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We derive semiclassical laser equations valid in all orders of nonlinearity. With the help of a diagrammatic
representation, the perturbation series in powers of electric field can be resummed in terms of a certain class
of diagrams. The resummation makes it possible to take into account a weak effect of population pulsations
in a controlled way while treating the nonlinearity exactly. The proposed laser theory reproduces the all-order
nonlinear equations in the approximation of constant population inversion and the third-order equations with
population-pulsation terms as special cases. The theory can be applied to arbitrarily open and irregular lasers,
such as random lasers.
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I. INTRODUCTION

Interest in random lasers with coherent feedback [1,2] and
lasers based on chaotic microresonators without mirrors [3]
revealed a number of shortcomings of conventional laser
theory [4,5] that complicated its application to such systems.
Among the properties that characterize random and chaotic
lasers are strong openness, irregular spatial dependence of
the refractive index, and possibly a nontrivial shape of the
resonator. Lasing in these systems can be accompanied by
strong coupling between the modes, which requires a more
careful treatment of nonlinear effects than is necessary for
regular lasers.

An essential part of a laser description is the choice of an ap-
propriate basis of normal modes in which the electromagnetic
field and other system functions can be expanded. In an open
system, it is not possible to define a Hermitian eigenvalue
problem whose eigenfunctions would form an orthogonal
basis. Instead, one has to introduce a biorthogonal system
of so-called quasimodes as left and right eigenfunctions of a
non-Hermitian operator. A number of methods to construct
quasimodes have been discussed in the literature. Among
the earliest are the Fox-Li modes [6–8], which are useful in
resonators with a preferred propagation direction and clearly
defined transverse plane. In a more general setting, there
have been attempts to use solutions of the wave equation
that satisfy outgoing boundary conditions at infinity (Siegert-
Gamow boundary conditions) with complex eigenfrequencies
corresponding to scattering resonances [9–11]. However, these
modes diverge at infinity, which makes it problematic to use
them as a basis [9], but some ways around this problem have
been discussed in Refs. [10] and [11]. Another possibility is
to use the so-called system-and-bath-type approaches [12,13],
where cavities are described by an orthogonal system of wave
functions of a Hermitian problem with an independent sets of
modes introduced for outside of the resonator. The openness
of the cavity in this approach is reproduced by introducing
coupling between a discrete set of inside modes and the
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continuous spectrum of outside modes. This way, the modal
expansion of the field becomes possible both inside and outside
of the cavity.

In the present work, we use a different approach based on
keeping the spectral parameter of the outside outgoing field
real while making the inside field satisfy continuity conditions
at the boundary of the cavity. This approach also results in
the discrete spectrum of the cavity field with complex-valued
frequencies, but because the outside field is forced to depend
on the real spectral parameter, it does not diverge and is
characterized by a constant flux. This approach was used in
Ref. [14] for a special kind of vibration problems and was
adapted for lasers in Ref. [15], where these modes were dubbed
the constant-flux (CF) modes. One can introduce two adjoint
biorthogonal systems of CF modes, which can be used to
represent a field inside the cavity.

In the standard semiclassical laser theory [4,5], lasing
modes are usually taken to coincide with quasimodes of
the respective cavities, and their amplitudes and frequencies
are found from equations based on perturbation expansions
containing terms linear and cubic in the field. In random
lasers, this picture needs to be revised. First, it has been
shown [16,17] that normal modes in the presence of gain differ
from the passive modes even in the linear approximation if
the refractive index and/or unsaturated population inversion
are nonuniform. Second, it has been realized [18–20] that
self- and cross-saturation coefficients before the cubic terms
can have different statistical properties in different systems,
leading to different mode statistics. Finally, it has been pointed
out [15,21] that nonlinear effects can significantly contribute
to modification of the lasing modes compared to those of the
empty cavity. A theory suggested in Refs. [15,21] allowed
for self-consistent calculations of not only lasing frequencies
but also of the spatial distributions of the respective modes.
By neglecting pulsations of the population inversion, the
authors of Refs. [15,21] were able to derive equations for
field amplitudes and frequencies beyond the usual third-order
approximation.

In the present work, we also generalize the conventional
laser theory, but, unlike the approach of Refs. [15,21], we
do not begin by introducing a special approximation for
population inversion. Instead, we carry out the perturbation
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expansion up to the infinite order in the field, keeping all the
terms that do not have fast temporal oscillations. This also
includes a part of population-pulsation contributions that is
consistent with the slowly-varying-envelope approximation.
The classification of the resulting terms becomes possible as
a result of a special diagram technique developed to represent
the terms of the expansion. However, this technique differs
significantly from the usual Feynman diagrams widely used in
solid-state and high-energy physics, because we have to deal
with terms of ever-increasing degrees of nonlinearity. Thus,
diagrams in our technique are not used to literally represent
each term of the expansion, but play a more limited role as a
tool assisting in the classification of the terms. Nevertheless,
this technique allows for standard division of diagrams into
connected and disconnected ones, with disconnected diagrams
submitting to easy resummation in terms of only connected
ones. The connected diagrams can be classified according
to the order of magnitude of the population pulsations. The
resulting laser equations generalize the nonlinear equations
of Refs. [15,21] in two respects. First, equations derived
in this article are dynamic, allowing for the study of time
dependence of the amplitudes, whereas the equations of
Refs. [15,21] can describe only stationary lasing output.
Second, our equations incorporate terms responsible for the
population-pulsation contribution in all orders of the pertur-
bation theory; the equations of Refs. [15,21] are reproduced
in our approach if only the lowest-order diagram is taken into
account.

The structure of our article is as follows. In Sec. II, we recall
the definition and properties of the constant-flux quasimodes
of open system. Standard semiclassical laser equations are
written in Sec. III in frequency representation for later
convenience. Coupled equations for electric field, polarization,
and population inversion are reduced to equations for the field
alone in Sec. IV using infinite-order perturbation theory. In
Sec. V, we formulate the diagrammatic technique and resum
the perturbation expansion in terms of connected diagrams.
In Sec. VI, we reproduce the results of linear theory, third-
order theory with population-pulsation terms, and all-order
nonlinear theory in the constant-inversion approximation.
Finally, we write corrections to the all-order theory that are
of the first order in the population pulsations.

II. CONSTANT-FLUX QUASIMODES

We consider an open system defined by real dielectric
constant ε(r), with ε = 1 outside of the system’s boundary.
In the Coulomb gauge ∇ · [ε(r)E(r, t)] = 0, an electric field
E(r, t) is governed by the wave equation

ε(r)
∂2

∂t2
E + ∇ × (∇ × E) = 0, (1)

where Gaussian units with the velocity of light in vacuum
c = 1 are used.

In the absence of gain and absorption, the field will decay
in time as a result of the openness. It is convenient to represent
the decaying field as a superposition of certain normal
modes, the quasimodes, that have only outgoing components
outside the system. These modes can be constructed as families
of CF states [15] ψk(r, ω) depending on a real continuous

parameter ω. Explicitly, the CF modes satisfy the differential
equation

∇ × [∇ × ψk(ω)] = ω2ψk(ω) (2)

in the exterior of the cavity with the outgoing-wave boundary
conditions at infinity. Inside the system, the same state satisfies
a different equation:

1√
ε(r)

∇ ×
[
∇ × ψk(ω)√

ε(r)

]
= �2

k(ω)ψk(ω). (3)

For each ω, the complex eigenfrequency �k(ω) is quantized,
as the eigenfunctions are required to match smoothly at the
interface.

Conjugate wave functions φk(r, ω) obey Eq. (2) out-
side with the incoming-wave boundary conditions and the
equation

1√
ε(r)

∇ ×
[
∇ × φk(ω)√

ε(r)

]
= [

�2
k(ω)

]∗
φk(ω) (4)

inside the system. The CF functions and their conjugates are
biorthogonal and can be chosen to satisfy the condition∫

I
dr φ∗

k (r, ω) · ψk′(r, ω) = δkk′, (5)

where the integration is over the interior I.
A Fourier component Eω(r) of the internal field can be

expanded in the CF modes as

Eω(r) = ε−1/2(r)
∑

k

ak(ω)ψk(r, ω), (6)

ak(ω) =
∫
I
dr

√
ε(r)φ∗

k (r, ω) · Eω(r). (7)

When continued to the exterior, this expansion yields a wave
at the frequency ω propagating in the free space away from the
system. In a stationary lasing regime, ω becomes subjected to
an equation, which has a discrete set of solutions corresponding
to the frequencies of lasing modes.

III. SEMICLASSICAL LASER EQUATIONS

In the semiclassical theory of lasers [4,5], the fields are
described classically at the level of Maxwell equations, and the
active medium is treated by quantum mechanics. To this end,
the wave Eq. (1) is written with a source term, the polarization
P(r, t) of the gain medium:

ε(r)
∂2

∂t2
E + ∇ × (∇ × E) = −4π

∂2

∂t2
P(r, t). (8)

In the simplest model, the active medium is a collection of
homogeneously broadened two-level atoms. Their state is
fully described by P(r, t) and the population-inversion density
	n(r, t) (difference between populations of the upper and
lower levels per unit volume). These functions satisfy the
equations of motion [5](

∂2

∂t2
+ 2γ⊥

∂

∂t
+ ν2

)
P = −2ν

d2

h̄
E(r, t)	n(r, t), (9)

∂

∂t
	n − γ‖[	n0(r, t) − 	n] = 2

h̄ν
E(r, t) · ∂

∂t
P(r, t), (10)
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where d is the magnitude of the atomic dipole matrix
element, ν is the atomic transition frequency, and γ⊥ (γ‖)
is the polarization (population-inversion) decay rate. If the
right-hand side of Eq. (10) vanishes, 	n relaxes to the
unsaturated population inversion 	n0(r, t), which is a measure
of the pump strength. The coupled Eqs. (8)–(10) determine,
in principle, electric field in the system, if 	n0(r, t) is
given.

It is convenient, at this stage, to rewrite the equations
of motion in the frequency representation. The Fourier-
transformed variables are given in the form

E(r, t) = 1

π
Re

∫ ∞

0
dω Eω(r)e−iωt , (11)

P(r, t) = 1

π
Re

∫ ∞

0
dω Pω(r)e−iωt , (12)

	n(r, t) = 1

2π

∫ ∞

−∞
dω 	nω(r)e−iωt , (13)

which facilitates application of the rotating-wave approxima-
tion. Additionally, we assume that Eω and Pω are negligible
outside of a small vicinity of ν. Then the frequency squared can
be approximated as ω2 = (ν + ω − ν)2 ≈ ν2 + 2ν(ω − ν),
and the lasing equations become effectively the first-order
differential equations in time,

−ε(r)(−ν2 + 2νω)Eω + ∇ × (∇ × Eω) = 4πν2Pω, (14)

[−i(ω − ν) + γ⊥]Pω = −i
d2

2πh̄

∫ ∞

0
dω′ Eω′	nω−ω′ , (15)

(−iω + γ‖)	nω = 2πγ‖	n0(r)δ(ω) − i

πh̄

×
∫ ∞

0
dω′(E∗

ω′−ω · Pω′ − Eω′+ω · P∗
ω′),

(16)

where the pump 	n0(r) is assumed constant in time.

IV. ALL-ORDER PERTURBATION THEORY

A. Expansions for polarization and population inversion

Equations (14)–(16) can be reduced to an equation for
the electric field alone using perturbation theory in the field
amplitude. In particular, one needs to construct an expansion
of Pω(r) in the (odd) powers of the field using Eqs. (15) and
(16). Then this expansion is substituted in Eq. (14), producing
the required equation for the field. In the conventional laser
theory [4,5], Pω(r) is expanded up to the third order in Eω(r),
which yields the saturation terms in the rate equations. In this
article, we carry out the expansion up to an arbitrary order in
the field’s amplitude and use diagrammatic method to sort out
the respective terms.

We begin by neglecting the quadratic terms in Eq. (16),
which gives the zero-order expression for the population inver-
sion: 	n(0)

ω = 2π	n0(r)δ(ω). By substituting this expression
in the polarization Eq. (15), we obtain the first-order term for
polarization: P(1)

ω = −i(d2/h̄γ⊥)D(ω)	n0(r)Eω, where

D(ω) ≡
(

1 − i
ω − ν

γ⊥

)−1

. (17)

This expression is substituted back in Eq. (16), from which the
second-order correction to the inversion 	n(2)

ω is determined.
This iteration procedure yields the perturbation series for
polarization and population inversion,

Pω(r) =
∑
q odd

P(q)
ω (r), (18)

	nω(r) =
∑
q odd

	n(q−1)
ω (r), (19)

in odd and even powers of the electric field, respectively.
Henceforth, we restrict the calculations to the case of scalar
field. The general terms of these expansions are derived
by induction in Appendix A. The resulting expressions
are

P (q)
ω = 2ih̄γ‖

A(q+1)/2

πq−1
	n0(r)D(ω)

∫
dω1 · · · dωq−1Eω1E

∗
ω2

· · ·Eωq−2E
∗
ωq−1

Eω−ω1+ω2−···−ωq−2+ωq−1D‖(ω1 − ω2)

×D‖(ω1 − ω2 + ω3 − ω4) · · · D‖(ω1 − ω2 + · · · + ωq−2 − ωq−1)[D(ω1) + D∗(ω2)][D(ω1 − ω2 + ω3)

+D∗(ω2 − ω1 + ω4)] · · · [D(ω1 − ω2 + ω3 − · · · − ωq−3 + ωq−2) + D∗(ω2 − ω1 + ω4 − · · · − ωq−4 + ωq−1)],

(20)

	n(q+1)
ω = 2

A(q+1)/2

πq
	n0(r)D‖(ω)

∫
dω1 · · · dωqEω1E

∗
ω2

· · · E∗
ωq−1

Eωq
E∗

−ω+ω1−ω2+···−ωq−1+ωq
D‖(ω1 − ω2)

×D‖(ω1 − ω2 + ω3 − ω4) · · · D‖(ω1 − ω2 + · · · + ωq−2 − ωq−1)[D(ω1) + D∗(ω2)][D(ω1 − ω2 + ω3)

+D∗(ω2 − ω1 + ω4)] · · · [D(ω1 − ω2 + ω3 − · · · − ωq−3 + ωq−2) + D∗(ω2 − ω1 + ω4 − · · · − ωq−4 + ωq−1)]

×D(ω1 − ω2 + ω3 − · · · − ωq−1 + ωq) + c.c.(ω → −ω),

(21)

where q is odd. The notation c.c.(ω → −ω) stands
for the first part of the equation to which com-
plex conjugation accompanied by change of the sign
of ω was applied. We also introduced the following

definitions:

A ≡ − d2

2h̄2γ⊥γ‖
, (22)
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D‖(ω) ≡
(

1 − i
ω

γ‖

)−1

. (23)

These expressions describe nonlinear (q � 3) corrections to
polarization and population inversion, which are used to obtain
equations for the field amplitudes.

B. Equations for electric field

Equation for the amplitudes (7) of normal modes,

[�k(ω) − ω]ak(ω) = 2πν

∫
I
drε−1/2(r)φ∗

k (r, ω)Pω(r),

(24)

follows from Eq. (14) and the biorthogonality condition (5).
The right-hand side is a sum of the infinite number of nonlinear
corrections to the polarization and is, therefore, a functional of
all amplitudes ak(ω). By definition, a lasing mode is such
a solution that, in the limit t → ∞, approaches a purely
harmonic form, ∝ exp(−iωkt). Here ωk is some frequency that
is determined self-consistently from Eq. (24). In the frequency
domain, these solutions are characterized by δ-functional
frequency dependence ∝ δ(ω − ωk).

Generally speaking, lasing modes are different from the
quasimodes of the passive system. Indeed, an attempt to search
for the solutions of Eq. (24) in the form ak(ω) = akδ(ω − ωk)
leads, after the frequency integration (20), to the equation

[�k(ωk) − ωk]akδ(ω − ωk)

=
∑
q odd

∑
k1,···,kq

W
(q)
k,k1,...,kq

ak1a
∗
k2

. . . a∗
kq−1

akq

× δ
(
ω − ωk1 + ωk2 − · · · + ωkq−1 − ωkq

)
, (25)

where the coefficients W
(q)
k,k1,...,kq

are functions of the fre-
quencies ωk, ωk1 , . . . , ωkq

. Clearly, most of the terms on the
right-hand side contain the δ functions that are different from
δ(ω − ωk) on the left-hand side. In the time domain, these
terms would introduce oscillations with frequencies different
from ωk . This means that, in general, no stationary lasing
solutions exist unless for some reason the terms oscillating at
the “beat” frequencies are small and can be neglected. Usually
the selection of the slowly changing contributions to Eq. (25) is
done by leaving only terms with pairwise coinciding indices ki ,
so that the respective frequency differences cancel out (more
on this procedure can be found later). However, because the
number of ωki

in this equation is odd, one will always remain
with the expression δ(ω − ωk′), where k′ is the index of one of
the remaining uncanceled frequencies.

This problem can only be resolved by requiring that, in a
given lasing mode l, each contribution alk of the quasimode k

oscillates at the same frequency, and the general solution for
ak takes the form of

ak(ω) = π
∑

l

alkδ(ω − ωl). (26)

Amplitudes alk can be shown to obey the equation

[�k(ωl) − ωl]alk =
∑
k′

V
(l)
kk′alk′ , (27)

where the coefficients V
(l)
kk′ depend on all frequencies and

amplitudes. An explicit expression for V
(l)
kk′ is given later. One

can see from this equation that the lasing modes are those
combinations of the quasimodes that diagonalize the matrix
V

(l)
kk′ , whereas lasing frequencies are real eigenvalues of this

matrix [16,17].
One has to realize, though, that Eq. (27) is not an ordinary

eigenvalue problem, because the matrix V
(l)
kk′ itself depends

on the amplitudes alk . Unlike linear eigenvalue problems,
which determine frequencies for which nonzero solutions for
the amplitudes can exist, by solving Eq. (27) one shall be
able to find the frequencies as well as the field amplitudes.
This is possible because the requirement that the respective
eigenfrequencies must be real provides an additional constraint
on solutions of Eq. (27) [21,22].

If matrix V
(l)
kk′ is calculated in the constant-inversion ap-

proximation, Eq. (27) reproduces the main result of Ref. [23].
However, while the derivation of this equation in Ref. [23]
is only valid in the strictly stationary limit, the arguments
presented here can be extended to a nonstationary case. Indeed,
we can repeat these arguments for a weakly nonstationary
situation, requiring that the amplitudes alk be slowly changing
functions of time. Formally, we replace the mode expansion
(26) with ak(ω) = ∑

l alk(ω − ωl), where alk(ω − ωl) is as-
sumed to be sharply peaked at ω = ωl . In this case, we
can transform Eq. (24) to the time domain by expanding
�k(ω) as �k ≈ �k(ωl) + (ω − ωl)�′

k(ωl), where �′
k(ω) is the

derivative of �k with respect to the spectral parameter ω. It
was found in Ref. [24] that, at least in the case of modes
of a disk resonator, this derivative is not small and must be
taken into account. In nonlinear terms, we simply replace
alk(ω − ωl) → πalk(t)δ(ω − ωl), which amounts to neglect
of time derivatives of the nonlinear corrections. The resulting
equation is{

−i[1 − �′
k(ωl)]

d

dt
+ [�k(ωl) − ωl]

}
alk(t)

=
∑
k′

V
(l)
kk′(t)alk′(t), (28)

which, in the stationary limit, coincides with Eq. (27). Note that
V

(l)
kk′ is now a slowly varying function of time via its dependence

on the amplitudes al′′k′′(t). The correction due to �′
k is a

new term, which was not discussed in any of the previous
treatments of lasing dynamics. While it does not affect the
steady-state solutions, it might change their stability, and is
therefore important for strongly open cavities. More detailed
study of its role is outside of the scope of this article and will
be presented elsewhere.

The polarization matrix V
(l)
kk′ in the slowly varying amplitude

approximation can be presented as

V
(l)
kk′(t) = 2πν

∫
I
dr ε−1(r)φ∗

k (r, ωl)ψk′(r, ωl)ηl(r, t), (29)

where we introduced the nonlinear susceptibility ηl(r, t) ≡
Pl(r, t)/El(r, t) defined as the ratio of the slowly varying
polarization amplitude Pl(r, t) and the field El(r, t) in the
mode l. The expression for the susceptibility is found from
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perturbation expansion for polarization P (r, t), Eqs. (18) and
(20), and is given by

ηl(r, t) = 2ih̄γ‖D(ωl)	n0(r)
∑
q odd

A
q+1

2

∑
l1,...,lq

r∣∣El2 (r, t)
∣∣2∣∣El4 (r, t)

∣∣2 · · · ∣∣Elq−1 (r, t)
∣∣2

D‖
(
ωl1 − ωl2

)
×D‖

(
ωl1 − ωl2 + ωl3 − ωl4

) · · · D‖
(
ωl1 − ωl2 + · · · + ωlq−2 − ωlq−1

)[
D

(
ωl1

) + D∗(ωl2

)][
D

(
ωl1 − ωl2 + ωl3

)
+D∗(ωl2 − ωl1 + ωl4

)] · · · [D(ωl1 − ωl2 + ωl3 − · · · − ωlq−3 + ωlq−2

) + D∗(ωl2 − ωl1 + ωl4 − · · · − ωlq−4 + ωlq−1

)]
.

(30)

Here the order of nonlinearity q, introduced in Eq. (18),
determines the number of different indices li , which take values
from 1 to Nm, where Nm is the number of lasing modes. The
superscript r at the sum symbol specifies that the possible
values of the indices are restricted by the resonance condition

ωl1 − ωl2 + ωl3 − · · · − ωlq−1 + ωlq − ωl = 0, (31)

which ensures cancellation of fast oscillating terms. In the
absence of accidental degeneracies, this condition implies
that each of the indices l1, l3, . . . , lq must be equal to one
of the indices l2, l4, . . . , lq−1, l. This leads, in particular, to
the appearance of absolute squares of the field in the first line
of Eq. (30). Moreover, the index lq effectively drops out of
the equation, since the amplitude Elq must be equal to some
other amplitude Eli . It is assumed that the slowly varying field
amplitudes are expressed in terms of quasimode components
alk(t) of the respective lth lasing mode using

El(r, t) = ε−1/2(r)
∑

k

alk(t)ψk(r, ωl). (32)

By substituting Eqs. (30) and (29) into Eq. (28), one obtains a
closed system of dynamic equations for alk valid to all orders
in the field amplitude.

One of the fundamental difficulties of the theory of lasers
is that the number Nm of lasing modes is a priori unknown
and depends on the strength of the pumping and the spatial
distribution of the electric field in the cavity. In Ref. [23], this
value is determined by the number of possible solutions of
Eq. (27) with real frequencies at a given pumping strength.
However, this approach does not take into account stability
of the found solutions, which can only be determined by
considering the time-dependent Eq. (28). When using this
equation, one could start by assuming that Nm is equal to
the size of the basis of quasimodes, Nb, and study their time
evolution. Those El that do not correspond to real lasing
solutions at a given pumping would decay to zero, and the
number of lasing modes would be determined a posteriori
without the need for a prior knowledge of Nm. This approach
is not free of difficulties either, because of possible multistable
behavior and hysteresis. However, analysis of these issues is
beyond the scope of this article.

V. DIAGRAMMATIC TECHNIQUE

A. Diagrammatic representation of the perturbation series

In this subsection, we present a diagrammatic technique
developed to classify different nonlinear terms in Eq. (30).
It should be noted that our diagrams, unlike diagrams of
the field or many-particle theory, do not provide one-to-one
correspondence between different terms of Eq. (30) and
elements of the diagrams. The role of the diagrams here
is more limited: We use them to classify different pairing
possibilities for the lasing mode indices l1, l2, . . . , lq , l in
the perturbation series (30). Nevertheless, as it is shown,
this technique allows for classification and partial summation
of the classes of the terms in a manner very similar to
traditional diagrammatic methods. Unlike pairing of vertices
in traditional diagrammatic techniques, which reflects Wick’s
theorem for creation-annihilation operators or Gaussian statis-
tics of respective random processes, the pairing procedure in
the situation under consideration hinges upon the condition
expressed by Eq. (31). The resonance condition guarantees
the absence of the fast oscillating terms and hence the validity
of the slowly changing amplitude approximation.

To construct a diagram X̃0
qj of order q = 1, 3, . . . , we place

q + 1 vertices in two columns as shown in Fig. 1. The left
vertices are labeled l1, l3, . . . , lq , and the right vertices are
labeled l2, l4, . . . , lq−1, l. The vertex l is different from the
other vertices, because there is no summation over the index
l in Eq. (30). After that, each vertex on the left is connected
with exactly one vertex on the right. The index j = 1, . . . , Ñq

labels all distinct connection possibilities in an arbitrary order.
To obtain all diagrams of order q, we first connect the vertices
by (q + 1)/2 horizontal links and then reshuffle the vertices,
say, on the left without cutting the links. Thus, the number of

l1 l2

l4l3

l q − 1

lq

lq − 2

l

FIG. 1. Labeling of vertices in a diagram of order q = 1, 3, 5, . . ..
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X32
0~l3

l1 l2

X31
0~

l2l1

l3

X11
0~l1

ll

(b)

l

(a)

(c)

FIG. 2. First-order diagram (a) and third-order diagrams (b, c).

possible diagrams of order q is the number of permutations
Ñq = [(q + 1)/2]!. Diagrams for q = 1, 3, 5 are shown in
Figs. 2 and 3.

Each diagram specifies a particular contribution to the series
(30). The latter is written in the form

ηl(r, t) = 2ih̄γ‖	n0(r)D(ωl)Xl , (33)

Xl ≡
∑
q odd

A
q+1

2

Ñq∑
j=1

X̃0
qj , (34)

where each X̃0
qj represents a partial sum in

∑r(· · ·), Eq. (30),
in which pairs of indices are chosen to be equal to each other
according to the links connecting respective vertices in the
diagram. For example, the first three diagrams correspond to
the following expressions:

X̃0
11 = 1, (35)

X̃0
31 =

∑
l2 �=l

∣∣El2 (r, t)
∣∣2

D‖
(
ωl − ωl2

)[
D(ωl) + D∗(ωl2

)]
, (36)

X̃0
32 =

∑
l2

∣∣El2 (r, t)
∣∣2

2Re
[
D

(
ωl2

)]
. (37)

The restriction l2 �= l in the diagram X̃0
31 excludes the term with

l1 = l2 = l3 = l, which enters X̃0
32. In general, the terms with

more than two indices equal belong to the diagram in which
the links connecting these indices do not cross each other.
Another example includes the fifth-order terms with l2 = l3 =
l4 = l5 �= l, which enter X̃0

52 but not X̃0
51. The expression for

arbitrary X̃0
qj is given in Appendix B.

l2l1

l4l3

l5
X 0~

52 X53
0~

X56
0~

X55
0~

X54
0~

X51
0~

l

FIG. 3. Fifth-order diagrams. The dash-dotted lines are the cuts
that split disconnected diagrams into connected diagrams.

B. Resummation of the diagrams

A diagram is called connected if it cannot be cut by
a horizontal line without cutting a link. For instance, the
diagrams X̃0

31, X̃0
51, X̃0

52, and X̃0
53 are connected, whereas

the diagrams X̃0
32, X̃0

54, X̃0
55, and X̃0

56 are disconnected. To
simplify the notation, we ordered all connected diagrams
before the disconnected diagrams for given q. We label
connected diagrams as X0

qj with

X0
qj = X̃0

qj , j = 1, . . . , Nq, (38)

where Nq (<Ñq) is the number of connected diagrams.
The horizontal cuts separate disconnected diagrams into one
connected diagram containing the vertex l (denoted by an un-
filled dot in the graphic representation) and several connected
subdiagrams without such vertex. The latter subdiagrams are
denoted as Xqj , j = 1, . . . , Nq , where q + 1 is the number
of vertices in the subdiagram. In place of the vertex l, these
diagrams have a vertex with the index lq+1 that runs over all
lasing modes, as the other indices lj . For example, the diagram
X̃0

55 consists of X0
11 and X31, and the diagram X̃0

56 consists of
X0

11 and two diagrams X11, where

X11 =
∑
l2

∣∣El2 (r, t)
∣∣2

2Re
[
D

(
ωl2

)]
, (39)

X31 =
∑
l2 ,l4
l2 �=l4

∣∣El2 (r, t)
∣∣2∣∣El4 (r, t)

∣∣2
D‖

(
ωl4 − ωl2

)
× [

D
(
ωl4

) + D∗(ωl2

)]2
. (40)

A general expression for Xqj is given in Appendix B. Note
that Xqj is of the order q + 1 in the electric field. Connected
diagrams contain (q − 1)/2 nontrivial factors D‖ �= 1.

Our diagrammatic technique possesses the basic property
that disconnected diagrams are given by products of their
connected parts. Thus, we can write for our examples

X̃0
55 = X0

11X31, (41)

X̃0
56 = X0

11(X11)2. (42)

The multiplicativity results from the resonance condition of
the type (31) being fulfilled for each connected subdiagram
(see also Appendix B). The multiplicativity property allows us
to express the series (34) in terms of the connected diagrams
as

Xl =
⎛⎝∑

q odd

Nq∑
j=1

X0
qj

⎞⎠ ∞∑
m=0

⎛⎝∑
q odd

Nq∑
j=1

Xqj

⎞⎠m

=
∑

q odd

∑Nq

j=1 X0
qj

1 − ∑
q odd

∑Nq

j=1 Xqj

. (43)

This resummation formula is the main result of our article.

VI. LIMITING CASES AND DISCUSSION

To make the meaning of Eq. (43) more transparent, we
apply it in several well-known special cases. We start with the
linear approximation in Sec. VI A and consider the effect of
gain-induced coupling of passive modes [16,17]. In Sec. VI B,
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we reproduce semiclassical equations of the standard third-
order laser theory [4,5]. In Sec. VI C, we discuss all-order
nonlinear theory in the approximation of constant population
inversion [15,21–23] and derive, using our theory, the first
diagrammatic correction to it.

A. Linear gain-induced mode coupling

In the linear approximation to the polarization Pl = ηlEl

[Eq. (30)], only the lowest diagram X0
11 contributes to Xl .

Equation (28), where the matrix V
(l)
kk′ is calculated using

Eqs. (29), (33), and (35), yields the following equations for
the slowly varying amplitudes:∑

k′

{
δkk′

d

dt
+ i[�kk′(ωl) − δkk′ωl]

}
alk′ = 0, (44)

where the �′
k term is henceforth neglected. The frequency

matrix

�kk′(ω) = �k(ω)δkk′ − Vkk′(ω), (45)

is modified by the linear gain term,

Vkk′(ω) = −2iπν
d2

h̄γ⊥
D(ω)

∫
I
dr

	n0(r)

ε(r)
φ∗

k (r, ω)ψk(r, ω),

(46)

proportional to the overlap integral. Clearly, the matrices Vkk′

and �kk′ are nondiagonal if the pump or dielectric constant are
not homogeneous. In this case, the biorthogonal quasimodes
of the system ψk and φk are no longer ψk and φk but are
determined by the right and left eigenvectors a

(r,l)
lk of �kk′

according to

ψl(r, ω) =
∑
k′

a
(r)
lk′ψk′(r, ω), (47)

φl(r, ω) =
∑
k′

a
(l)
lk′φk′(r, ω). (48)

The right eigenvectors a
(r)
lk′ are normal modes of Eq. (44) whose

amplitudes al(t) obey the equation

ȧl + i[�l(ωl) − ωl]al = 0, (49)

where �l(ω) are eigenvalues of �kk′(ω). We recall that electric
field in the mode l has a time dependence al(t) exp(−iωlt).
Thus, the lasing frequency ωl is determined from the require-
ment

Re[�l(ωl)] = ωl, (50)

and the threshold condition for this mode is

Im[�l(ωl)] = 0. (51)

As follows from Eq. (49), the mode amplitudes diverge
exponentially above the threshold. Hence, applicability of the
linear approximation is limited to the pump strength below or
at the threshold. However, the basis of normal modes can be
used as a starting point in nonlinear theories.

B. Third-order theory

To obtain an approximation to Xl of the third order in the
field, we keep the diagrams X0

11 and X0
31 in the numerator and

the diagram X11 in the denominator of Eq. (43) and expand
the latter:

Xl ≈ X0
11 + X0

11X11 + X0
31. (52)

It is convenient to write lasing equations in the basis of
quasimodes ψk and φk that diagonalize the linear part.
Because of nonlinear effects, the lasing modes above the
threshold,

El(r, t) = ε−1/2(r)
∑

k

alk(t)ψk(r, ωl), (53)

are in general linear combinations of individual quasimodes.
The equation for the amplitudes alk(t) follows from Eq. (28),
after taking into account the results of linear theory (Sec. VI A),
and has the form

ȧlk + i[�k(ωl) − ωl]alk

= − πν

h̄γ‖

(
d2

h̄γ⊥

)2

D(ωl)
∫
I
dr

	n0(r)√
ε(r)

φ
∗
k(r, ωl)El(r, t)

×
Nm∑
l′=1

|El′(r, t)|2{2Re[D(ωl′)] + (1 − δll′)D‖(ωl − ωl′)

× [D(ωl) + D∗(ωl′)]}, k = 1, . . . , Nb, (54)

where Nb is the size of the basis of quasimodes and Nm

is the number of lasing modes. The lasing frequencies
ωl and the mode thresholds need to be determined from
these Nb × Nm equations in the stationary regime ȧlk = 0
using, for example, a self-consistent procedure described in
Ref. [21].

In some cases, the standard assumption of a traditional
lasing theory that the lasing modes coincide with the quasi-
modes of the cavity remain valid. In this case, the total number
of Eqs. (54) is reduced to Nb because the amplitudes are
approximated as alk(t) = al(t)δlk . By representing al(t) =√

Il exp(iϕl) and separating the real and imaginary parts in
Eq. (54), we obtain 2Nb real equations for the intensities Il

and phases ϕl ,

İl − 2Im[�l(ωl)]Il

= −2πν

h̄γ‖

(
d2

h̄γ⊥

)2

IlRe

[
D(ωl)

∑
l′

Bll′Il′ {· · ·}
]

, (55)

ϕ̇l + Re[�l(ωl)] − ωl

= − πν

h̄γ‖

(
d2

h̄γ⊥

)2

Im

[
D(ωl)

∑
l′

Bll′Il′ {· · ·}
]

, (56)

The terms enclosed in the braces are the same as those in
Eq. (54). We defined overlap integrals for the quasimodes
as

Bll′ =
∫
I
dr

	n0(r)

[ε(r)]2
φ

∗
l (r, ωl)ψl(r, ωl)|ψl′ |2. (57)

The lasing frequencies ωl are determined, together with the
stationary intensities, from Eqs. (55) and (56) in the stationary
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regime İl = 0 and ϕ̇l = 0. The rate Eqs. (55) and frequency
Eqs. (56) generalize the standard third-order semiclassical
theory with the self- and cross-saturation terms [4,5] to systems
with strong openness and arbitrary distribution of refractive
index.

C. Constant-inversion approximation and corrections

In many physical situations, the population inversion
	n(r, t) is approximately constant in time. Oscillations of
the population (population pulsations) are responsible for the
terms proportional to D‖(ωl − ωl′ ), l �= l′, in the expansion of
the nonlinear susceptibility (30) and, hence, in the expressions
for the diagrams. By comparing the terms in the braces in
Eq. (54), we can conclude that the population pulsations can
be neglected if D‖(ωl − ωl′ ) � 1, that is, |ωl − ωl′ | 
 γ‖ for
all lasing frequencies ωl �= ωl′ .

In the approximation of constant inversion, only the
diagrams X0

11 and X11, which do not contain the D‖ functions,
contribute to Xl (43). Equation (28) for the coefficients of

expansion (32) of the electric field becomes

ȧlk + i[�k(ωl) − ωl]alk

= 2πν
d2

h̄γ⊥

∫
I
dr

	n0(r)√
ε(r)

× φ∗
k (r, ωl)El(r, t)

1 + [d2/(2h̄2γ⊥γ‖)]
∑

l′ |El′(r, t)|22Re[D(ωl′)]
. (58)

In contrast to Eq. (54), the linear contribution here is not
diagonalized and is contained in the right-hand side.

Equation (58) is valid in all orders in nonlinearity if the
population inversion is constant. With the help of Eq. (43), it is
straightforward to write out the corrections resulting from the
population pulsations. The terms of the first order in D‖ � 1
are contained in the diagrams X0

31 and X31 [Eqs. (36) and (40)],
so that Xl can be approximated as

Xl ≈ X0
11 + X0

31

1 − X11 − X31
. (59)

These corrections modify both the numerator and denominator
of Eq. (58), which can now be presented as

ȧlk + i[�k(ωl) − ωl]alk = 2πν
d2

h̄γ⊥

∫
I
dr

	n0(r)√
ε(r)

φ∗
k (r, ωl)El(r, t)(1 − ϒn)

1 + [d2/(2h̄2γ⊥γ‖)]
∑

l′ |El′(r, t)|22Re[D(ωl′)](1 − ϒd)
, (60)

where

ϒn = d2

2h̄2γ⊥γ‖

∑
l′ �=l

|El′(r, t)|2D‖(ωl−ωl′ )[D(ωl)+D∗(ωl′)],
(61)

ϒd = d2

2h̄2γ⊥γ‖

∑
l′′ �=l′

|El′′(r, t)|2D‖(ωl′′ − ωl′)

× [D(ωl′′) + D∗(ωl′)]2

2Re[D(ωl′)]
.

(62)

Taking into account that the electric field in the lasing modes
has a typical magnitude of h̄

√
γ⊥γ‖/d, one can see that

deviations from the constant-inversion approximation are of
the order of D‖(ωl − ωl′ ) [the term D(ωl) is of the order of
unity because frequencies of lasing modes are concentrated
within the width of the gain profile]. The difference between
lasing frequencies can be estimated as |ωl − ωl′ | ≈ γ⊥/Nm.
Then the condition D‖ � 1 can be expressed as Nmγ‖/γ⊥ �
1. Given that γ‖ is usually several orders of magnitude smaller
than γ⊥, this condition is in most situations fulfilled. It was
reported in Ref. [22], however, that nonlinear interaction
between lasing modes can push their frequencies toward
each other, making the intermode spectral interval much
smaller than the typical value given previously. Such pairs
of modes can result in significant corrections to the constant-
population approximation. Adding to the expansion additional
connected diagrams with up to q + 1 vertices, one can improve
the constant-population approximation by constructing lasing
equations valid in the order (q − 1)/2 in D‖.

VII. CONCLUSIONS

We presented a diagrammatic semiclassical laser theory
valid in all orders of electric field. The original perturbation
series in the powers of the field can be resummed in terms
of a certain class of diagrams, the connected diagrams.
The resummation allows one to construct a controlled ex-
pansion in the small parameter γ‖/γ⊥, which is a measure
of population pulsations, while treating the nonlinearity
exactly. Our lasing equations generalize the all-order non-
linear equations in the constant-inversion approximation and
the third-order equations with population-pulsation terms.
The use of CF quasimodes as basis functions makes it
possible to apply the theory to strongly open and irregular
systems, such as random lasers and lasers with chaotic
resonators.
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APPENDIX A: DERIVATION OF EQS. (20) AND (21)

For a few low values of q, the validity of Eqs. (20) and (21)
can be checked directly. To prove these relations by induction,
we assume that 	n

(q−1)
ω is given by Eq. (21), then derive P

(q)
ω

(20), and, finally, obtain 	n
(q+1)
ω .
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According to Eq. (15),

P (q)
ω = ih̄γ‖

A

π
D(ω)

∫
dω′Eω′	n

(q−1)
ω−ω′ . (A1)

By substituting 	n
(q−1)
ω from Eq. (21), we immediately see

that the factor before the integral in Eq. (20) is repro-
duced. To calculate the integral, we consider separately the
two contributions: 	n

(q−1)
ω−ω′ = 	̃n

(q−1)
ω−ω′ + [	̃n

(q−1)
ω′−ω ]∗, where

	̃n
(q−1)
ω is given explicitly by Eq. (21) and [	̃n

(q−1)
−ω ]∗ is

c.c. (ω → −ω). When integrating 	̃n
(q−1)
ω−ω′ we introduce a new

variable,

ωq−1 = ω′ − ω + ω1 − ω2 + · · · − ωq−3 + ωq−2. (A2)

Then the integral over ω′ becomes∫
dω′D‖(ω − ω′)Eω′E∗

ω′−ω+ω1−ω2+···−ωq−3+ωq−2

=
∫

dωq−1D‖(ω1 − ω2 + · · · + ωq−2 − ωq−1)

×Eω−ω1+ω2−···−ωq−2+ωq−1E
∗
ωq−1

. (A3)

A comparison with Eq. (20) shows that the 	̃n
(q−1)
ω−ω′ contri-

bution yields the part of the P
(q)
ω integrand proportional to

D(ω1 − ω2 + · · · + ωq−2). When integrating [	̃n
(q−1)
ω′−ω ]∗, we

first exchange the labels ω1 ↔ ω2, ω3 ↔ ω4, . . . , ωq−2 →
ωq−1 and then define the variable

ωq−2 = ω − ω′ − ω1 + ω2 − · · · + ωq−3 + ωq−1. (A4)

By transforming the integral over ω′ as∫
dω′D‖(ω − ω′)Eω′Eω−ω′−ω1+ω2−···+ωq−3+ωq−1

=
∫

dωq−2D‖(ω1 − ω2 + · · · + ωq−2 − ωq−1)

×Eω−ω1+ω2−···−ωq−2+ωq−1Eωq−2, (A5)

we obtain the part of the P
(q)
ω integrand proportional to

D∗(ω2 − ω1 + · · · + ωq−1).
Next, we derive 	n

(q+1)
ω using Eq. (16),

	n(q+1)
ω = −i

πh̄γ‖
D‖(ω)

∫
dω′E∗

ω′−ωP
(q)
ω′ + c.c.(ω → −ω).

(A6)

Clearly, the factor before the integral in Eq. (21) follows after
substitution of P

(q)
ω′ (20). By introducing the new variable,

ωq = ω′ − ω1 + ω2 − · · · − ωq−2 + ωq−1, (A7)

we rewrite the ω′ integral∫
dω′D(ω′)E∗

ω′−ωEω′−ω1+ω2−···−ωq−2+ωq−1

=
∫

dωqD(ω1 − ω2 + · · · − ωq−1 + ωq)

×E∗
−ω+ω1−ω2+···−ωq−1+ωq

Eωq
. (A8)

This completes the proof of Eqs. (20) and (21).

APPENDIX B: GENERAL EXPRESSIONS FOR DIAGRAMS

The diagrams X̃0
qj (q = 3, 5, . . .) are given by the following

analytical expression:

X̃0
qj =

∑
X̃0

qj

∣∣El2 (r, t)
∣∣2∣∣El4 (r, t)

∣∣2 · · · ∣∣Elq−1 (r, t)
∣∣2

D‖
(
ωl1 − ωl2

)
D‖

(
ωl1 − ωl2 + ωl3 − ωl4

) · · · D‖
(
ωl1 − ωl2 + · · · + ωlq−2 − ωlq−1

)
× [

D
(
ωl1

) + D∗(ωl2

)][
D

(
ωl1 − ωl2 + ωl3

) + D∗(ωl2 − ωl1 + ωl4

)] · · · [D(
ωl1 − ωl2 + ωl3 − · · · − ωlq−3 + ωlq−2

)
+D∗(ωl2 − ωl1 + ωl4 − · · · − ωlq−4 + ωlq−1

)]
. (B1)

The symbol
∑

X̃0
qj

denotes a summation over the lasing-
mode indices l2, l4, . . . , lq−1 = 1, . . . , Nm according to these
rules: (i) if the indices li and lj are connected in the
diagram X̃0

qj , set li = lj , and (ii) the terms with four
or more indices l1, l2, . . . , lq , l equal are excluded un-
less the links connecting the affected vertices do not
intersect.

We denote by X0
qj connected diagrams and subdiagrams

containing the vertex l. With the ordering of X̃0
qj such that the

connected diagrams come before the disconnected diagrams
for a given q, we can identify X0

qj = X̃0
qj (j � Nq), where Nq

is the number of connected diagrams. The subdiagrams Xqj

without the special vertex have a variable index lq+1 in place of
the fixed index l. The analytical expression for these diagrams
has the form

Xqj =
∑
Xqj

∣∣El2 (r, t)
∣∣2∣∣El4 (r, t)

∣∣2 · · · ∣∣Elq+1 (r, t)
∣∣2

D‖
(
ωl1 − ωl2

)
D‖

(
ωl1 − ωl2 + ωl3 − ωl4

) · · · D‖
(
ωl1 − ωl2 + · · · + ωlq−2 − ωlq−1

)
× [

D
(
ωl1

) + D∗(ωl2

)][
D

(
ωl1 − ωl2 + ωl3

) + D∗(ωl2 − ωl1 + ωl4

)] · · · [D(
ωl1 − ωl2 + ωl3 − · · · − ωlq−1 + ωlq

)
+D∗(ωl2 − ωl1 + ωl4 − · · · − ωlq−2 + ωlq+1

)]
. (B2)
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The sum
∑

Xqj
is defined analogously to the previous sum∑

X̃0
qj

. Note that the diagrams X̃0
qj and X0

qj are of the order
q − 1 in the electric field, whereas the subdiagrams Xqj are of
the order q + 1.

To show the multiplicativity property, let us assume that
a disconnected diagram X̃0

qj can be cut in two possibly
disconnected subdiagrams, X̃0

q ′j ′ and Xq ′′j ′′ , such that q =
q ′ + q ′′ + 1. We label the vertices of Xq ′′j ′′ as l1, . . . , lq ′′+1

and identify them with the first q ′′ + 1 vertices of the diagram
X̃0

qj . The last q ′ + 1 vertices of X̃0
qj , lq ′′+2, . . . , lq , l, are also

the vertices of X0
q ′j ′ . We need to show that, in the sum

∑
X̃0

qj
,

the two groups of indices can be split between the sums
∑

Xq′′j ′′

and
∑

X0
q′j ′ , respectively. This would mean that the arguments

of the functions D and D‖ can contain only the indices
belonging to one of the groups. This is indeed the case, because
the arguments having less than q ′′ + 1 frequencies contain only
the indices from the first group, whereas in the arguments with
more frequencies the first q ′′ + 1 frequencies cancel because
of the cut as

ω1 + ω3 + · · · + ωq ′′ = ω2 + ω4 + · · · + ωq ′′+1. (B3)

According to this equality, the number of nontrivial factors
D‖ �= 1 in Eqs. (B1) and (B2) is (q − 1)/2 minus the number
of cuts (in a disconnected diagram).
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