to
create metamaterials in which losses in a metal are compen-
sated due to the energy flux from QDs before the development
of lasing.

2. Description of a gain medium
using the dielectric constant
with a negative imaginary part

Before proceeding to the study of peculiarities of light
propagation in a gain medium, we consider the possibility of
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reducing the originally quantum problem to a semiclassical
problem, i.e., to the use of the dielectric constant with a
negative imaginary part Im ggin(@) < 0. The presence of a
large number of photons in the radiation modes considered
here allows neglecting quantum fluctuations and describing
the electromagnetic field by the classical Maxwell equations
[76, 77]. At the same time, the behavior of the two-level system
modeling a QD requires quantum mechanical treatment. This
approximation is called semiclassical, and the corresponding
system of equations is called the Maxwell-Bloch equations.
In the one-dimensional case, where all physical quantities
depend only on the coordinate z and time, and a wave
propagates normally the metamaterial layers, these equa-
tions take the form [37, 39, 78-80]

O’E  e(z) E  4n O°P
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*P 20P 200|u*nE

P p=--—"—"—"1 " 1
a2 T T T (1)
on 1 2 oP

O i—ny)=— E.

o T ) =g B

Here, the electric field E(z,¢), the polarization P(z,t), the
dielectric constant & (z) of a matrix, and the population
inversion n for the upper and lower level of a QD are assumed
to be real quantities. The external excitation tends to bring n
to ny, while stimulated emission reduces n. Next, wq is the
transition frequency of a QD, u is an off-diagonal element of
the transition dipole moment of the QD, and 7p and 7, are the
respective characteristic relaxation times for polarization and
population inversion. The population inversion relaxation
(transverse relaxation) is related to the same processes and
elastic processes, which do not change the population
inversion, but change the polarization phase. Therefore, the
transverse relaxation time is always shorter than the long-
itudinal relaxation time [79].

The first equation of system (1) is a wave equation
obtained from the Maxwell equations for an inhomogeneous
medium. The other two equations are obtained from
equations for the density matrix of the QD and describe the
polarization and inverse population of QDs [78, 81, 82].

Passing to the Fourier representation, we write the right-
hand side of the last equation in (1) in the form (see [58])

1 0P AP
2liwg ot ot )’

In this case, n(z) is no longer dependent on time. The variables
P and n can be eliminated to obtain a single equation for the
electric field:

0% E(z, )

3.0 (%Ysgam(w) E(z,0) =0. (2a)

The gain medium is then described by the effective dielectric
constant

boain (@) = g0 + 00 2 —i+ (0* — 5)/(20/7p) 7
,gam( ) o+ @ 1+ﬁ‘E|2+ [(w2_w%)/(2w/’[P)}2 ( )

with a negative imaginary part for ny > 0 (see also [39, 83—
85]). Here, o = 4n|u|*tpno /li and B = |u|*t,tp /1%

Because of the dependence of &gin on E, Eqn (2a) is a
nonlinear Helmholtz equation describing the distribution of

the harmonic field E(z,w) over z. The decrease in the
imaginary part of egin(w) with increasing the field strength
E(z,w) is caused by the suppression of the population
inversion in QDs due to stimulated emission. However, if
the field strength is small,

2
E]* <

s (2¢)
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then the propagation of the wave in the gain medium can be
described using a field-independent dielectric constant with
the frequency dispersion having an ‘anti-resonance’ form and
a negative imaginary part:

201 /Tp

(2d)

£ain (@) = &0 —2iw/tp + W} — w?

We note that the use of nonlinear Helmholtz equation (2a)
allows taking the influence of the field intensity on the
properties of the medium into account only below the lasing
threshold. This is explained by the fact that lasing typically
begins to develop at a frequency different from the incident
wave frequency (see, e.g., [86]).

3. Normal incidence of light on a gain medium

3.1 History of the problem

The problem of the reflection of a plane wave normally
incident on a gain medium has a long history [40—44], which
is full of contradictions and unclear points. In particular, the
author of [42] theoretically studied the reflection of a wave
from the interface of two media, one of which was a gain
medium. First, the propagation of the wave through a finite-
thickness gain layer was considered, and the reflection
coefficient was found by solving the one-dimensional wave
equation with Maxwell’s boundary conditions [87]. Below, we
call such an approach the Fresnel approach. Then a passage
to the limit of a semi-infinite layer was performed [42]. The
reflection coefficient R of the gain half-space found in this
way turns out to be greater than unity. This means that in the
space filled with the gain medium, only one counter-wave
propagates, which emerges from infinity and carries energy
toward the incident wave, which obviously contradicts the
causality principle.

This solution came under criticism in [41], where it was
pointed out that waves appearing “during successive reflec-
tions from layer boundaries form, for large enough d, a
divergent series, and the solution is simply absent.” In fact,
this corresponds to the divergence of a series of Airy partial
waves [88, 89]. Obviously, we have a contradiction between
the finite result obtained by the Fresnel method and the
divergence of the Airy series. We note that the result of
summation of the Airy series for dissipative media always
agrees with predictions of the Fresnel approach.

To resolve this paradox, the author of [41] proposed
considering the propagation of a pulse instead of a stationary
problem of the propagation of an infinite plane wave. It was
asserted that if the pulse amplitude inside the layer increases
infinitely with time, then the Fourier transform of the field
amplitude E(z,w) does not exist. Therefore, the field
representation as a sum of monochromatic waves is also
invalid in this case. Instead, it was proposed that the field be
expanded in waves with exponentially increasing amplitudes
(see also [90]), in accordance with the generalized Fourier
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transformation [91, 92]. In this case, the integration contour
in the complex frequency plane in the inverse Fourier
transformation is located above all poles of the integrand.
We show below that the poles lying above the real axis give a
correction to the standard solution obtained by the Fresnel
method, which exponentially increases with time.

In the next section, we consider an electromagnetic wave
in the form of a semi-infinite train with a finite leading edge
propagating through a gain layer, and compare the results
obtained by the Fresnel and Airy methods and the numerical
solution of Maxwell-Bloch equations obtained by the FDTM
method.

3.2 Fresnel and Airy approaches

We consider the problem of the normal incidence of a semi-
infinite sinusoidal train with a smooth wave front on a gain
layer with thickness d. We assume for definiteness that the
train is incident from left to right. Assuming that condition
(2c) is satisfied, we neglect the nonlinearity at the first stage,
i.e., we use the dielectric constant of type (2d) in Eqn (2a). The
linearity of the problem allows passing to the Fourier
representation for the amplitude E(z,¢). In this case, the
analysis reduces to the problem of the propagation of a
plane wave through a homogeneous layer with a negative
imaginary part of the dielectric constant Im g, < 0, when
the distribution of the field E(z,®) is represented as the
product of the field distribution g(z, w) for a single incident
wave and the incident wave amplitude. The form of the
function g(z, ) is found by solving ordinary second-order
differential equation (2a) using Maxwell’s boundary condi-
tions for the continuity of the fields (Fresnel approach):

g(z,0)
exp (ikoz) + r(d) exp (—ikoz), z<0,
— { a(d) exp (ikoz\/Egain )+ b(d ) exp (—ikoz\/Egan ), 0<z<d,
1(d)exp (iko(= = ). Pod
(3a)
The amplitudes r(d), a(d), b(d), and t(d) are found by

matching the tangential components of the fields at the
boundaries of layers z = 0 and z = d[58]:

r(d)

(2} — Z23) (exp (~ikod, /Ezam ) — exp (ikod, /Zaim ))
(Zl + 22)2 exp (—ikod, /Egain )— (Zl — 22)2 exp (ikod‘ /Egain ) ’

t(d)

. VYAVA
(Z] —+ 22)2 exp (—ik()d1 /€gain ) — (Z] — 22)2 exp (lk()d1 /€gain ) ’

a(d)

27, (Zl + Zz) exp (—ikod, /€gain )
(Z,+ 22)2 exp (—ikod\/Egain ) — (Z1— 22)2 exp (ikod,/Egain ) '

b(d)

222(21 — Zz) eXp (lkod, /sgain )
(Z,+ 22)2 exp (—ikod,/Egain ) — (Z1— 22)2 exp (ikod,/Egain ) ’
(3b)
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Figure 1. (See in color online.) Calculations of the electric field E(z, w) by
the Fresnel method. (a) Incident (solid curve) and counter (dashed curve)
waves. (b) Energy flux S. in a layer with a thickness d > d,. The gain layer
is shaded. The incident wave frequency w is equal to the QD transition
frequency wy; the dielectric constant &g, = 2 — 0.182i is obtained from
expression (2d) for the values of parameters typical for gain media with
semiconductor QDs [24].

where Z; =1 and Z, =1/ /Zgain are characteristic impe-
dances of the vacuum and the medium and kg is the wave
number in the vacuum. We note that the wave field in the
layer is the sum of the fields of two waves (Fig. 1). One of
them, with a positive real part of the wave number and a
positive z component of the Poynting vector, increases (is
amplified), penetrating into the layer. We call this wave the
‘incident’ wave, and the second wave, the ‘counter’ wave. The
counter wave decreases in the depth of the layer and has a
negative component S. of the Poynting vector. The ratio of
the electric field strengths on the right boundary z = d of the
layer is uniquely defined by the impedance of the transmitted
wave, and is therefore independent of the layer thickness.
Because the counter wave (dashed curve in Fig. 1a) traveling
from right to left is amplified, its strength for a large enough
layer thickness at the left boundary z = 0 exceeds the incident
wave strength (solid curve in Fig. 1a).! The z = z* plane,
determined by the equality of the field strengths of the
forward and backward waves, is also characterized by the
zero energy flux propagating through this plane. For z < z*,
the energy flux is directed to the left, and for z > z*, to the

! In all numerical calculations, we use parameters typical for amplifying
media with semiconductor QDs [24]: wg = 10 57!, 1p =3 x 10745, 7, =
5x 10713 s, ng = 2.15 x 10% atom ecm >, |u* = (1.5 x 10717)* dyn cm®,
& = 2in the gain layer (0 < z < d), and ¢ = 1 outside the layer. Further,
for the convenience of comparing, system (1) is transformed into a
dimensionless one in which the time (¢, tp,7,) was measured in units of
7p, the coordinate in units of ctp, frequency wy in units of 7, I, Eand Pin
units of \/#ing /tp, nin units of ng, and |,u\2 inunits /i/(ngtp). As a result, we
obtain the values of dimensionless parameters wy = 30, tp = 1, 7, = 167,
nyp =1, and | ,u|2 = 0.0145; in this case, the constants ¢ and 7/ disappear
from the equations.
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right. The distance dy from the z = z* plane to the right
boundary of the layer can be readily obtained from Eqns (3b)
and the condition that the intensities of counterpropagating
waves in the plate be equal. Hence,

dy

1 nain+12+’<2in
111{(1‘I ) 4)

Aok | (ngain — 1)7 4 12

gain

where ng,i, = Re /Egain and Kgin = Im V/gain- We note that
dy depends on the pumping level kg,in, and can be for the same
sample either larger or smaller than its thickness d.

Expression (4) for d is approximate and was found from
the condition of the equality of intensities of the waves in a
plate. But this condition does not guarantee the zero energy
flux:

c

S. = 4n [ngain (a(dO) a*(do) — b(dy) b*(dO))

+ 2cgain Im (a(do) b* (do))} .

We see from this expression that for a nonzero imaginary part
of the wave number, Im k = kg,in, counterpropagating waves
in the presence of a phase difference between them make an
interference contribution to the energy flux [71]. The inter-
ference correction is manifested as a fine ripple in Fig. 1b,
which somewhat shifts the point where S, = 0. However this
influence is typically insignificant.

As noted above, if the layer thickness exceeds dj, a region
appears inside the layer where the energy flux is directed
toward the incident wave (Fig. 1b). It follows from the
continuity of the energy flux inside the layer and its constant
value outside the layer that for d > dy, the reflection
coefficient exceeds unity. As the layer thickness is further
increased, the Fresnel approach predicts an increase in the
region where the counterpropagating wave dominates, which
decreases from left to right and transfers energy from right to
left, toward the incident wave [42]. The energy is transferred
from left to right only in a thickness-d layer adjacent to the
rear boundary of the layer. It is important to note that the
Fresnel approach in (3b) predicts that the transmission
coefficient T tends to zero and the reflection coefficient R
tends to a finite value as the layer thickness increases (Fig. 2).
Thus, the passage to the limit of a half-space (d/dy — o0)
gives a reflection coefficient greater than unity and a counter
propagating wave in the half-space (see [42]).

In the case of dissipative media, the field distribution
calculated by the Fresnel method, Eqn (3), coincides with that
calculated by the summation of partial Airy waves appearing
during successive reflections of waves from the layer
boundaries [93, 94]. In the case of a gain layer, the results
obtained by the Airy and Fresnel methods can be different.
We consider the Airy procedure (Fig. 3) in more detail. The
incident wave with the unit amplitude is scattered by the front
surface of a sample. As a result, a reflected wave with the
amplitude

Zi—-2

=_— 4a
Z 5 7, (4a)

I'o

and a transmitted wave with the amplitude t¢,; =
27,/(Zy + Z,) appear, where ry, and 7, are the reflection
and transmission coefficients in the problem in the half-space.
It is usually assumed that the transmitted wave is incident
[41],1.e., Re Z; > 0. This wave propagates in the sample and

5
10 T T

T
104

103
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| | .
dO dcr
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10—3 | | | | |

0 0.5 1.0 1.5 2.0 d 2.5

Figure 2. (See in color online.) (a) Transmission and (b) reflection
coefficients 7" and R (in terms of intensity) of a gain layer calculated as
functions of the layer thickness d by the Fresnel method. The parameters
are the same as in Fig. 1.

1
_—
> exp (i) 7
-—

rL
2
(L 2

Figure 3. Airy’s procedure for calculating reflection and transmission
coefficients of a plate as successive rereflections. For a homogeneous layer,
rL=TIR = —Tso-

its amplitude on the right boundary (z = d) acquires the
factor exp (i), 0 = kod\/Egin. Then the wave passes through
the right boundary with the coefficient 1., = 2Z,/(Z, + Z3),
such that the amplitude of the first wave transmitted through
the sample is

T] = lollo02 EXP (ikod, /ﬁgain) .

A part of the wave is reflected from the right boundary of the
sample with the reflection coefficient —r,, transforming into
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a counter wave. Then the wave propagates in the sample from
right to left, is reflected from the left boundary with the
reflection coefficient —r.,, transforms into an incident wave,
and propagates from left to right up to the sample boundary.
During the propagation of this incident wave through the
boundary, a second transmitted partial wave with the
amplitude 7, = 7,¢ appears, where

q = rZ exp (2ikod, [egain ) = rZ exp (2id) . (4b)
The amplitude of each subsequent partial wave is obtained by
multiplying by the factor ¢ (the denominator of a geometric
progression). As a result, the total transmission coefficient is
given by the series

1(d) = tooi tocr €xp (ikody/Egam ) (1 + 72 exp (2i5) +...)

= Ioo1 Lo €XP (ikod\/Egain ) Z r2exp(2i))".  (5)
n=0

Summing geometric series (5) gives (3b).

We note that series (5) converges only for |¢| < 1. This
condition corresponds either to the absence of gain or, in its
presence, to a small thickness of the layer d < d.,. Ford = d,,,
the modulus of ¢ becomes unity. For d < d,,, the attenuation
of the wave due to its escape from the sample exceeds its gain
during the passage of the wave in the gain medium. The value
of d, is exactly twice as large as the value of dy and is given by

1 (ngain + 1) + Kgam
2kOKgain (ngain - 1) + K2

dcr = 2d0 = (68.)

gain

For d > d.., Airy series (5) diverges, while Fresnel approach
(3) gives a finite amplitude of the transmitted wave.

Hence, for d > d,,, the Fresnel and Airy approaches give
different results. For this reason, we performed a numerical
FDTD modeling of the solution of Maxwell-Bloch equa-
tions (1) correctly describing the gain medium. We considered
the temporal problem of the normal incidence of a semi-
infinite wave train with a smooth leading edge on a gain layer.
For comparison with the Fresnel and Airy approaches, we
calculated the stationary field distribution appearing after the
end of the transient process.

We can see from Fig. 4a that in the region of parameter
values for which Airy series (5) converges (d < d;), the results
of both analytic approaches agree with numerical calcula-
tions. For thicknesses d.; < d < dj,s, Alry series (5) diverges,
but the Fresnel approach and numerical simulations give the
same results (Fig. 4b). For thicknesses exceeding some value
dhas, lasing begins to develop, and field strengths obtained in
numerical experiments begin to exceed the field strength
obtained by the Fresnel method (Fig. 4c). This is caused by
the violation of condition (2c), and the established solution
cannot be described in the linear approximation, i.e., by using
the Fresnel approach.?

The construction of Airy series (5) quite visually describes
the propagation of a semi-infinite wave train through a layer
of matter. However, in the case of a gain medium, it should be
performed differently for d < d.; and d > d.,. Indeed, ry, in
(5) is the reflection coefficient in the problem of reflection of a
plane wave from a half-space. The value of r,, depends on the
wave in the layer with which the wave incident from the
vacuum is matched.

2 The region of d values near d,; is considered below.

|E]%, 1076

150

100

|E, 1073

50

Figure 4. (See in color online.) Electric field intensity calculated by the
Fresnel method (3) (solid curves) and from Maxwell-Bloch equations (1)
(dashed curves) for a wave propagating (a) through a layer with the
thickness d = 0.7 smaller than the critical value d,, ~ 0.905, (b) through a
layer with the thickness d = 1 greater than the critical value, when lasing is
still absent, and (c) through a layer with the thickness d = 1.12, when
lasing appears. The incident wave frequency w is equal to the QD
transition frequency wo. The dipole moment of the QD is | ,u|2 =0.0145,
the incident wave intensity is (a) 107, (b) 107%, and (c) 1073 in
dimensionless units (see footnote 1).

If, as is usually accepted for dissipative media [95], we take
a wave transferring energy inside a layer, then for d < d.;, the
modulus of the denominator of the geometric progression
q =rZ exp (2i6), where & = kod, /Egain, is smaller than unity,
|¢] < 1, and the Airy series in incident waves converges to
expression (3b) obtained by the Fresnel method. But if we
assume in the Airy procedure that a solution in a semi-infinite
medium is a counterpropagating wave [42] transferring
energy to the boundary z=0 from infinity, then the
impedance Z, and complex phase ¢ change their signs. As a
result, the denominator of progression (5) becomes equal to
1/g. This means formally that for d > d, the Airy series in
counterpropagating waves converges, as it does in the Fresnel
calculations (3b).
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Figure 5. (See in color online.) Electric field distributions in a wave train incident on a gain layer calculated by different methods. (a) The Fresnel
approach. The instant = 0 when the leading edge of the train has not reached the layer. The solid curve shows the field distribution found from (8), the
dashed curve shows the real field distribution in the train; (b) the same calculated by the modified Fresnel approach; (c) amplification of the train field
(modified Fresnel calculation) for ¢ = 5.5; (d) the train field at a later instant ¢t = 15.5 coming to a localized eigenstate with a complex frequency.

Parameters are the same as in Fig. 1.

Analysis shows that result (3b) obtained by the Fresnel
method can be regarded as an analytic continuation of the
sum of Airy series (5) to the region d > d.(®) in the complex
frequency plane. In other words, for d < d,;, the Airy series in
incident waves should be used, and for d > d,,, the Airy series
in counterpropagating waves should be used. We recall that
for d=d. (|g| =1), neither of these series converges. If
g # 1, the limit d — d,; +0 of the sum of series (5) in
counterpropagating waves coincides with the limit d —
der — 0 of the sum of series (5) in incident waves. We recall
that lasing is still absent. The use of the series in counter-
propagating waves is equivalent to the continuation of the
function 1/(1 —¢) beyond its convergence radius. Indeed
[56],

| 1/q

I—q 1-1/q—;()

Thus, we obtain complete correspondence between Airy
series and the result of the Fresnel approach in all cases
considered here.

(6b)

3.3 Temporal problem of the propagation

of a semi-infinite wave train through a gain layer

To find the reason for the discrepancy between the seemingly
reliable Fresnel approach (Fig. 4c) and the numerical solution
of the Maxwell-Bloch system, we consider the temporal
problem of the propagation of a semi-infinite wave train
through a gain layer. We assume that the leading edge of the
train Ey(z, r) reaches the point z = 0 at the instant = 0, and
the train shape is

0, t<0,
EO(Z:()vl):

where Q is the carrier frequency of the train and ¢ is the
leading edge width.
To correctly find the spectrum of such a pulse,

o0

eo(w) = (2n)~" J Eo (1) exp (iwr) dt, (7a)

—00

a certain accuracy is required [96], because Ey(z = 0,¢) isnot a
compact function (it does not decrease as t — +00). Here, we
can use the standard procedure [92] of finding the spectrum of
the product Ey(z = 0, ¢) exp (—yt) and then sending y to zero.
As a result, the expression

1
2no(w — Q)(w — Q+1i/0)

(7b)

ep(w) = —

is obtained.

In the absence of the layer, according to linear Helmholtz
equations (2a), (2d), each harmonic ¢y(w) exp (—iwt) of the
field specified at the point z =0 produces a plane wave
eo(w) exp (—iwt) exp (imwz/c) in the entire space, which pro-
pagates to the right. The sum of these plane waves,

Ey(z,1) = Lw eo(w) exp (—iwt) exp (g) dw

= Ji eo() exp <—iw <z - E)) do = E, (o ‘- g)

is equal to the train field propagating with time to the right
without changing its shape (the dashed curve in Fig. 5a). We
note that Ey(z,7) =0 for z/c > 1, in accordance with the
causality principle.

In the presence of a layer located in the region z ¢ [0, d],
the total (incident plus scattered) field of the train should also

o0
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Figure 6. (See in color online.) Poles of the response function g(z, w) (indicated by circles) and a pole of the dielectric constant (indicated by a square).
Regions d > d; &~ 0.905 are shaded; (a) quantum dots are absent (| y|2 = 0), the layer thickness is d = 1.5; (b-g) quantum dots are present, | u|2 =0.0145,
layer thickness is (b) d = 0.7, (c) 1.0, (d) 1.12, (e) 1.5, (f) 2.0, (g) 7.0. The parameters are the same as in Fig. 1.

obey the causality principle, i.e., the scattered wave should be
absent until the train front reaches the left boundary z = 0 of
the layer. For # <0, the total field should be equal to
Ey(0,1—z/c).

The Fourier harmonic of the total field in the presence of
the layer is equal to the incident harmonic amplitude ey ()
times the transfer function g(z, w) in (3a). We recall that this
function was found using the Fresnel approach. It describes
the field distribution in the vacuum-layer—vacuum system in
the case of normal incidence of a plane wave with the unit
amplitude. In this case, the time dependence of the field is
found by the inverse Fourier transformation

Bz, 1) = J eo(®) g(z, @) exp (—ior) do. ()

—0Q

o0

In the case of a dissipative layer or a gain layer with a
thickness d < d.;, this procedure gives the correct shape
of the initial pulse, E(z,7) = Eo(0,7—z/c). But for
d > dps = dy, Where dyys is the thickness at which lasing
begins, a different field distribution is obtained (the solid
curve in Fig. 5a). We can see from Fig. 5a that the scattered
wave appears before the leading edge of the train reaches
the layer, i.e., the causality principle is obviously violated.

This violation indicates that the Fresnel approach should be
modified.

It is known that the causality principle determines the
analytic properties of the transfer function g(z, ) (which is
by its nature a response function) as a function of the
complex frequency w [58]. The function g(z, w) has singula-
rities in the form of poles in the w plane at the points w; =
Rew;+ilmw;, j=1,2,..., corresponding to the eigen-
modes of the layer as an open resonator [97, 98]. The
positions of poles in the @ plane are determined from the
condition of vanishing denominators, which are the same for
all field amplitudes (3b):

(%)p (5 @) =1, ©

which is equivalent to the condition ¢ = 1.

In the absence of gain (in a dissipative layer), all poles of
g(z,w) are located in the lower half-plane of the complex
frequency w (Fig. 6a). In this case, inverse Fourier transfor-
mation (8) gives the physically meaningful result.

In the case of a gain layer, according to (9), additional
poles occur (Fig. 6b), which pass to the upper half-plane of
the complex frequency w with increasing pumping [the
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parameter o in (2b)] (Fig. 6d), which first occurs at
d = dias(2). As a rule, the line |¢g| =1 touches the axis
Imw=0 at d=d, <dgs. In the case d,; < d < dps, a
range of real frequencies exists where the Airy series
diverges, but lasing is absent (Fig. 6¢), and therefore the
Airy series in counterpropagating waves and calculations
using Fresnel formulas give the correct result.

If the inverse Fourier transformation is performed in the
usual way (8) [58], the appearance of poles in the upper half-
plane leads to the violation of the causality principle. In this
case, expression (8) should be modified [41, 90], taking into
account that the transfer function g(z,w) is a response
function by its nature. To obtain the time representation of
the response function

G(z,1) = (2m)™"! Lg(z7 ) exp (—iwt) dw

satisfying the causality principle [G(z,7) = 0 for 7 < 0], the
integration contour C in the inverse Fourier transformation
E(z,t) = J

. eo(w) g(z, w) exp (—iwt) dw

(10)

must be drawn above all existing poles. It can then be
deformed such that expression (10) takes the form of the
sum of the integral along the real axis and all residues at the
poles [41, 90]:

E(z,1) = J

) eo(w) g(z, w) exp (—iwt) dw

—00

- 2niz res [g(w;, 2)] eo(wy) exp (—iw;r) . (11)

We note that the integral along the real o axis in
expression (11) coincides with the result obtained in the
standard Fresnel approach (8). As we saw above (Fig. 5a),
the first term in (11) by itself leads to a violation of the
causality principle. Integration over the new contour adds
residues at a discrete set of frequencies w; in the form of terms
~ exp (—i Re w;t) exp (Im ;) increasing with time [41, 90,
99]. Adding these discrete modes makes the calculation
scheme consistent with the causality principle, i.e., the
reflected wave is absent until the train front reaches the layer
boundary (Fig. 5b). Below, we call the above calculation of
the wave field taking discrete modes into account the
modified Fresnel approach.

Each eigensolution in (11) appearing at the frequency of
one of the poles represents a field exponentially increasing
with time in the layer and exponentially decreasing with the
distance from it (Fig. 5d) [41, 90, 99]. This decrease occurs
because the imaginary part of the wave number is positive
outside the gain layer, Im (w/c) > 0. Therefore, the neglect
of the contribution from the discrete spectrum of poles in
(11) is a source of errors appearing in the Fresnel approach.
It is the correct account of the contribution from these poles
that ensures the causality principle in the analysis of this
problem.

Because the modified Fresnel approach was obtained
from linearized Maxwell-Bloch equations, it quite correctly
describes the behavior of the field at the linear stage of lasing
development, when the field satisfies smallness criterion (2c)
(Fig. 7). However, the field infinitely increases with time. In

Figure 7. Time dependences of the transmission coefficient calculated by
the Fresnel method (solid curve) and by solving Maxwell-Bloch equations
numerically (dashed curve) for a semi-infinite sinusoidal wave train
incident on a gain layer. The incident wave intensity is 10~ in dimension-
less units (see footnote 1).

this case, not the reflected wave, as predicted by calculations
in the framework of the standard Fresnel approach [42], but
the wave transmitted through the layer is mainly amplified
(Fig. 5c). However, stationary field strengths can be obtained
only using the nonlinear approach.

Itisimportant to note the relation between the poles of the
response function and the critical layer thickness. The
position of the poles is determined by Eqn (9), while critical
length (6a) is determined by the violation of the convergence
condition for the Airy series, i.e., in fact by the same equality
(9), but taken by modulus. Therefore, all the poles lic on
curves defined by the condition d = d(®), where o takes
complex values (see Fig. 6). For a sufficiently thick layer [or
sufficiently strong pumping, determined by the coefficient o in
(2d)], a region where d > d;(w) appears on the real frequency
axis. In this region, the Airy series no longer converges (the
intersection of the shaded region with the abscissa in Fig. 6¢c),
but Fresnel approach (8) still gives a result coinciding with the
numerical solution of Eqns (1) (Fig. 6¢). Lasing appears for a
somewhat larger thickness dp,s of the layer (or a higher
pumping level), when one of the poles passes to the upper
half-plane (Fig. 6d), and only in this case does the Fresnel
approach give an incorrect result. Therefore, the divergence
condition for the Airy series is necessary, but insufficient for
the onset of lasing, and can be used only as an approximate
estimate of the condition for lasing appearance.

An interesting feature of the problem is the motion of
poles in the complex plane with increasing the layer thickness.
The poles move along the curve d = d;(®), and they can
come out to the upper half-plane and return to the lower half-
plane. As a result, as d increases, lasing alternately appears
and disappears. Therefore, a set of thicknesses dj,s with a
maximum value dy;, can exist. For thicknesses larger than d,,
at least one pole is in the upper half-plane, and after that
lasing no longer disappears with increasing the layer thick-
ness.

As pointed out above, as long as lasing is absent, the
standard Fresnel approach gives the same result as the
solution of nonlinear Maxwell-Bloch equations. This state-
ment is illustrated in Fig. 8a, where the dependence of the
stationary transmission coefficient 7 on the layer thickness at
a fixed frequency is shown. We see that the field distribution
obtained by solving Maxwell-Bloch equations deviates from
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Figure 8. (See in color online.) (a) Transmission coefficient of a layer
calculated by the Fresnel method (solid curve) and by solving Maxwell—
Bloch equations numerically (dashed curve) as a function of the layer
thickness. (b) Positions of poles with Imw > 0 as functions of the layer
thickness. The incident wave intensity is 107°.

the standard Fresnel field distribution? at the values of d
when bands appear in the upper complex frequency half-
plane.

We note that at frequencies different from the lasing
frequency, the Fresnel approach predicts a smooth change
in the stationary intensity of the transmitted wave with the
layer thickness. For some layer thicknesses, intensity maxima
of the transmitted wave are observed (Fig. 8a). But nonlinear
Maxwell-Bloch equations predict intensity jumps in this
dependence (Fig. 8a) even in the case of an infinitely small
incident wave intensity. These jumps are observed, however,
not for layer thicknesses where intensity peaks are located but
for layer thicknesses at which lasing starts or terminates. At
this point, a pole either comes out to the upper complex
frequency half-plane (lasing begins) or passes to the lower
half-plane (lasing ceases).

At incident wave frequencies close to the laser frequency,
the Fresnel approach gives an infinite field strength when
approaching dj,s. However, nonlinear Maxwell-Bloch equa-
tions predict a finite field strength, with the dependence of the
transmitted wave intensity on the sample thickness in the
nonlinear lasing regime having an evident hysteresis character
(Fig. 9), which is related to the layer bistability in the lasing
mode (the physics of this phenomenon is most simply
described by the field-mode—-two-level-atom model [78]).

At the incident wave frequency different from the lasing
frequency, the possibility of the onset of lasing and transition
to the nonlinear mode is related to the presence of the leading
edge of the incident wave train, which contains all the
frequency harmonics. The control of the carrier wave

3 We note that violation of the convergence condition for the Airy series
does not always lead to a deviation of the real field distribution from the
Fresnel distribution.
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Figure 9. Transmission coefficient of a gain layer for an electromagnetic
wave as a function of the layer thickness. The incident wave intensity is
1072,

amplitude gives the coincidence with the Fresnel approach
up to the thickness dj,s and the subsequent intensity jump
(Fig. 8b) after exceeding this thickness.

4. Lasing in photonic crystals

We have considered the propagation of light through a single
gain layer. We now consider the propagation of light through
a finite multilayer system in which gain layers alternate with
‘normal’ layers. Such a system is also called a one-dimen-
sional photonic crystal (PC). The problem of the incidence of
a wave on a PC has some features related first of all to the
presence of allowed and forbidden bands determining the
behavior of the field at the scale of a few unit cells of the PC.
The field intensity distribution also changes within one cell
because the field energy concentrates in certain regions of a
PC cell depending on frequency (Borrmann effect [74]), and
the field intensity in gain layers can exceed the field intensity
in a single layer for the same amplitudes of incident waves. In
addition, the PC band structure itself changes in the presence
of pumping because of the change in the frequency dispersion
of the dielectric constant ggin(w). These features are mani-
fested already in the simplest case where the PC consists of a
sequence of gain layers separated by vacuum layers with
respective thicknesses ¢; and d, and dielectric constants
Egain (@) (IM égain(w) < 0) and &, = 1.

The simplest method for calculating the transmission and
reflection coefficients of PCs is the T-matrix method [95]. As
applied to PCs, the T-matrix method is equivalent to the
Fresnel approach for a homogeneous layer. The Airy
approach can also be generalized by replacing plane waves
by Bloch waves.

If the thickness of a gain PC is sufficiently large, lasing can
develop in it. In this review, we consider only the linear stage
of the propagation of waves in a PC, because we are mainly
interested in subthreshold phenomena. At present, the non-
linear optics of PCs is a rapidly developing field, and the
results of investigations in this field are considered, e.g., in [84,
100, 101].

4.1 Airy series for photonic crystals

In Section 3.2, we analyzed the details of the Airy approach
for a single homogeneous layer, when the propagation of a
wave is considered as a sequence of rereflections inside the
layer. We generalize this method to the case of an arbitrary
number of layers. There are two eigensolutions for a PC, the
Bloch waves E* = f*(z) exp (fikpz). To construct the Airy
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series in Bloch waves, it suffices to know the Bloch wave
number kg and impedances Z* (or admittances (= = 1/Z7F)
of these waves.* We note that, unlike the Bloch wave number
kg defined up to the reciprocal lattice vector, the wave
impedance Z* at a given point is uniquely defined, although
it changes inside a unit cell. Taking the relation
H = —i/ko(0FE/0z) between magnetic and electric fields in
the wave into account, we find

Ci:i@_ialnfi

k() ko 0z

The second term is a periodic function of z and corresponds
to the contribution from the preexponential of the Bloch
wave.

In the absence of losses and gains, the impedance Z* has
complex values in the allowed band and purely imaginary
values in the forbidden band [29]. The wave number kg
respectively takes real and complex values. This determines
the main difference between the allowed and forbidden
bands. The appearance of an imaginary part of the dielectric
constant blurs band boundaries, but basic regularities are
qualitatively preserved.

The rereflection process (the Airy series) is constructed as
follows. The wave incident from the vacuum and the reflected
wave with respective impedances +1 and —1 generate a Bloch
wave inside a PC with the impedance Z+ =1/{" and the
electric field amplitude 1 =2/({" + 1) (see Fig. 3). This
wave propagates in the PC, acquiring the factor exp (id),
0 = kgN(d, + d»), at the PC end. Then the wave is reflected
from the right boundary; the reflected wave has the

impedance Z~ =1/{” and the transmitted wave has the
impedance Z = 1. The coefficient of transmission of the E*
wave into the vacuum s rg = ({~ —(*)/({~ — 1), and hence

the amplitude of the first transmitted partial wave is 7, =
tLtr exp (i9). In this case, the reflection coefficient of the right
boundary is rg = (1 —(")/({” —1). Then the E~ wave
propagates through the PC layer and is reflected from the
left boundary with the coefficient rp = —(1 +¢7)/(1+¢7).
The reflected E* wave again propagates through the PC
layer, and therefore the second partial wave escaping from the
PC has the amplitude 7, = ¢t;, where

q = rrrLexp (2i0) . (12)
Further iterations are performed similarly, and the nth partial
wave has the amplitude 7, = ¢" '1;. As a result, the
transmission coefficient can be represented as the series

o0
t =t tr exp (i0) Zq” .
n=0

(12a)

The formal summation of this series gives the expression

_ IR €Xp [ikBN(dl =+ dz)}
Tl =R exp [ZikBN(dl + dg)] '

(12b)

which, as can be easily verified, identically coincides with the
result obtained by the T-matrix method (if the E* wave is

4 Below, we assume that preexponential functions are normalized such
that they are equal to unity at z = 0. The relation between {* and kg is
discussed in detail in [29].

treated as a wave propagating from the vacuum to the PC,
i.e., as the ‘incident’ wave in the notation introduced in
Section 3.2).

Further, a complete analogy with the case of a single gain
layer is observed: the divergence of the Airy series in incident
waves at some frequency is not a sufficient condition for
lasing. Moreover, as we show below, this condition is
necessary only when the pumping frequency wy lies in the
allowed band of the PC. When the pumping frequency lies in
the forbidden band, the necessary condition for lasing onset is
related to the divergence of the Airy series in counter waves.

4.2 Lasing in the allowed band of photonic crystals

The signs of the real and imaginary parts of kg are opposite.
The incident wave is amplified during its propagation in a
PC. The convergence boundary of the Airy series, on which
all the poles of the transfer function are located, is
determined, as for a single gain layer, by the condition
|g| = 1 [with ¢ in (12)].

We note the principal difference between the case of a
layer consisting of one PC cell and the case of a homogeneous
layer. If pumping is absent and we neglect losses, we have the
dependence shown in Fig. 10a instead of the dependence in
Fig. 6a. Regions where the Airy series in incident waves
diverges are shown in grey. For one cell, three such regions
exist. One of them surrounds the region of real frequencies
corresponding to the forbidden PC band. A region in the
upper half-plane also appears. An increase in the number of
layers leads to the joining of these regions and filling of the
region with the real part of the frequency belonging to the
forbidden band (Fig. 10c). However, as in the case of a single
layer, all the poles lie in the lower half-plane.

Because the value of ¢ in (12) increases as the number N of
layers increases, the divergence condition for the Airy series
can be treated as the excess of the number of layers over a
critical value, N > N, similarly to the critical thickness of a
homogeneous layer. Indeed, for N < N, the Airy method for
incident waves and the Fresnel method (the 7-matrix method)
give the same result; for N > N, the calculation by the 7-
matrix method gives a finite result, but the Airy series in
incident waves diverges. The function N (w), being a real
function of the complex variable w, defines the curve
|¢(Ner(w))] = 1 in the complex frequency plane.

Pumping changes not only the imaginary but also the real
part of the dielectric constant. This leads to a deformation of
the curve |¢(w)| =1, but the dynamics of the poles as a
function of the thickness (the number of cells) resembles
that in the case of a single gain layer (Fig. 11).

Singularities occur only near the forbidden band bound-
ary. As could be expected, the critical number N, (w) of layers
decreases in allowed bands near their boundaries because of
the decrease in the group velocity of Bloch waves. We note
that this effect is more strongly manifested at the bottom
boundary of the forbidden band due to the concentration of
the electric field energy in gain layers with large ¢ values (the
Borrmann effect [74]), and hence lasing can be more readily
obtained near the bottom boundary of the forbidden band
(Fig. 12).

4.3 Lasing in the forbidden band of a photonic crystal

If the pump frequency lies in the forbidden band, then,
unlike in the case of the allowed band, the dependence of the
lasing threshold on the number of PC cells is nonmonotonic
(Fig. 13). This is explained by the fact that the forbidden
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Figure 10. (See in color online.) Formation of the forbidden band in a PC;
(a) one cell, (b) two cells, (c) four cells. Gains and losses are absent.

band exists only in an infinite PC. The properties of the
forbidden band are formed when increasing the number of
PC cells. For small thicknesses, the dependence on the
thickness resembles that in the case of the allowed band
(see Section 4.2). Below, we treat allowed and forbidden

100 120 140 160 180 200
b
100 120 140 160 180 200
10 c
5
3
g 0
=5
—10
100 120 140 160 180 200

Re w

Figure 11. (See in color online.) Position of the curve |¢| = 1 in the complex
frequency plane (solid curve) and positions of poles (indicated by circles)
for dielectric constants of the gain medium (a) 2 — 0.05i, (b) 2 — 0.12i, and
(c)2—0.18i.

bands not only as sets of real frequencies but also as the
bands corresponding to them in the complex frequency
plane.
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Figure 12. (See in color online.) Arrangements of poles of the response
function of a PC in the complex frequency plane for pump frequencies in
(a) the lower and (b) the upper boundaries of the forbidden band. Grey
and white regions respectively indicate convergence regions of the Airy
series in incident and counter waves.
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Figure 13. The threshold value oy, (circles) and the lasing frequency w
normalized to the central frequency w, of the forbidden band (filled
circles) as functions of the number N of layers. The dashed straight line
indicates the forbidden band boundary.
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Figure 14. (See in color online.) Arrangement of poles of the PC response
function in the complex frequency plane (indicated by circles) for different
numbers of layers. The square indicates a pole of the dielectric constant.
The Airy series in incident waves converges in white regions and diverges
in grey regions: (a) 10 PC cells, (b) 12 PC cells, (c) 14 PC cells.

For sufficiently large PC thicknesses, when the depen-
dence of the threshold on the thickness changes, the topology
of the convergence region of the Airy series also changes.
Now the convergence boundary for the Airy series at

forbidden band frequencies surrounds the convergence
region of the series in incident waves (white region I in
Fig. 14a). Simultaneously, the convergence region of the
same series exists in the allowed band (region II). Outside
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when we change the gain parameter o, both the imaginary and

04 real parts of eg,in (o) change. If we consider an auxiliary PC in
which the gain layer is replaced by a layer with the dielectric

03 | constant Re &g,in(a), the forbidden band of this auxiliary PC

Im [kB(dl + dz)]
S
[\S)
T

0.1 -

0 T T | T

120 140 160 180
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Figure 15. (See in color online.) Dependence of the imaginary part of kg of
an auxiliary PC on the carrier frequency of the incident train. Vertical
straight lines indicate the boundaries of the forbidden band for the PC
without gain.

these regions, the Airy series in incident Bloch waves (12b)
diverges. However, lasing does not appear in the case of weak
pumping, because all poles of the transfer function lie below
the real frequency axis, in the vicinity of the dielectric
constant pole gg,in (Fig. 14a).

As the pump level is increased, region I increases
(Fig. 14b) such that its boundary sooner or later intersects
the real axis, and one of the poles comes out to the upper
half-plane. Lasing appears at some frequency in the for-
bidden band (Fig. 14b). In this case, the convergence region
mentioned above can either remain isolated or merge with a
similar region existing in the allowed band (Fig. 14b). In the
second case, poles can pass from the forbidden band to the
allowed band. However, as the number of layers is increased,
the regions again separate (Fig. 14c). As the number of layers
is increased further, poles located at the boundary of region I
move downward, while poles located at the boundary of
region Il move upward. When the number of layers is large,
lasing can occur only at the boundary of region II.

The passage of the pole from region I to region II leads to
a nonmonotonic dependence of the threshold pump on the
number of layers (see Fig. 13). Aslong as the pole is located at
the boundary of region I, the increase in the number of layers
leads to an increase in oy, (open circles in Fig. 13). But after
the pole passes to region II (dark circles in Fig. 13), the
behavior is reversed. In this case, the lasing frequency
monotonically shifts to the lower boundary of the forbidden
band.

Hence, when the gain line is located in region I, lasing is
possible only when the number of layers is small: N < N,.
However, the increase in the number of layers eventually
leads only to lasing at frequencies in region II. This is possible
because of the finite width of the gain line.

Notably, if the gain line width is sufficiently small, regions
I and IT do not merge (Fig. 14a). In this case, poles cannot
pass from region I to region I1, and the increase in the number
of layers suppresses lasing. Nevertheless, lasing eventually
appears in the allowed region upon increasing the number of
layers due to the finite width of the gain line.

We note that region II covers both the allowed and
forbidden bands. This is explained by the fact that the
increase in the gain parameter a« changes the dielectric
constant egin [see (2d)]. The appearance of lasing in the part
of region II that lies in the forbidden band can therefore be
interpreted as a change in the band structure of a PC. Indeed,

would be narrower than that of the original PC with o =0
(Fig. 15). In this case, region II entirely lies in the allowed
band of the auxiliary PC.

Hence, for N < Ny, (), the upper half-plane always has at
least one pole, and lasing is therefore observed. For
N < N < Nis(), the poles of the transfer function can
enter the upper half-plane and come out of it; in this
case, lasing alternately starts and terminates. For
Nis < N < N (o), the Airy series in incident waves does not
converge [curve (12) touches the real frequency axis from
below], but poles are absent in the upper half-plane, and
lasing is not observed. For N > N (o), the Airy series in
incident waves converges [curve (12) does not touch the real
frequency axis from below].

5. Oblique incidence of light on a gain layer

We next consider the case of an oblique incidence of a wave on
a gain layer surrounded by a medium with a dielectric
constant &. Fresnel formulas (3) and Airy series (4), (5),
which we obtained for normally incident light, have the same
form after the replacement

and

Zy — \/&gain — & sin2¢, Z1 — \fee cOs ¢

for the s-polarization, and

-2
Egain — ¢ SIN d)

. . qin2
Egain — &e SIN (;b CoS ¢
Ly > +—"— —_ —
Egain Vée

for the p-polarization, where ¢ is the angle of incidence.

It follows from the Fresnel formulas that the transmis-
sion coefficient T of a gain or dissipative layer tends to zero
upon increasing the layer thickness d, while the reflection
coefficient R tends to a nonzero constant. In a semi-infinite
gain or dissipative medium, only one wave decreasing with
the distance from the boundary remains. The difference
between the dissipative and gain media consists in the
direction of the Poynting vector: in the first case, this
vector is directed from the boundary to the interior of the
half-space, while in the second case, it is directed to the
boundary.

As in the case of normal incidence, Fresnel formulas
become invalid when lasing appears, i.e., in the presence of
poles of the response function in the upper complex frequency
half-plane. The position of poles is determined by the
equation

\/(m—\/acosd)
q:
\/m—l—\/gcosqﬁ

2iwd .
xexp( IZU sgainfsemnzd)) =1.

2

(13)
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Figure 16. Angular dependences of the critical layer thickness for the s-
polarization (solid curves) and p-polarization (dashed curves). (a) The
nonresonance part of the dielectric constant &g = 2 of a layer [see Eqn (2d)]
in the vacuum. (b) A layer with ¢y = 1 in a dielectric with &, = 2.

The poles of the response function are located on the curve
determined from the amplitude conditions of lasing:

2wd )
|rs|* exp (i Im \/ égain — & sin’ ¢ > =1, (14)
C
Zy— 7>
T ==5—— .
Z+ 7,

To determine the gain layer thickness dj,s(¢p) at which lasing
begins, it is convenient to follow the evolution of curve (14) in
the complex frequency plane as the layer thickness changes.
Unlike normal incidence, oblique incidence can correspond
to two fundamentally different cases.

If the gain medium is surrounded by a medium with a
lower optical density, Re ggin > ¢, the situation is identical to
the case of normal incidence. For d < d.(¢), the Airy series in
incident waves converges, while for d > d.(¢), it diverges,
and the poles of the transfer function can pass to the upper
half-plane. The critical thickness of the layer at which lasing
appears depends on the angle of incidence. For the p-
polarization, dj,s(¢) — oo for the incidence of light at the
Brewster angle ¢y, (Fig. 16a). This is explained by the fact
that when the Brewster condition is exactly satisfied, reflec-
tion is absent and the layer is no longer a resonator. Because
of the gain, the dielectric constant of the layer has an
imaginary part, and therefore its impedance differs from
unity. Hence, di,s(¢p,) preserves a finite value.

But if the layer is located in a dielectric with a higher
optical density, Reéggin <&, a region of total internal
reflection appears (to the right of the vertical line in
Fig. 16b). In this region, d,; decreases with increasing the

angle of incidence, but this does not mean that the region
¢ > ¢rr (¢pr 1s the angle of total internal reflection)
facilitates lasing, because this is only the amplitude condi-
tion, and the phase condition (the passage of a pole) is also
required.

For angles of incidence ¢ smaller than ¢qr, curve (14)
and the poles of the response function behave similarly to
those in the case of normal incidence (Fig. 17).

For angles of incidence above the critical angle, the
convergence and divergence regions of the Airy series change
places (Fig. 17e). As the layer thickness increases, the region
where the Airy series in increasing waves converges decreases,
and therefore curve (14), lying between convergence regions,
descends in the complex frequency plane with increasing the
layer thickness. Hence, for angles of incidence greater than
the total internal reflection angle, lasing can be observed only
in the gain layer with a small thickness, and it disappears upon
increasing the layer thickness, similarly to the case of the
forbidden band in a PC. Poles located on curve (14) move
clockwise along this curve with increasing the angle of
incidence (see Fig. 17) [100], and occur near the transition
frequency w for ¢ — ¢rr.

It is interesting to note that the angle at which conver-
gence regions change places is exactly equal to the total
internal reflection angle in the absence of gain: ¢, =
¢rir = arcsin\/ey/e.. Here, & is the real part of the
dielectric constant with dispersion neglected [see (2d)]. This
value of the critical angle was obtained in [41, 100] and seems
strange at first glance. The value ¢, = arcsin y/Re ggin(®) /e
would be more expected. We note, however, that the
inversion of convergence regions for the Airy series [see
Fig. 17] is determined by the properties of the system for
® — 00, where gg,in — & due to the finite width of the gain
line. In this case, the incident wave is not amplified, and for
angles exceeding the total internal reflection angle
(g0 — & sin” ¢) < 0, the series in decreasing waves converges
at real frequencies [41, 100].

Therefore, for ¢ < ¢, lasing appears as the gain layer
thickness increases, while for ¢ > ¢,,, lasing is possible only
in a thin gain layer. The angle ¢, = ¢ = arcsin y/go/e. at
which one type of behavior passes into another is determined
by the value of the dielectric constant with dispersion
neglected [41].

6. Conclusions

We have emphasized in this review that as long as lasing is
absent in a layered system containing gain layers, the use of
the effective dielectric constant eg,i, With a negative imaginary
part is valid for the description of the system.

The hierarchy of gain layer thicknesses has the form
dy < doy < dips < dy. In all the cases considered here, a gain
layer thickness dy or a number Ny of unit cells in a PC exist
beginning from which the reflection coefficient of the layer
exceeds unity. Then, as the system thickness is increased, the
critical thickness d, of the gain layer is reached above which
the Airy series in incident waves diverges. For layer
thicknesses smaller than d,, the Airy series converges to the
result obtained by the Fresnel method (the solution of a linear
wave equation), which in turn coincides with the numerical
solution of the Maxwell-Bloch equations.

A different situation occurs when the threshold value dj,
is exceeded and lasing begins. Instead of the linear state
predicted by the Fresnel approach, a nonlinear stationary
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Figure 17. (See in color online.) Position of the poles of the transfer function in the complex plane for different angles of incidence. The divergence regions
of the Airy series in incident waves for the normal incidence are shown in grey: (a) normal incidence, ¢ = 0, (b) angle of incidence ¢ = 0.9 ¢pyr,
(©) ¢ =0.99 prir, (d) ¢ = 0.999 Pppr, () angle of incidence is greater than the angle of total internal reflection, ¢ = 1.01 ¢pg.

solution appears (Fig. 4c). In this case, even if the field
intensity in the Fresnel solution is small, and it would seem
that a field-induced change in the inverse population can be
neglected, Maxwell-Bloch equations (1) yield a solution with
alarge amplitude at which nonlinearity becomes decisive. The
exact condition for the appearance of lasing is the passage of
the poles of the linear response function g(w) in (3) to the
upper half-plane of complex frequencies .

The construction of the Airy series quite well describes the
propagation of a semi-infinite wave train through a layer of
matter. But it should be performed differently for a gain
medium in the cases d < d.; and d > d.. Indeed, the Airy
series is constructed by using the reflection coefficient ry, in
the problem of the reflection of a plane wave from the half-
space. The value of ., depends on the wave with which a wave
incident from the vacuum is matched in the layer. If, as is
usually accepted for dissipative media [88], we take a wave
transferring energy inside a layer, i.e., the incident wave, then
for d < d,., the modulus of the denominator of the geometric
progression ¢ = r2 exp (2i) is smaller than unity, and the
Airy series in incident waves converges to expression (3b)
obtained in the Fresnel approach.

But if the Airy series is constructed assuming that the
solution in a semi-infinite medium is a counter wave [42], then
the impedance Z, and the complex phase ¢ in (4a) and (4b)
change sign. As a result, the denominator of the progression
becomes equal to 1/¢, and for d > d,;, already the Airy series
in counter waves (6b) converges, as follows from calculations
by the Fresnel method.

The analysis performed here shows that result (3b)
obtained by the Fresnel method can be treated as an analytic
continuation of the sum of Airy series (5) to the region
d > dy(w) in the complex frequency plane (shaded regions
in Fig. 6). In other words, for d < d, it is necessary to use the
Airy series in incident waves, while for d > d,., it must be used

in counter waves. We note that for d = d; (|¢| = 1), neither of
the series converges, but if ¢ # 1, then the upper and lower
limits for d — d,, & 0 coincide.

Passing from the Airy series in incident waves to the Airy
series in counter waves is equivalent to the analytic continua-
tion of the function 1/(1 —¢) from the vicinity of ¢ =0,
where

1 n
—l_q—zn:q :
to the vicinity of |g| = oo, where [56]
1 g 1%(1)”
a5 \q)

1—g¢g 1-1/q e
Thus, we obtain the complete correspondence between the
Airy series and the result of the Fresnel approach, which is the
same analytic function whose expansion in a power series
represents the Airy series. Similarly to the modified Fresnel
approach, a sum of residues in poles determined by the
condition g(w) =1 must be added to the Airy series in
counterwaves. This adds terms infinitely increasing with
time in the parameter regions where lasing occurs.

A physical parameter determining the lasing onset
condition is the path along which a beam propagates in a
layer. In the case of oblique incidence, this path differs from
the layer thickness. As a result, the smaller values of
thicknesses dy, d., das, and dy correspond to modes
propagating at angles. In particular, these values tend to
zero when the angle of incidence tends to /2 (see Fig. 17).
The expansion of a beam with a finite aperture in plane waves
always contains waves with angles of incidence close to /2. It
is necessary to take into account that the path of such waves is
restricted by the width of the beam or by the transverse size of




1096

A V Dorofeenko, A A Zyablovsky, A A Pukhov, A A Lisyansky A P Vinogradov

Physics— Uspekhi 55 (11)

the system. Indeed, pumping is performed not in the entire
plane but in the restricted region of the layer, as in the case of
VCSELs [1-6]. Escaping from this region, the waves fall into
the absorption region.

In the case of an oblique incidence of an electromagnetic
wave, the effect of the Brewster phenomenon and total
internal reflection is significant. For a nonzero imaginary
part of eg,in, the Brewster angle and the angle of total internal
reflection are complex. But it turns out that in the case of total
internal reflection, a real critical angle ¢, exists, equal to the
angle of total internal reflection ¢p;z in the absence of
pumping, and the behavior of the system above and below
this angle is qualitatively different. For angles of incidence
smaller than this angle, the dependences of all the quantities
on the layer thickness are similar to those in the case of
normal incidence on the layer or on a PC in the allowed band,
namely, the characteristic thicknesses dy, dcr, di.s, and di,
exist. In the case of incidence at angles greater than the critical
angle, all the dependences on the layer thickness are similar to
those in PCs at frequencies in the forbidden band: dj always
exists, d.; and dj,s do not exist for all pump levels, and d, is
absent. An increase in the layer thickness eventually leads to
the interruption of lasing.
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