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Abstract
We review recent extensions of semiclassical multimode laser theory to open systems with
overlapping resonances and inhomogeneous refractive index. An essential ingredient of the
theory is a system of biorthogonal quasimodes that describe field decay in an open passive
system and are used as a basis for lasing modes. We discuss applications of the semiclassical
theory, as well as other experimental and numerical results related to random lasing with mode
competition.
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1. Introduction

The term ‘random lasing’ encompasses a number of phenom-
ena related to light amplification in systems characterized by a
spatial distribution of the electromagnetic field which is much
more complex (irregular) than for well-defined cavity modes
of standard lasing structures. Most directly this term describes
emission of light by spatially inhomogeneous disordered mate-
rials not bounded by any artificial mirrors, even though it is also
used in the case of systems with well-defined cavities, which,
however, are characterized by chaotic ray dynamics. These two
classes of random lasers are significantly different, but in some
situations, when the statistical properties of the field in disor-
dered systems and in chaotic cavities are similar, the emission
properties of the two classes of lasers can be discussed on an
equal footing [1]. In the course of the last decade, random
lasing has been observed in many different kinds of disordered
materials (polymer films [2], porous materials [3], powders [4],
ceramics [5, 6], clusters [7], colloidal solutions of nanoparti-
cles [8]), so it can be regarded as a universal property of disor-
dered structures.

Lasing in any system is produced due to a combination
of two factors: optical amplification and feedback. In
ordinary lasers for the presence of a feedback one always
assumes the existence of well-defined phase relations between

waves propagating in opposite directions. Put differently, the
presence of a feedback is described as the existence of well-
defined long-living cavity modes characterized by a regular
spatial pattern of the electromagnetic field, which sets up inside
the lasing structure in the stationary regime. In [9, 10], where
the concept of random lasers was conceived, a possibility of
lasing caused by a different type of a feedback was proposed.
It was shown that even if propagation of light is described in
terms of a diffusion equation, which completely ignores its
wave nature and does not have any phase information, one
can still have a laser-like behaviour of emission characterized
by a threshold, spectral narrowing, relaxation oscillations and
other attributes of laser oscillations. The physical origin
of this phenomenon lies in a significant increase of the
length of the light trajectory inside the finite amplifying
volume due to multiple scattering. Since amplification results
in exponential growth of light intensity with the distance
travelled inside the gain medium, it can be characterized
by the gain length Lg, which depends on the gain factor
and the diffusion coefficient of light in the medium. The
transition to lasing occurs when the gain length exceeds the
loss length, L l, so the threshold condition can be written down
as Lg = L l. This type of feedback is called incoherent or
nonresonant feedback. The latter term refers to the absence
of any resonant features in the distribution of the field inside
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the gain medium or, in other words, the absence of any
distinct modes: the spatial distribution of light intensity is
the same regardless of its frequency. In this situation the
lasing frequency is determined by only one remaining resonant
element of the system—the atomic transition, so the single-
peak emission spectrum is the characteristic feature of lasing
with nonresonant feedback [9, 10]. The authors of [11, 12],
where nonresonant feedback was discussed in connection
with lasing in cavities with rough surfaces, formulated four
conditions required for realizing such completely nonresonant
situations: (i) no mode degeneracy, (ii) equal mode loss, (iii)
mode overlapping (the resonance width of each mode due
to radiative losses must be larger than the mean intermode
spacing) and (iv) mode mixing (there must be processes
causing the frequency of emitted photons to change by an
amount larger than the spectral distance between the modes).
While conditions (i), (iii) and (iv) are realized automatically
in disordered systems of large enough dimensions and chaotic
cavities, the condition (ii) is more difficult to fulfil. Indeed,
the distribution of widths of scattering resonances in chaotic
cavities and disordered systems was found to be rather broad
with different modes having decay rates differing by orders
of magnitude [13]. However, when interest in random lasers
was renewed in 1994 following the observation of lasing
from solutions of dye molecules surrounded by titanium
dioxide particles [14], the importance of this condition was
apparently underappreciated. Namely, results of [14] and
subsequent experiments were usually explained on the basis
of the concept of nonresonant feedback with its underlying
assumption that the transport of light can be described within
the diffusion approximation (see, e.g., [15–19]). The validity
of the diffusion approximation is usually associated with weak
scattering of light, when the system is far away from the
Anderson localization transition and interference effects are
weak. Therefore, nonresonant or incoherent feedback was by
extension associated with the regime of weak scattering of light
(see, e.g., [20, 21]).

Inducing stronger light scattering by increasing the
concentration of scatterers, it became possible to observe a
qualitatively new phenomenon [4, 22–24]: with increasing
scattering, multiple emission lines appeared in the spectrum,
instead of just a single peak at weaker scattering. New peaks,
characterized by much narrower linewidths, emerged one by
one with increasing pumping. Since incoherent feedback can
only result in a single-frequency emission spectrum, it was
suggested in [4] that the changes in the emission spectrum
are due to the transition from incoherent to coherent feedback.
This idea was supported by studies of photon statistics, which
showed that, like for ordinary lasers, light emitted at the peak
frequencies had a Poisson photon count distribution [2, 25].

Originally it was suggested in [4] that the feedback is
provided by randomly occurring closed trajectories formed by
multiply scattered light. Eventually this idea was developed
to a more general concept of random cavities (resonators),
arising in a strongly scattering medium. Anderson localization
was considered as one of the mechanisms that may be
responsible for the formation of such cavities [26–28]. In
order to verify this assumption a great deal of effort has

been devoted to analysing lasing in one-dimensional models in
which all states are localized [29–33]. The localization-based
approach allowed us to explain a number of experimentally
observed results such as mode repulsion and saturation of the
number of lasing modes [34]. However, it has never been
convincingly demonstrated that light in strongly scattering
three- or two-dimensional samples was indeed close to the
Anderson transition. An alternative mechanism of formation
of cavities that could be responsible for coherent feedback
in random media was put forward in [35], where it was
suggested that random fluctuations of the refractive index
of a disordered medium can result in macroscopically large
ring-like configurations capable of trapping light for long
times and serve, therefore, as random resonators. This
model was supported by studies of lasing in π -conjugated
polymers [36–38], where a certain degree of universality in
the spectral distribution of lasing modes was found. This
universality was explained by noting that among multiple
random resonators only those with the largest Q-factors
(optimal resonators) gave a major contribution to the lasing.
While the distribution of characteristics of the resonators
is very broad, the optimal resonators have almost identical
characteristics, thus explaining the observed universality.
These random light-trapping configurations are analogous to
so called prelocalized states, known to exist in the case of
electrons in random potentials, and can arise even when a
disordered system is far away from the localization transition.
It was, however, shown in [35] that the trapping configurations
can appear with any appreciable probability only if spatial
fluctuations of the refractive index are correlated over large
enough distances, which might be a reasonable assumption for
the polymer samples studied in [36–38], but is more difficult to
justify for the ZnO powders [4]. Yet another alternative model
of random lasing was proposed in [39, 40], where random
lasers were treated as lasers with distributed feedback. This
approach is somewhat similar to the random resonator model
one, the only difference being that, instead of dealing with
ring-like resonators, the distributed-feedback model assumed
that large-scale almost periodic Bragg-like configurations are
responsible for the lasing. This model, however, has not yet
been sufficiently developed.

More recent developments in the field of random lasers
have been associated with renewed attention to the weakly
scattering samples. An emission spectrum containing very
sharp spikes was observed for very weakly scattering samples
in [41]. It was argued in that paper that the appearance of
the observed peaks did not require any feedback and could be
explained by assuming that some of the spontaneously emitted
‘photons’ travel much longer distances than the average ones.
This idea was supported by simulations based on the random
walk model (hence the quotation marks on the ‘photon’),
which reproduced the experimental data fairly well. However,
it was found in [42, 43] that there are two kinds of lines
in the emission spectrum of a random laser. One, called
the ‘spikes’ in [42, 43], similar to that observed in [41],
was detected (with strong enough pumping) even for samples
without any scatterers at all. The second type, called the
‘peaks’, only appeared in the presence of scatterers. The
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spikes and peaks demonstrated significantly different statistical
properties, which allowed the authors of [42, 43] to attribute the
former to amplified spontaneous emission and claim that only
the latter correspond to true lasing with coherent feedback. The
significance of these developments consists in the realization
of the fact that weak scattering by itself does not guarantee
nonresonant feedback and that the diffusion model may not
be applicable to active systems even when scattering is weak.
This point was reinforced in [27], where it was shown that even
in a weakly scattering active medium characterized by strong
radiative leakage, as well as spectral and spatial overlap of the
modes, lasing from individual modes can still occur. Clearly,
this is only possible because even in a weakly scattering
system there exists a broad distribution of radiative lifetimes
emphasized by the onset of lasing.

Since observation of the multipeak emission spectrum for
weakly scattering systems often required enhanced pumping
and its concentration within a rather small volume of the
sample, effects of the inhomogeneity of pumping on the
lasing spectrum have also been studied, in [8, 42]. There it
was concluded that the inhomogeneity might play a role in
promoting this phenomenon.

As a result of these developments the focus of theoretical
research in the field of random lasers has shifted from
identifying special configurations responsible for lasing to
accepting that a random laser is a multimode system and needs
to be treated within the framework of a complete multimode
lasing theory. This theory can be developed along the lines of
standard semiclassical lasing theory, but it has to incorporate
such features specific to random lasers as a much larger
role of radiative leakage of the modes and irregular spatial
dependence of the refractive index. While this theory is far
from being complete, a review of recent developments in this
area appears to be useful. Presenting such a summary is the
main objective of this work, whose structure is as follows. In
section 2 we discuss several alternative ways to introduce a
modal description of strongly open systems. After presenting
the formal multimode theory in section 3, we turn to discussion
of recent experimental and numerical results in section 4.

2. Modes of open systems

The problem of introducing a modal description for open
systems has a long history. This problem is important not
only for the physics of lasers, but also as a first necessary step
toward quantizing the electromagnetic field in open resonators.
It is not surprising, therefore, that there have been many
alternative attempts to introduce a system of modes suitable
for a separation of time and coordinate dependences of various
physical quantities such as electric or magnetic fields. The
difficulty of the problem stems from the fact that openness
makes the problem non-Hermitian. Therefore, the standard
recipes for introduction of modes and quantization based on
eigenvectors of Hermitian operators are not applicable in this
situation. In this section we review a few alternative methods
for defining electromagnetic modes of open systems suggested
by various authors.

In the Coulomb gauge ∇ · [ε(r)E(r, t)] = 0, the electric
field E(r, t) is governed by a wave equation

ε(r)
∂2

∂ t2
E + ∇ × (∇ × E) = 0, (1)

where Gaussian units with the velocity of light in vacuum c =
1 are used. Often, for the sake of simplicity, the vector nature
of the electromagnetic field is neglected, which is possible if
the coupling between various polarizations in an open spatially
inhomogeneous system is insignificant. Then the electric field
is described by the scalar wave equation

ε(r)
∂2

∂ t2
E − ∇2 E = 0. (2)

In this section we consider unloaded, or passive, systems
(without gain) and assume that all the decay of the field is
due to the openness, so that the dielectric constant ε(r) is real.
In order to demonstrate the variety of approaches developed
for dealing with this problem we will discuss Fox–Li modes
in section 2, quasimodes in section 2.2, the system-and-bath
approach in section 2.3, and the most recent development,
constant-flux modes, will be considered in section 2.4.

2.1. Transverse Fox–Li modes

Random lasers are, of course, not the first type of system
in which radiative losses cannot be neglected. Historically
earliest, the problem of introducing a modal description in the
presence of strong radiative losses arose in connection with
lasing properties of so called unstable resonators [44]. Fox
and Li [45] suggested defining a mode of such a system as a
field distribution which reproduces itself after the wave makes
one complete round trip inside the resonator. One assumes that
there is a well-defined propagation direction of the wave inside
the resonator, so that a solution of (2) can be written in the form

E(r, t) = Re{E(r) exp[i(kz − ωt)]}, (3)

where k = ω
√
ε [ε(r) = const] and E(r) changes on a scale

much longer than k−1. The distribution of the field in the
transverse direction, E(r), is characterized by solutions of the
integral equation

∫
K (r⊥, r′

⊥, z) ψn(r′
⊥, z) dr′

⊥ = λnψn(r⊥, z), (4)

which formally expresses the idea of the field reproducibility
and whose kernel is determined by optical characteristics of
the resonator. This equation has the form of an eigenvector
equation for a non-Hermitian linear integral operator, whose
eigenvalue |λn| < 1 describes radiative losses after a round
trip. Since the respective eigenvectors are not orthogonal, one
has to introduce an adjoint operator describing propagation in
the backward direction as

∫
K (r′

⊥, r⊥, z) φn(r′
⊥, z) dr′

⊥ = λnφn(r⊥, z). (5)
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The two families of functions, called Fox–Li modes, are
biorthogonal, i.e.,

∫
φ∗

m(r⊥, z) ψn(r⊥, z) dr⊥ = δmn, (6)

and can be used to construct a modal expansion of the field

E(r) =
∑

n

cn(z) ψn(r⊥, z). (7)

If the ψn are normalized to unity, then

Kn ≡
∫

|φn(r⊥, z)|2 dr⊥ � 1. (8)

It was shown [44, 46] that Kn is the Petermann excess-
noise factor [47], which describes the effect of the openness
of the resonator on the fundamental Schawlow–Townes
linewidth. While the Fox–Li modes played an important role in
understanding unstable resonators, their application to random
lasers and especially to the problem of field quantization is
rather limited.

2.2. Quasimodes

The idea of quasimodes was transferred to optics from
quantum physics. In order to describe scattering resonances
in atomic and molecular physics, it was proposed to solve
the Schrödinger equation with boundary conditions at infinity
containing only outgoing waves and no incoming incident
waves (so called Siegert or Gamow boundary conditions) [48].
The solutions of the resulting non-Hermitian eigenvector
problem are characterized by complex eigenvalues and
eigenvectors diverging at infinity. The latter circumstance
makes it impossible to use these modes as a basis for
representation of the lasing field or to develop a quantization
procedure representing the field in the entire space. At the
same time, it was argued in [49] that under certain realistic
conditions it is possible to use these modes to represent the
field inside the resonator. For both lasing and quantization
problems the field is needed everywhere; therefore there have
been several attempts to reformulate this problem in a way
which would produce a meaningful system of basis vectors
valid over the whole space.

One of the approaches, developed in [50], uses modes
obeying Siegert–Gamow boundary conditions to present the
field inside the cavity, but uses a different set of functions
to describe the outside field in order to avoid the divergency
problem. These authors argue that such modes describe
‘natural’ evolution of the field inside the cavity after it was
created and allowed to evolve freely and, therefore, call them
natural modes. The authors employ an original definition of
the biorthogonal inner product by presenting left- and right-
propagating components of these modes as components of
a two-dimensional spinor. This construction was studied in
more detail for a one-dimensional cavity of constant refractive
index open at one side and having a perfect mirror at the other
side. Its eigenfunctions satisfying the outgoing-wave boundary
conditions are of the form ψn(x) ∝ eiκn x + re−iκn x , where κn

is complex. Its adjoint function φn(x) = [ψn(x)]∗ matches an
incoming wave. The corresponding natural modes are then

�n(x) ∝
(

eiκn x

re−iκn x

)
, �n(x) ∝

(
reiκ∗

n x

e−iκ∗
n x

)
. (9)

Natural modes for the external region are defined to have a
real wavenumber k, but, if continued inside the cavity, they
would not satisfy the Dirichlet condition at the mirror. Both
internal and external modes are biorthogonal to their adjoints
in the respective regions of space.

Since the natural modes form complete sets, they can be
used to quantize the field over the whole space. Namely,
the amplitudes of the modes �n(x) and �n(x) become cavity
operators an and bn, respectively. Similarly, external operators
a(k) and b(k) are defined. The system Hamiltonian

H = Hin({an, bn})+ Hout({a(k), b(k)}) (10)

is a sum of internal and external contributions without cross-
terms. Coupling between internal and external waves in
this formalism arises due to noncommutativity of the internal
and external operators. This circumstance makes application
of these modes not very convenient; therefore, it would be
interesting to try to introduce new commuting internal and
external operators. This would result in a Hamiltonian where
coupling would enter explicitly in the standard form of cross-
terms.

2.3. Feshbach projection in the system-and-bath quantization
scheme

Field quantization based on quasimodes [50] (section 2.2) is
an example of the system-and-bath approach: one introduces
separate eigenmodes and field operators inside the open region
designated as the ‘system’ and in the surrounding free space
(‘bath’). This procedure can be contrasted with the modes-of-
the-universe approach, in which the modes are defined over
the whole space. The separation into a system and a bath
often provides a clearer physical description. For example,
the complex energy of a resonator state immediately yields
its lifetime, while extracting this information from the real
continuous spectrum is less straightforward.

The Feshbach projection technique [51] offers a conve-
nient way to perform the system-and-bath quantization in a
rather general setting of equation (1) [52], the only assumption
being that ε(r) = 1 outside of a finite domain Q of arbitrary
shape. The idea of the method is to project the Hilbert space of
the modes of the universe into the Hilbert spaces of Q and its
exterior P with appropriate boundary conditions.

Separating variables in (1) with an ansatz E(r, t) =
Re[Eω(r) exp(−iωt)] and introducing a new, in general,
vector-valued function φω(r) = √

ε(r)Eω(r), we can
formulate an eigenvalue problem

Lφω ≡ 1√
ε(r)

∇ ×
[
∇ × φω√

ε(r)

]
= ω2φω (11)

for the Hermitian operator L. After the projection into the
subspaces Q and P , an equivalent system of equations(

LQQ LQP
LPQ LPP

)(
μω
νω

)
= ω2

(
μω
νω

)
(12)

4



J. Opt. 12 (2010) 024001 Review Article

for the restrictions μω = φω|Q and νω = φω|P is obtained.
The differential operators LQQ and LPP act in their domains
and have the same bulk terms as L (11) and interface terms;
LQP and LPQ act at the interface between Q and P . There
is a certain freedom in the distribution of the interface terms
between the operators, as well as in the division of the
whole space between Q and P . It is expected, however,
that physically relevant quantities will be independent of this
choice [53]. The eigenmodes of LQQ and LPP are determined
from the equations

LQQ μλ = ω2
λ μλ, LPP νm(ω) = ω2 νm(ω), (13)

where ωλ is real and discrete, ω is real and continuous and m
is a discrete channel index. The modes are required to obey
the boundary conditions that make the interface terms of the
operators vanish. For example, in one dimension these could
be the Dirichlet/Neumann conditions on the Q/P side of the
interface or vice versa. The eigenfunctions μλ(r) and νm(ω; r)
of the Hermitian operators form complete sets in their domains.
Because of the special boundary conditions, an expansion of a
mode-of-the-universe φω in terms of these eigenmodes should
deviate strongly from the exact result in a layer around the
interface. The width of the layer should go to zero as the
number of terms in the expansions becomes infinite.

The field is quantized in each domain separately by
assigning the annihilation operators aλ and bm(ω) to the
eigenmodes μλ and νm(ω). The system-and-bath Hamiltonian

H =
∑
λ

h̄ωλ a†
λaλ +

∑
m

∫
dω h̄ω b†

m(ω) bm(ω)

+h̄
∑
λm

∫
dω[Wλm(ω) a†

λbm(ω)

+ Vλm(ω) aλbm(ω)+ h.c.], (14)

consists of the internal and external contributions and the
interaction part with Wλm(ω) = 〈μλ|LQP |νm(ω)〉 and
Vλm(ω) = 〈μ∗

λ|LQP |νm(ω)〉. In contrast to the case for
the Hamiltonian (10), here the system and the bath operators
commute and the interaction terms are explicit. From the
Heisenberg equations of motion for aλ(t) and bm(ω; t) one
obtains the quantum Langevin equation for aλ(ω) in the
frequency representation:

i
∑
λ′

[ωδλλ′ −
λλ′(ω)]aλ′(ω)+ Fλ(ω) = 0, (15)

where Fλ(ω) is the bath-noise operator. The non-Hermitian
frequency matrix


λλ′(ω) = ωλδλλ′ − iπ(W W †)λλ′(ω)−�λλ′(ω), (16)

(W W †)λλ′(ω) ≡
∑

m

Wλm(ω)W ∗
λ′m(ω), (17)

contains the imaginary damping term and the real frequency
shift, often disregarded. In the rotating-wave approximation,
which is applicable when the damping is much smaller than the
typical frequencies, the Vλm(ω) contribution can be neglected.

Semiclassically, the electric field in the system (in Q)
is Eω(r) = ∑

λ aλ(ω)μλ(r)/
√
ε(r). Representing the

matrix (16) via its eigenvalues and biorthogonal left and right
eigenvectors as 
(ω) = ∑

k |rk(ω)〉
k(ω)〈lk(ω)| we can
construct quasimodes

ψ k(ω; r) = 〈μ(r)|rk(ω)〉,
Eω(r) =

∑
k

Ek(ω; r) =
∑

k

ak(ω)ψk(ω; r)/
√
ε(r)

(18)

where ak(ω) ≡ 〈lk(ω)|a(ω)〉 and |μ(r)〉 [|a(ω)〉] is a column
of μλ(r) [aλ(ω)]. These modes depend on the real frequency
ω imposed by the exterior. With the help of (15) and the bath
correlation function at zero temperature 〈Fλ(ω) F†

λ′(ω′)〉 =
(W W †)λλ′(ω) δ(ω − ω′) [54] one obtains the (bath averaged)
field correlation in the mode k [55]:

〈Ek(ω; r) · E∗
k(ω

′; r)〉
= 〈lk(ω)|W W †(ω)|lk(ω)〉

[ω − ωk(ω)]2 + κ2
k (ω)

|ψ k(ω; r)|2
ε(r)

δ(ω − ω′), (19)

where ωk(ω) ≡ Re
k(ω) and κk(ω) ≡ Im
k(ω). Thus, the
modes Ek(ω; r) do indeed describe a leaking field with the
frequency given by the equation ω = ωk(ω) and the decay
rate κk(ω), as is expected from quasimodes.

2.4. Constant-flux states

So called constant-flux (CF) states were introduced in [56] as
an attempt to construct a system of basis functions suitable for
modal expansion of the field inside an open resonator, which
would also allow us to easily calculate the field outside of the
resonator. While these modes are, indeed, very convenient for
semiclassical lasing theory, it is not clear at the present time
whether they can be used for quantization of the field. The CF
modes are very similar to the modes [52] of section 2.3: in
the interior of the cavity region Q they satisfy the eigenvalue
equation

1√
ε(r)

∇ ×
[
∇ × ψ̃ k(ω)√

ε(r)

]
= 
̃2

k(ω) ψ̃k(ω), (20)

where 
̃k is an eigenfrequency and in the exterior domain P
the equation for these modes takes the form

∇ × [∇ × ψ̃ k(ω)] = ω2ψ̃ k(ω) (21)

where ω is a real external spectral parameter, which does not
coincide with the eigenfrequency 
̃k . However, equations (20)
and (21) are complemented by outgoing-wave boundary
conditions at infinity and continuity conditions at the boundary
of the resonator. One can think of ω as a frequency of some
external force exciting the modes of the cavity, or alternatively,
as a spectral parameter of a temporal Fourier transform used
to convert the problem from the time to the frequency domain.
This spectral parameter becomes an integration variable when
inverse transformation back to the time domain is carried
out. Description of the outside modes using equation (21)
not only allows one to introduce a nondiverging energy flux,
but also ensures the biorthogonality of the internal modes.
Indeed, electromagnetic boundary conditions are of mixed type
and contain a dependence on the eigenfrequencies. As a
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result the orthogonality between adjoint modes is destroyed,
and transition to (21) is a way to restore it. A similar
approach was described in the case of elastic waves in [57].
It was shown in [56] that modes defined this way form a
complete set in the domain Q, which can be complemented
by a biorthogonal set of adjoint modes. The advantage of
these states compared to quasimodes obeying Siegert–Gamow
boundary conditions is that the former remain finite at infinity
and describe a constant flux of energy coming out from the
resonator (hence, ‘constant-flux’ states). There is no need to
introduce special outside modes, the exterior field is calculated
by simply matching the outgoing field with the cavity field.
This is particularly convenient for calculation of light emission
from open resonators.

The CF wavefunctions and their biorthogonal adjoint
functions φ̃k(ω; r) provide a spectral representation of the
interior Green function operator [56] satisfying outgoing
boundary conditions at infinity, which can be written in the
form

[GQQ(ω; r, r′)]αα′ =
∑

k

[ψ̃ k(ω; r)]α [φ̃∗
k(ω; r′)]α′

ω2 − 
̃2
k(ω)

. (22)

The indices α, α′ = x, y, z label the polarization of the vector-
valued field. The Green function satisfying the same boundary
conditions can be defined in the system-and-bath approach
as [52] GQQ(ω) = [ω2 − Leff(ω)]−1, where the differential
operator Leff has the form

Leff(ω) = LQQ + LQP(ω2 − LPP + iε)−1 LPQ. (23)

Thus, the ψ̃ k(ω) are eigenfunctions of Leff(ω) with the
eigenvalues 
̃2

k(ω). In fact, it was shown in [53] for the one-
dimensional case that the interface terms of Leff(ω) disappear
precisely when the function that it acts upon satisfies the
outgoing boundary conditions. The poles of the Green
function, which correspond to scattering resonances, are found
by analytical continuation of ω into the complex plane such
that the equation ω2 = 
̃2

k(ω) is satisfied. At the same time,
in the case of CF states, ω is always real and, if it is fixed by
some external conditions (for instance, it can be the frequency
of incident radiation tuned to be in resonance with the cavity
mode), the respective resonant eigenfrequency of the CF state
obeys a different equation: Re[
k(ω)] = ω.

It is interesting to compare CF modes with those obtained
in the system-and-bath approach described in section 2.3. The
first step is to write Leff as a matrix in the eigenbasis of LQQ
(see (13)):

Leff(ω) � 
2
0 − 2

√

0[iπW W †(ω)+�(ω)]√
0, (24)

where 
0 is the real diagonal matrix of ωλ. The difference
between the matrix 
2(ω) (16) and this matrix reads


2(ω)− Leff(ω) = [�
(ω),
0] +�
2(ω),

�
(ω) ≡ 
(ω)−
0,
(25)

where the diagonality of 
0 was used. This difference is
of second order in the small parameters |�
λλ′/|ωλ| and
|ωλ − ωλ′ |/|ωλ|. Therefore, the CF eigenfrequencies and
eigenfunctions are expected to become close to 
k(ω) and
ψk(ω) as the above ratios decrease.

2.5. Open resonators in random matrix theory

Explicit construction of quasimodes along the lines of
sections 2.2–2.4 in irregular systems may require a fair amount
of computation. At the same time, one is often interested
in a statistical description of ensembles of such systems. It
is well known that certain statistical characteristics of chaotic
cavities and diffusive media in the short-wavelength limit are
universal. This means that these properties depend only on the
symmetries and, possibly, the boundary conditions, but not on
the details of the spatial distribution of the refractive index.
The universality justifies modelling eigenfrequencies and
eigenfunctions of these systems using appropriate statistical
ensembles of random matrices, which can be easier to handle
analytically or numerically than physical systems. A review of
random matrix theory (RMT) in open cavities is given in [58].

A convenient starting point is the following, rather general
representation of the scattering matrix of an open system:

S(ω) = 1I−2iπW †(ω−
eff)
−1W, 
eff = 
0−iπW W †.

(26)
S(ω) is an M × M matrix in the channel space. It transforms
a column of incoming amplitudes into a column of outgoing
amplitudes in some basis of the channel states. 
eff is called
the effective Hamiltonian in electronic systems. It is analogous
to the frequency matrix (16). 
0 is an N × N Hermitian
frequency matrix of the closed resonator; its eigenvalues are
the eigenfrequencies of the cavity. The N × M matrix
W describes coupling between the resonator and the open
channels. In the limit usually considered in RMT, N → ∞,
the frequency dependence of W is neglected.

RMT prescribes that, in order to model a generic chaotic
system with time-reversal symmetry, the real symmetric matrix

0 should be taken from the Gaussian orthogonal ensemble.
Without loss of generality, the diagonal (off-diagonal) elements
of 
0 are drawn from a normal distribution with zero mean
and the variance of 2/N (1/N). In the limit N → ∞ the
eigenvalues are distributed according to the Wigner semicircle
law

g(ω) = 1

π

√
1 − ω2

4
, −2 � ω � 2, (27)

where g(ω) is normalized to unity. In the absence of direct
coupling between the channels, matrix S(ω) should become
diagonal after the ensemble averaging. This can be achieved
simply by taking fixed (for all members of the ensemble)
elements Wnn ≡ √

γn/π > 0 for n � M and Wnm = 0
otherwise (the limit M � N is assumed). Thus, the interaction
matrix πW W † is diagonal with M nonzero elements γn . The
strength of coupling between the resonator and the continuum
is characterized by the transmission coefficients

Tn = 1 − |〈Snn(ω)〉|2 = 2

[
1 + γn + γ−1

n

2πg(ω)

]−1

. (28)

In particular, the coupling is the strongest for γn = 1. Since
the coupling depends on the density g(ω), one has to be careful
not to mix the statistics from different regions of ω or introduce
appropriate scaling in order to obtain universal results.
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Quasimodes of an open chaotic resonator can be modelled
via the resonances of S(ω), which are the eigenmodes of 
eff.
Statistical properties of the resonant wavefunctions will follow
from the surmise that values of an eigenfunction of a closed
chaotic cavity are uncorrelated Gaussian random variables at
points spaced more than a wavelength apart [59].

Several papers extend the calculations [44, 46] of the
Petermann factor [47] to chaotic systems, where, in particular,
there is no separation into longitudinal and transverse modes.
In the case of chaotic cavity with an opening [60, 61], the RMT
effective Hamiltonian 
eff (26) is modified to account for the
amplifying medium in the resonator by adding a correction
iγa/2 to its eigenvalues, where γa > 0 is the amplification rate.
As γa is increased from zero, the eigenvalues shift upwards
in the complex plane (the gain is assumed to be the same for
all relevant frequencies). The first eigenvalue touching the
real axis defines the lasing threshold. The Petermann factor
is shown to be

K = 〈l|l〉〈r |r〉 (29)

where |l〉 (|r〉) is the left (right) eigenvector of
eff (for γa = 0).
A supersymmetric calculation [61] reveals that 〈K 〉 scales as
the square root of the number of channels in the opening. If
the system has a time-reversal symmetry, the matrix 
eff is
symmetric, i.e., W is real. Then one can impose the condition
|l〉 = |r〉∗, which leads to an alternative expression

KTRS = 〈r |r〉2. (30)

In a chaotic dielectric resonator (a domain of uniform
refractive index n > 1 surrounded by a medium with n =
1) light can leak anywhere along the boundary. Hence, the
number of output channels M scales with the size N of

eff, breaking the standard RMT assumption M � N . A
combination of RMT with the Fresnel laws [62] produces a
scattering matrix

S(ω) = −R + T F(ω)[1I − RF(ω)]−1T, (31)

where F(ω) is the intracavity propagator and R and T
are diagonal matrices of reflection and transmission. The
Petermann factor is of the form (29), but the eigenvectors
refer to the matrix RF(ω). After a symmetrization procedure,
the form (30) can also be obtained if time-reversal symmetry
is present. Comparison of the RMT calculations with the
quantum-kicked-rotator model indicates loss of universality as
n becomes close to unity, i.e., in a strongly open resonator.

It should be noted that the near-threshold treat-
ment [60–62] yields a value of the Petermann factor which
is twice as large as the correct result. This happens because
phase diffusion (which mainly contributes to the linewidth) is
altered at the threshold by the amplitude fluctuations. The cor-
rect prefactor was inserted ‘by hand’ in equations (29) and (30).
A linearization of the quantum Langevin equations far above
the threshold [63] yields again the result (29), this time with
the proper prefactor.

3. Multimode laser theories for open and irregular
systems

As was mentioned in section 1, the current trend in the
theoretical description of random lasing consists in extending
standard semiclassical multimode lasing theory [64, 65] to
situations specific to random lasing: modes with a broad
distribution of radiative lifetimes and irregular spatial patterns,
inhomogeneity of the background refractive index, a large
number of lasing modes emitting in the regime when pumping
significantly exceeds the threshold value. While it is true that
the multimode lasing was considered one of the signatures
of coherent feedback, the discussion of this issue in earlier
works related to strongly scattering systems was mostly
concerned with a rather trivial situation, when multiple modes
originated from different non-overlapping cavities (localized
states), which were assumed to be in the single-mode regime
due to mode competition [30, 32, 34]. The only nontrivial
multimode effect reported in strongly scattering systems was
observation of mode coupling in [32]; however, an attempt at
its explanation using a two-mode lasing theory given in [66]
relied on an incorrect form of the rate equations (this point will
be explained later in this section).

One of the first attempts to apply multimode lasing theory
to chaotic lasers was undertaken in [1], where equations of
standard semiclassical laser theory were combined with ideas
of random matrix theory concerning statistical properties of
eigenmodes of chaotic resonators. Cavities studied in [1]
were characterized by relatively long radiative lifetimes of the
modes. Statistical properties of random lasers with strong
radiative losses were studied in [67–69] using a combination of
random matrix theory with the method of Feshbach projection.
A statistical study of one-dimensional strongly open random
lasers based on calculations of lasing modes ‘from first
principles’ rather than on phenomenological random matrix-
type considerations was carried out in [70].

The role of nonuniformity of the refractive index in the
formation of lasing modes and its consequences for lasing
dynamics was discussed in [71, 72], where the idea that
lasing modes can be significantly different from modes of
cold cavities and must be determined self-consistently was
formulated. Application of the theory [71, 72] to random
lasers was, however, limited because of the restriction of
the self-consistency requirements to the linear regime only
and neglect of radiative losses of the modes. Both these
limitations were removed in [56, 73, 74] (see also the recent
review article [75]), where the spatial structure of lasing modes
and the lasing frequencies were determined self-consistently
from fully nonlinear theory. The approach developed in these
papers is based on three main ingredients: (i) use of CF states
to incorporate radiative losses of the system, (ii) neglecting
population pulsation, which allowed one to take into account
nonlinear interactions up to infinite order in the field intensity,
and (iii) determining of lasing modes and their frequencies,
self-consistently. Results of those works revealed the presence
of strong effects related to nonlinear interaction between
modes in systems with strongly overlapping (both spectrally
and spatially) modes. However, since this method is based on
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numerical computation of fixed points of a certain nonlinear
map, which, as often happens in nonlinear systems, might
have multiple stable and metastable points, the usefulness
of this approach might be limited to systems with relatively
large intermode spacing. Its applicability to truly diffusive
random lasers is difficult to assess from the data published
in [56, 73–75], since they do not contain any information about
the mean free path, lmfp, of light in the structures studied. The
diffusive regime arises only when the relations R � lmfp �
λ, where λ is the wavelength of light and R is the size of
the sample, are satisfied, which requires much larger samples
than the condition R � λ, fulfilled for samples studied
in [56, 73–75].

In sections 3 and 4 we derive a semiclassical multimode
lasing theory taking into account recent achievements
discussed above and present some examples of its application
to situations relevant for random lasers.

3.1. Semiclassical laser equations

A starting point for the semiclassical description of
lasers [64, 65] is the wave equation for the electric field (1)
with the polarization P(r, t) as a source that generates the field
(c = 1):

ε(r)
∂2

∂ t2
E + ∇ × (∇ × E) = −4π

∂2

∂ t2
P(r, t). (32)

In the simplest model, the polarization is produced by two-
level active atoms and obeys the equation

(
∂2

∂ t2
+ 2γ⊥

∂

∂ t
+ ν2

)
P = −2ν

d2

h̄
E(r, t)�n(r, t), (33)

where �n(r, t) is the population-inversion density, d is the
magnitude of the atomic dipole matrix element, ν is the atomic
transition frequency (homogeneous broadening is assumed)
and γ⊥ is the polarization decay rate. The population inversion,
in turn, depends on the electric field and the polarization,

∂

∂ t
�n − γ‖[�n0(r, t) −�n] = 2

h̄ν
E(r, t) · ∂

∂ t
P(r, t). (34)

If the right-hand side vanishes, �n relaxes with the rate γ‖
to the unsaturated population inversion �n0(r, t), which is
determined by the pump.

The coupled equations (32)–(34) yield, in principle, the
distribution of the electric field in the system, if �n0(r, t) is
given. Rather than carrying out the traditional derivation of
lasing equations, which is usually done in the time domain,
we find it more convenient to proceed using the frequency
representation. We introduce the Fourier transforms

E(r, t) = 1

π
Re

∫ ∞

0
dωEω(r) e−iωt , (35)

P(r, t) = 1

π
Re

∫ ∞

0
dω Pω(r) e−iωt , (36)

�n(r, t) = 1

2π

∫ ∞

−∞
dω�nω(r) e−iωt (37)

in the form chosen to facilitate application of the rotating-
wave approximation. In addition, we assume that the time
dependence of the field and polarization is determined by fast
oscillations with frequencies which are close to the atomic
frequency ν and residual slow time dependence. In the
frequency domain this means that only Fourier components
Eω and Pω with ω in the close vicinity of ν contribute
significantly to the dynamics. Therefore, after performing
Fourier transformation of (32)–(34), one can neglect terms of
the order of (ω− ν)2 in ω2 = (ω− ν + ν)2 ≈ ν2 + 2ν(ω− ν)

and write down the resulting equations as

−ε(r) (−ν2 + 2νω)Eω + ∇ × (∇ × Eω) = 4πν2Pω, (38)

[−i(ω− ν)+ γ⊥]Pω = −i
d2

2π h̄

∫ ∞

0
dω′ Eω′�nω−ω′ , (39)

(−iω + γ‖)�nω = 2πγ‖�n0(r) δ(ω)

− i

π h̄

∫ ∞

0
dω′(E∗

ω′−ω · Pω′ − Eω′+ω · P∗
ω′), (40)

where we assumed that the pump �n0(r) is time independent.
In the linear approximation [71, 72] (valid below and not

far above the lasing threshold) we neglect the quadratic terms
in (40) and use

�n(0)ω = 2π�n0(r)δ(ω) (41)

in (39). Polarization in this approximation is given by

P(1)ω = −i(d2/h̄γ⊥)D(ω)�n0(r)Eω (42)

and, when substituted into the right-hand side of (38), yields
the following equation for the electric field:

−ε(r) (−ν2 + 2νω)Eω + ∇ × (∇ × Eω)

= −4π i
d2ν2

h̄γ⊥
D(ω)�n0(r)Eω, (43)

where D(ω) ≡ [1 − i(ω − ν)/γ⊥]−1.
One can use any of the system of modes ψ k(ω; r)

discussed in sections 2.2–2.4 and their adjoint modes φk(ω; r)
with respective eigenfrequencies 
k(ω) (we use the same
notation for all kinds of modes) in order to generate modal
expansion (18) of the electric field in equation (43). The
expansion coefficients are found using the biorthogonal
functions as

ak(ω) =
∫

dr
√
ε(r)φ∗

k(ω; r) · Eω(r). (44)

Then (43) is reduced to the matrix eigenvalue problem∑
k′

[ωδkk′ − 
̄kk′ (ω)] ak′(ω) = 0 (45)

with


̄kk′ (ω) = 
k(ω)δkk′ + i2πν
d2

h̄γ⊥
D(ω)Vkk′ (ω), (46)

Vkk′ (ω) =
∫

drφ∗
k(ω; r) ·ψ k′(ω; r)

�n0(r)
ε(r)

. (47)

The matrix Vkk′ (ω) becomes diagonal for uniform �n0 and ε.
The lasing thresholds and frequencies at the thresholds are
determined from the system of equations ω = Re 
̄k(ω) and
Im 
̄k(ω) = 0, where 
̄k(ω) are eigenvalues of 
̄kk′ (ω).
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3.2. Third-order theory

Nonlinear effects can be included by iterating equations (39)
and (40), with the field as a small parameter [64, 65]. Namely,
P(1)ω is inserted in (40) to obtain the correction �n(2)ω , which,
in turn, is used in (39) to yield the contribution to the
polarization P(3)ω , of the third order in the electric field.

Assuming that lasing modes exist, we can present the field
as a sum of oscillating terms with slowly varying amplitudes,

E(r, t) = Re

[∑
l

El(r, t) e−iωl t

]
,

Eω(r) =
∑

l

El(ω − ωl; r),
(48)

and positive frequencies ωl close to ν, which are to be
determined self-consistently. If the amplitudes El(r, t) vary
slowly on the scale of ωl , their Fourier transforms El(ω −
ωl; r) are strongly peaked at ωl . The slowly varying
amplitude approximation in the frequency domain amounts
to the replacement El(ω − ωl; r) → πEl(r, t) δ(ω − ωl)

in nonlinear terms before performing frequency integrations
when transforming to the time representation. Further,
we average out interference terms, oscillating at the beat
frequencies, and neglect mode degeneracies (|ωl − ωm | �
|Ėl|/|El |). After the nonlinear correction P(3)ω is added to
the right-hand side of (38) and the linear contribution is
diagonalized according to (45), we arrive at the third-order
lasing equations{

d

dt
+ i[
̄k(ωm)− ωm]

}
ākm(t) = − πν

h̄γ‖

(
d2

h̄γ⊥

)2

× D(ωm)

∫
dr
�n0(r)√
ε(r)

φ̄
∗
k(ωm; r) ·

Nm∑
l=1

{2Re[D(ωl)]

× Em(r, t) |El(r, t)|2 + (1 − δml) D‖(ωm − ωl)

× [D(ωm)+ D∗(ωl)]El(r, t) [E∗
l (r, t) · Em(r, t)]}. (49)

akm is the amplitude of the kth component of the mth lasing
mode in the basis of eigenfunctions of linearized problem (43)
and (45):

Em(r, t) =
Nb∑

k=1

ākm(t)ψ̄ k(ωm; r)/
√
ε(r),

m = 1, . . . , Nm. (50)

This is a system of Nb × Nm equations, where Nb is the
basis size and Nm is the number of lasing modes. The
terms proportional to D‖(ω) ≡ (1 − iω/γ‖)−1 arise from the
population pulsations at the beat frequency ωm −ωl interfering
in (39) with the oscillations at the frequency ωl (and, thus,
surviving the averaging). In the stationary regime ( dākm/ dt =
0), the amplitudes ākm and frequencies ωm can be determined
from equations (49) by an iteration procedure (see section 3.3).

The number of equations in system (49) can be reduced
to Nb if one assumes that the wavefunctions of the lasing
modes are given by the linear approximation (43) and do not
have to be determined self-consistently from the nonlinear
equations (49). This is the approximation used in [71, 72],
where it was justified by the fact that such a partially (in the

linear approximation) self-consistent treatment still allows one
to eliminate fast oscillating terms in the nonlinear polarization
and to introduce the slowly varying amplitude approximation
resulting in rate equations for the respective amplitudes. In
this linearly self-consistent approximation the amplitudes can
be presented as ākm(t) = ām(t) δkm and the lasing equations
for a scalar field take the form (cf [67, 69, 70]){

d

dt
+ i[
̄m(ωm)− ωm]

}
ām = − πν

V h̄γ‖

(
d2

h̄γ⊥

)2

× D(ωm) ām

∑
l

Bml |āl |2 × {2Re [D(ωl)] + (1 − δml)

× D‖(ωm − ωl)[D(ωm)+ D∗(ωl)]}, (51)

Bml = V
∫

dr
�n0(r)
[ε(r)]2

φ̄∗
m(ωm; r) ψ̄m(ωm; r) |ψ̄l(ωl; r)|2,

(52)

where V is the volume. Equation (51) generalizes the standard
third-order semiclassical theory with saturation (hole-burning)
terms [64, 65] to the case of strongly open and irregular
systems. Separating real and imaginary parts of this equation
one obtains rate equations for intensities Im = |ām|2 of the
modes and an equation for lasing frequencies:{

d

dt
− 2Im[
̄m(ωm)]

}
Im = − 2πν

V h̄γ‖

(
d2

h̄γ⊥

)2

× Im Re

[
D(ωm)

∑
l

(· · ·)
]
, (53)

Re[
̄m(ωm)] − ωm = − πν

V h̄γ‖

(
d2

h̄γ⊥

)2

× Im

[
D(ωm)

∑
l

(· · ·)
]
, (54)

where the sum
∑

l (· · ·) appearing in (51) depends on the
intensities of all lasing modes. These rate equations do not
contain any linear coupling terms, contrary to the assumption
made in [66].

These equations show that all statistical characteristics
of laser emission (frequency, threshold and intensity distribu-
tions) are determined by certain integrals involving eigenfunc-
tions of cold cavities. The transition from strong to weak scat-
tering manifests itself in changing statistical characteristics of
the respective quantities. However, in spite of the large amount
of work on wavefunction statistics in closed systems, the statis-
tical properties of self- and cross-saturation coefficients in open
resonators have not yet been studied. At the same time, it is
clear now that this statistics is responsible for various regimes
of behaviour of random lasers [70]. We will discuss this point
in more detail in section 4.1.

3.3. All-order nonlinear theory in the time-independent
population approximation

It is possible to obtain lasing equations valid in all orders in
the electric field in a closed form if one neglects the time
dependence of the population inversion. As seen from (49),
the population-pulsation contribution can be neglected if
|D‖(ωm − ωl)| � 1. Typically, the lasing modes are excited

9



J. Opt. 12 (2010) 024001 Review Article

within the gain bandwidth γ⊥ around the atomic frequency.
Then, the above condition reduces to γ⊥ � γ‖.

Requiring that �nω(r) = �n(r) δ(ω), we express Pω
from (39) and insert it in (40). If this assumption were actually
consistent with equation (40) one would, after carrying out
the mode-of-the-field expansion (48), end up (in the frequency
representation) with terms which are also proportional to δ(ω).
In reality, in addition to ‘correct’ terms one would obtain
a number of terms proportional to δ functions of various
combinations of lasing frequencies, which describe oscillations
of the population. Neglecting these ‘oscillatory’ terms is
equivalent to keeping only diagonal contributions |El |2 in the
modal expansion of the E∗ · P term, quadratic in the field. In
this approximation �n(r) can be determined self-consistently
and inserted into (39) and (38) to obtain the lasing equations{

d

dt
+ i[
k(ωm)− ωm]

}
akm(t)

= 2πν
d2

h̄γ⊥
D(ωm)

∫
dr
�n0(r)√
ε(r)

× φ∗
k(ωm; r) · Em(r, t)

1 + d2

h̄2γ⊥γ‖

∑
l Re [D(ωl)] |El(r, t)|2 . (55)

In contrast to the case for (49), the field here is
expanded in the quasimodes of the passive system with
the frequencies 
k(ωm), while the linear mode coupling is
included in the right-hand side. These equations represent
generalization of time-independent equations derived in [56],
which are obtained from (55) by assuming time independence
of the respective amplitudes. Equivalently, equation (55) can
be derived by treating the polarization term in (38) as a source
and using the Green function to write down the solution of this
equation as [56]

Eω(r) = − 4πν2

√
ε(r)

∫
dr′ ε−1/2(r′)G(ω; r, r′)Pω(r′)

= i
4πν2

√
ε(r)

d2

h̄γ⊥
D(ω)

∫
dr′ �n0(r′)√

ε(r′)

× G(ω; r, r′)Eω(r′)
1 + d2

h̄2γ⊥γ‖

∑
l Re [D(ωl)] |El(r, t)|2 . (56)

Replacing the Green function with its spectral representa-
tion (22) in the rotating-wave approximation and integrating
as in (44), we again arrive at equation (55). In the stationary
case this equation is reduced to a nonlinear eigenmode problem∑

k′
Tkk′ (ωm) ak′m = p−1 akm, (57)

Tkk′ (ω) = i2πν
d2

h̄γ⊥
D(ω)

ω −
k(ω)

∫
dr′ δn0(r′)

ε(r′)

× φ∗
k(ω; r′) ·ψ k′ (ω; r′)

1 + d2

h̄2γ⊥γ‖

∑
l Re [D(ωl)] |El(r)|2

(58)

where the unsaturated population inversion �n0(r) =
p δn0(r) is split into the overall pump strength p and the
pump profile δn0(r). The field distribution in mode m is
Em(r) = ∑

k akmψ k(ωm; r)/
√
ε(r). If the basis of constant-

flux modes (section 2.4) is used, the field outside of the system
can be obtained by continuation.

An algorithm for determining the lasing mode frequen-
cies ωm and expansion coefficients akm as p is increased con-
tinuously from zero is described in [74]. Below the threshold,
where all akm = 0, one looks for the eigenvalues of the linear
T (ω). Changing ω, the eigenvalues can be made real, one at
a time. The largest real eigenvalue p−1

1 yields the threshold
pump strength and the corresponding ω is the lasing frequency
at the threshold. Above the threshold, for p > p1, the pump
is increased in small steps and the solution ak1(p) for the first
mode is determined iteratively from (57). The second mode
appears when the second-largest eigenvalue p−1

2 of T (ω) lin-
earized ‘around’ the first mode becomes equal to p−1. The
procedure is continued to find higher modes.

4. Examples and properties of multimode random
lasers

4.1. Threshold and number-of-modes statistics

The distribution of thresholds and the average number of lasing
modes as a function of pump strength were calculated in [1]
for an ensemble of weakly open chaotic cavities. Each cavity
was opened via M small holes (diameter � wavelength),
which together carry M open channels. The passive mode
decay rates κ in this system are distributed according to the
χ2 distribution with M degrees of freedom,

PM(y) = (M/2)M/2

�(M/2)
y M/2−1 exp

(
− M

2
y

)
, y ≡ κ/〈κ〉,

(59)
where �(x) is the gamma function. The distribution is wide
for small M and, for M = 1, it increases as y−1/2 when
y → 0. This property leads to a wide distribution of
lasing thresholds, �n0,thr, which behaves as �nM/2−1

0,thr for
small �n0,thr. The average threshold is much less than the
nominal value�ñ0 = 〈κ〉 h̄γ⊥ε/2πνd2, which is the pumping
required to overcome the average loss at ω = ν (cf (46)).
An increase of threshold fluctuations with localization was
observed in a one-dimensional disordered model [42].

Considering the rate equation (53) in the stationary
regime and neglecting the population-pulsation term contain-
ing D‖(ωm − ωl), one obtains a matrix equation for the inten-
sities Im = |ām|2 of lasing modes:

∑
l

Aml Il = 1 − �ñ0

�n0

ym

Lm
,

Aml = 2d2V

εh̄2γ⊥γ‖

Ll

Lm
Re

[
D(ωm) Bml

ε2

V 2�n0

]
,

(60)

where ym ≡ κm/〈κ〉 (κm is the decay rate of mode m) and
Lm ≡ Re D(ωm). This equation must be complemented by
the condition that it has only positive solutions. The rest of the
basis are nonlasing modes and their intensities are set to zero.
It should be noted, however, that the positiveness of lasing
intensity does not, by itself, guarantee that the solution found
is stable, a fact well known for simple two-mode models [64].
The stability of the solutions can only be verified from the
time-dependent equation (53); therefore, the estimates of the
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number of modes based on time-independent equations cannot,
in general, be considered as completely accurate.

For a weakly open chaotic cavity [1] one can assume
that (a) the eigenfunctions are almost real and orthogonal and
(b) they can be described as random Gaussian functions which
are uncorrelated for different modes [59]. If, in addition,
one assumes that the background dielectric constant, ε(r), and
pumping rate, �n0(r), are both uniform, the correlator (52)
takes the form of

Bmlε
2/V 2�n0 = 1 + 2δml . (61)

In this case matrix Aml can be inverted analytically, yielding a
dependence of the mode intensities on the pump strength. Let
us order the modes m = 1, 2, . . . in the order in which they
are excited as the pumping increases. It can be shown that, in
this case, the ym/Lm form an increasing sequence. A threshold
condition for the mode m results in the equation [1]

(
m

2
+ 1

)
ym

Lm
− 1

2

m∑
l=1

yl

Ll
= �n0

�ñ0
, (62)

which relates the number of excited modes Nm = m
and the pump strength �n0 in a particular cavity. The
ensemble average 〈Nm〉 is calculated [1] with the help of
the distribution PM (y) for y � 1 and is found to scale
as �nM/(M+2)

0 asymptotically for large pump strength.
In [67] 〈Nm〉 was computed for nonweakly open cavities

modelled by random matrices. In particular, the validity of the
relation (61) was studied numerically for strong coupling to the
bath γn = 1 (section 2.5). It was shown that for κ � 〈κ〉 the
assumption of uncorrelated eigenvectors works well, while for
larger κ deviations from Gaussian statistics become stronger.

The power-law asymptotics for 〈Nm〉 was confirmed by
numerical simulation of decay rates entering (62) using random
matrices with γn � 1 [68]. The standard deviation σNm varied
as�nM/2(M+2)

0 . In the case γn = 1, the ratio σNm/〈Nm〉, but not
σNm and 〈Nm〉 separately, obeyed a power law with an exponent
that depended on M . The difference between the results for
the weak and strong couplings occurs because the decay rate
distribution for γn ∼ 1 is no longer of χ2 type [58].

For a one-dimensional disordered system [70] assump-
tion (61) fails completely, indicating a different type of mode
competition compared to that for chaotic systems. Numerical
simulations showed that the number of lasing modes saturates
below the basis size with increasing pumping. This effect is re-
lated to the nonmonotonic dependence of mode intensities on
the pump strength and complete disappearance of some modes
for pumping exceeding certain thresholds.

The mode suppression was also reported for disordered
disk lasers studied within the theory of section 3.3 [74].
Comparing the dependences of lasing frequencies and
intensities on the pumping, it was noticed that when two
modes come close together in frequency, one of them can be
suppressed. The mode thresholds and intensities, but not the
frequencies, were found to be very sensitive to the pumping
spatial profile.

4.2. Frequency and intensity statistics

It is well known that passive closed chaotic systems without
spatial symmetries have level repulsion, i.e., the probability
density for zero frequency spacing vanishes. A natural
question is that of how the spacing distribution for lasing
modes in a random laser is connected to the distribution for
passive modes in the underlying system without gain. It can
be seen in the following examples that mode selection and
competition normally enhance the repulsion in a laser. When
lasing modes are close to passive modes, this property is rather
obvious: even if two passive modes cross, the two of them will
not necessarily lase.

Spacing distributions in two-mode chaotic lasers modelled
with random matrices were computed numerically in [69].
Mode repulsion was present both in the case of weak openness
and in that of intermediate openness, γn � 1 and γn = 1
(section 2.5), even though the passive frequencies can cross for
γn = 1. (If two passive modes have the same frequencies, they
have quite different lifetimes due to repulsion in the complex
plane. Hence, only one of the two modes will be lasing for
moderate pump strength.) When the gain bandwidth γ⊥ is
close to the mean level spacing �ω in the passive system, the
spacing distribution for the lasing modes is well described by
the Wigner surmise [76]

PW(�ω) = π

2

�ω

�ω
2

exp

(
−π

4

�ω2

�ω
2

)
, (63)

derived for passive closed chaotic cavities in the random matrix
theory. Again, this form works also for γn = 1, when the
spacing statistics for passive modes is closer to Poissonian.
This example shows that formal coincidence between a spacing
distribution for lasing modes and the Wigner surmise does not
guarantee that the physics behind them is the same.

Mode repulsion with deviations from the Wigner
surmise was found numerically in one-dimensional disordered
lasers [70]. There were two reasons for the repulsion. First,
some modes were coupled, because the system was not very
long and the modes could overlap. Second, when two modes
were localized (and could have close frequencies), the mode
that was closer to the opening had a higher threshold and was
not excited.

When two modes have close frequencies, it may become
necessary to take into account the dependence of mode
frequencies on the pumping. As mentioned above, a
correlation between mode repulsion and suppression during the
change of the pumping level was observed in a numerical study
of two-dimensional disordered laser [74].

Spacing distributions were measured in colloidal solutions
containing TiO2 scatterers and a laser dye [43]. The system
was in the weak scattering regime in the sense that the
scattering mean free path was much longer than the pump
excitation cone. The lasing frequencies were more or less
regularly spaced, exhibiting the mode repulsion. The spacing
distribution had a maximum, but could not be fitted well
with the Wigner surmise. The average mode spacing scaled
with the dye concentration. (Increasing the concentration
reduced the gain volume, which led to a reduction of the
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number of modes.) The spacing fluctuations increased with the
scatterer concentration. Some of the experimental results were
supported by numerical simulations for a one-dimensional
disordered system at the threshold. The statistics of lasing
peaks was compared with the statistics of spontaneous-
emission spikes that appear in the background of the emission
spectra. The spikes were attributed to photons created in
single spontaneous-emission events and amplified over long
paths [41, 77]. Coherent feedback is not required for the
appearance of spikes. The spikes’ positions in the spectrum
were uncorrelated, which was reflected in the Poisson spacing
statistics.

Spectra with almost equally spaced lasing peaks were
obtained for TiO2 colloidal solutions with strong reabsorption
outside of the pumped volume [8]. Weak scattering, on the
one hand, and reabsorption, on the other hand, result in an
effective cavity being formed by just two scatterers located at
the ends of the excitation cone. (The ‘cavity’ has the maximal
possible length, because the gain grows exponentially with the
path length, while the probability of photons leaving the cavity
scales as a power of the length.) The effective cavity is of
the Fabry–Perot type; therefore the lasing peaks are equidistant
and the spacing scales inversely with the cone length.

Another system that shows mode repulsion is porous GaP
filled with dye solution [3]. The transport mean free path was
of the order of λ and about three times smaller than the pump
spot size. The spacing distribution could be roughly fitted with
the Wigner surmise.

The difference between lasing peaks and spontaneous-
emission spikes for TiO2 colloidal solutions with weak
reabsorption [43] (see above) emerges also in the emission
intensity statistics. Two statistical ensembles were considered:
(1) intensities collected from all wavelengths in some range
I (λ)/〈I (λ)〉, normalized by the intensity averaged over many
shots at given λ, and (2) peak and spike heights of the
functions I (λ)/〈I (λ)〉. For the two ensembles the probability
distributions showed similar asymptotic behaviours at large
intensities: they had a power-law tail above the lasing threshold
and decayed exponentially below the threshold or in the
absence of scatterers (neat dye solution). The numerically
computed distribution of lasing mode intensities in a one-
dimensional disordered laser [70] had a power-law decay, as
well.

It should be mentioned that a power-law asymptotics
may also appear for lasers with incoherent feedback near the
threshold [78]. Thus, caution should be exercised when using
an intensity distribution as a test for coherent lasing.

4.3. Structure of lasing modes

One of the important recent developments, which is relevant
not only for random lasers, but also for the entire field of
laser physics, is the realization of the fact that so called
lasing modes may differ significantly from modes of passive
cavities. It was noted in [71] that spatial nonuniformity of the
refractive index and pumping can result in gain-induced linear
coupling between modes of passive cavities, which results in
the formation of new modes. These ideas were taken further

in the self-consistent theory of [56, 73–75], where no a priori
assumptions about the spatial structure of lasing modes were
made and they were found from the nonlinear self-consistent
equation (55). Calculations of [56, 73–75] found significant
modifications of the spatial profile of lasing modes due to
nonlinear mode coupling. However, as we already mentioned,
it is not clear whether the systems studied in [56, 73–75] can be
considered as being in a diffusive regime. At the same time, no
changes in the spatial structure of a lasing mode with increased
pumping intensity were found in [27, 79], where the structures
studied were clearly identified as being either in localized [27]
or diffusive [79] regimes.

Modification of modes due to the presence of gain
was observed in numerical simulations of a one-dimensional
random laser below or at the threshold [42, 43], but only
in the presence of spatially nonuniform (local) pumping.
While modes in a uniformly pumped system were close to
passive modes and their intensity grew exponentially towards
the boundary, the transition to local pumping changed them
substantially: they did not grow exponentially outside of the
gain volume, but were still extended over the whole system.
The number of lasing modes under local excitation was found
to be less than the number of passive modes in the same
frequency range, but larger than the number of passive modes
in the reduced system defined by the pump region. In the case
of nonuniform pumping the mode modification appears already
in the linear approximation [72], so the roles of nonlinear
effects in this simulation are unclear.

The structure of lasing modes was also studied in a system
with weak scattering and strong reabsorption [8]. It was found
that in such systems the gain volume surrounded by a strongly
absorbing medium forms an effective cavity, where lasing
modes are localized. Numerical simulations below and at the
threshold in two dimensions showed that the lasing modes in
this case are very close to the passive modes of the effective
cavity.

5. Conclusions

Current research on multimode random lasing is moving along
several major directions, e.g. (i) extension of conventional
laser theories to open and irregular systems; (ii) statistical
properties of lasing modes; (iii) mechanisms of random lasing
(quantum and classical localization, extended modes), to name
but a few. To date, a large number of experimental and
numerical observations have been collected. However, the
systems are hard to access analytically, as they consist of a
number of strongly interacting components (electromagnetic
field, gain medium, scatterers, boundaries) and several factors
(openness, disorder, nonlinearity, noise) are not negligible over
a wide range of parameters.

Recent important developments in the semiclassical
multimode theory and random matrix theory added to
the understanding of the properties of lasing modes in
the stationary regime. To enable a direct comparison
with experiments, mostly performed under pulsed-pumping
conditions, it would be desirable to study time-dependent
behaviour and relaxation processes. A detailed analysis
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of mode stability, hysteresis phenomena and quantum-noise
effects in the stationary regime is also lacking. To address the
role of localization in the lasing feedback at an adequate level,
numerical simulations of more realistic (three-dimensional)
models might be necessary.
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[75] Türeci H E, Stone A D, Ge L, Rotter S and Tandy R J 2009

Nonlinearity 22 1

[76] Haake F 2001 Quantum Signatures of Chaos (Berlin: Springer)
[77] Mujumdar S, Türck V, Torre R and Wiersma D S 2007 Phys.

Rev. A 76 033807
[78] Lepri S, Cavalieri S, Oppo G-L and Wiersma D S 2007 Phys.

Rev. A 75 063820
[79] Vanneste C, Sebbah P and Cao H 2007 Phys. Rev. Lett.

98 143902

14

http://dx.doi.org/10.1103/PhysRevA.76.013813
http://dx.doi.org/10.1126/science.1155311
http://dx.doi.org/10.1088/0951-7715/22/1/001
http://dx.doi.org/10.1103/PhysRevA.76.033807
http://dx.doi.org/10.1103/PhysRevA.75.063820
http://dx.doi.org/10.1103/PhysRevLett.98.143902

	1. Introduction
	2. Modes of open systems
	2.1. Transverse Fox--Li modes
	2.2. Quasimodes
	2.3. Feshbach projection in the system-and-bath quantization scheme
	2.4. Constant-flux states
	2.5. Open resonators in random matrix theory

	3. Multimode laser theories for open and irregular systems
	3.1. Semiclassical laser equations
	3.2. Third-order theory
	3.3. All-order nonlinear theory in the time-independent population approximation

	4. Examples and properties of multimode random lasers
	4.1. Threshold and number-of-modes statistics
	4.2. Frequency and intensity statistics
	4.3. Structure of lasing modes

	5. Conclusions
	Acknowledgments
	References

