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Ab initio theory of defect scattering in spherical whispering-gallery-mode resonators
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An exact formalism for the interaction of a spherical whispering-gallery-mode (WGM) microresonator with
an externally or internally placed subwavelength scatterer is developed. The experimentally observed doublets
in the spectra of high-Q microspheres are shown to correspond to the ideal Mie resonance and a defect-induced
resonance, while for TM-polarized WGMs a third peak is predicted. Explicit expressions for positions and widths
of these new resonances are derived.
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I. INTRODUCTION

Elastic (with no change in frequency) scattering of light due
to particles with subwavelength dimensions is one of the most
fundamental and intensively studied optical phenomena. Since
Lord Rayleigh’s [1] famous papers explaining why the sky is
blue, it has been customary to refer to this phenomenon as
Rayleigh scattering. While usually this term is used to describe
the interaction between free propagating electromagnetic
waves and small scatterers, recent technological developments
have focused attention on the interaction between spatially
confined optical fields and subwavelength particles. This
situation arises, for instance, when whispering gallery modes
(WGMs) of optical microresonators [2] interact with the
resonators’ morphological imperfections. Since the scatterers
in this case are usually much smaller than the wavelength of
light, this phenomenon is referred to as Rayleigh scattering
of WGMs [3]. Given the fundamental nature of this process
and its importance in applications of microresonators it is
not surprising that it has attracted a significant amount of
attention in recent years [3–7]. However, while scattering
of free propagating light is a mature field for which many
approaches have been developed [8], the study of scattering
of WGMs is still in its infancy. Current understanding of this
process relies on simple phenomenological models [3,7,9], but
no fundamental theoretical description of this phenomenon has
been developed so far.

While WGMs can occur in various types of geometries [10],
we focus here on spherical microresonators. WGMs in this case
correspond to Mie resonances [11] with ultranarrow widths,
γl,s � ωl,s , where ωl,s is the frequency of the mode, and
respectively high (up to 109 for silica microspheres [10]) Q

factors defined as Ql,s = ωl,s/γl,s . WGMs are characterized
by polar and azimuthal indexes, l and m, and a radial number s

specifying, respectively, the angular and radial dependence
of the fields in a spherical coordinate system centered at
the sphere. The resonance frequency ωl,s does not depend
on the azimuthal number, which reflects the degeneracy of
the resonances due to full spherical symmetry of the system.
WGMs are also characterized by their mode volume, which
can be very different for modes with the same l but different
m. Modes with the smallest volume correspond to |m| = l,
and s = 1 in which case the field is concentrated mostly in the
equatorial plane and at the surface of the sphere. Such modes
are called fundamental and their interaction with defects is of
the primary interest.

It has been known for some time that the experimental
spectra of WGMs are more complex than expected from
standard Mie theory for ideal spheres. In particular, in place of
an expected single ultranarrow resonance, one often observes
an apparent asymmetric doublet with a diminished Q factor.
This effect is common to the spectra of most microresonators
and has been attributed to Rayleigh scattering of WGMs due to
morphological inhomogeneities introduced during fabrication.
The existing explanation of this effect is based on the
backscattering hypothesis [4], which assumes that Rayleigh
scattering couples fundamental WGMs of orbital number
L with opposite signs of the azimuthal number m = ±L

(counterpropogating modes). This coupling breaks the ±m

degeneracy and gives rise to the spectral doublet. The degraded
Q factor is prescribed to defect-induced coupling between
WGMs and radiative modes and is accounted for by adding a
scattering loss to the total losses of the resonator. In Ref. [7]
these losses have been calculated for microdisk resonators
using a semiphenomenlogical surface current method. The
benefit of this approach is the simplicity of its associated
physical picture and its apparent ability to explain qualitatively
some of experimentally observed effects.

However, the apparent agreement with an experiment
cannot replace a rigorous theoretical description based on
fundamental principles (Maxwell equations in this case) rather
than on phenomenological ad hoc assumptions. Moreover,
we show here that in the particular case of microspheres the
backscattering paradigm seriously oversimplifies the problem
and as a result misses a number of important features of
the phenomenon under discussion. More specifically, the
backscattering approach ignores the fact that the loss of
symmetry resulting from scatterers breaks the degeneracy of
and therefore couples all azimuthal components, −L � m �
L and not just counterpropagating modes. At the very basic
level this approach treats an essentially quasi-two-dimensional
problem in a one-dimensional approximation. The backscat-
tering paradigm, at least in its current implementations, also
ignores the vector nature of light, which in the situation under
consideration, manifests itself as a dependence of the strength
of interaction between WGM and scatterer upon the orientation
of the dipole moment of the latter and on the polarization of
the excited WGM.

Recently, the controlled scattering experiments of Ref. [9]
showed that a single external dipole scatterer positioned close
to the surface of the sphere resulted in effects which are
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FIG. 1. Coordinate systems used in calculations.

qualitatively similar to those attributed to surface roughness.
Theoretically, this is a consequence of the fact that under
weak scattering, random inhomogeneities in the structure of
the resonator interact with light like independent dipole scat-
terers. The results of Ref. [9] demonstrate the importance of
understanding the interaction between WGMs in microspheres
and a single subwavelength defect. The main objective of this
article is to develop an ab initio theory of this phenomenon.
The theory developed herein not only provides a conceptual
framework for understanding the experiments of Ref. [9] on
the basis of fundamental principles, but also constitutes a
significant first step toward a general microscopic theory of
scattering of WGMs. In this theory, which is based on direct
solution of Maxwell equations and does not use any ad hoc
assumptions, spectral splitting and broadening of resonances
arise in a natural way. In addition, it predicts and describes
such less-explored effects as scattering-induced polarization
conversion, which was recently observed experimentally [12].
For completeness, we consider defects positioned both outside
and inside the microresonator. Such an internal defect could,
for example, be a small local fluctuation in the dielectric
permittivity formed during the fabrication process or can be
introduced intentionally.

The main assumption of the theory is that, since defects are
small enough to be treated as dipole scatterers, their precise
shape is irrelevant and can be taken to be spherical. In this way
the problem is reduced to describing two electromagnetically
coupled spheres of radii R1 and R2 � R1 with refractive
indexes n1 and n2, respectively, whose centers are positioned
at a distance d from each other (see Fig. 1). The whole system
is assumed to be situated in an external medium of refractive
index n0. The problem of two (or more) spheres coupled by the
evanescent field of their WGMs has been previously discussed
in several papers [13–15], where MSMT based on modal
expansion of the electromagnetic field was used. In this article
we advance previous studies by showing that when one of the
interacting spheres can be treated as a dipole, the equations
for modal expansion coefficients can be solved exactly so that
they can be obtained in a closed form.

II. MIE THEORY FOR INTERNALLY AND EXTERNALLY
COUPLED TWO-SPHERE SYSTEMS

Our goal in this article is to find the resonance frequencies
and the complete field distribution of the two-sphere system

subject to an external excitation. The general framework
for electromagnetic scattering by an aggregate of spheres
is known as multisphere Mie theory (MSMT) and gives,
in principle, exact results. An extensive literature exists on
MSMT, beginning with the authoritative work of Bruning and
Lo on scattering by two spheres [16,17], see also an article
by Fuller [13]. The generalization to more than two spheres
can be found in Refs. [18,19], with a more detailed analytical
approach in Ref. [20]. The structure and resonance frequencies
of high-order WGMs in two identical spheres are discussed in
Refs. [14,15]. The case where one sphere resides completely
within another is discussed in several works [21–23], with
results focusing mainly on general scattering properties with
plane-wave illumination. Partial results from this article have
been published previously in Ref. [24].

The current work focuses on electromagnetic properties
of a particular two-sphere system, where one of the spheres
is large enough to support high-order WGMs, while the
second sphere is of a subwavelength dimension and behaves
essentially as a dipole. Since the incident wave is assumed to
excite a single WGM in the larger sphere, the situation can
be described as scattering of the excited WGM due to the
subwavelength defect. Depending on the mutual position of
the defect and the main sphere (the resonator), two cases must
be distinguished. The defect can reside outside the resonator, in
which case it couples to the resonator’s scattered field (external
coupling). One can also envision a situation where the defect
is completely inside the resonator and couples to its internal
field (internal coupling). The standard MSMT framework
is based on the external coupling configuration and can
therefore be directly applied to the former case. The internal
coupling situation, on the other hand, is inconsistent with the
field expansions used in Refs. [13–20]. The inconsistency
manifests itself as a divergence of the multipole expansion
for the field when the two spheres are separated by a distance
d < (R1 + R2). Therefore, the modified MSMT utilized in
Refs. [21–23] is employed. However, because this configu-
ration is much less well known and is usually treated in the
literature under the assumption of plane-wave illumination,
we rederive the modified MSMT framework for the case of
an arbitrary incident field before applying it to the situation
considered here.

Treatment of both the internal and the external coupling
scenarios is based on expansion of all relevant fields in terms
of vector spherical harmonics (VSH) defined in coordinate
systems with origins at the center of each sphere. Figure 1
shows the configuration under consideration together with
coordinate systems relevant to the problem. The coordinate
systems centered at the larger sphere and the defect (points O1

and O2, respectively) are shifted with respect to each other by
distance d along a common axis. The Maxwell equations are
first solved for each sphere separately, giving scattered, Esc,
and internal, Eint, fields as linear combinations of VSH with
as yet undetermined coefficients:

E(i)
sc (ri) = E0

∑
l,m

[
a

(i)
l,mN(3)

l,m(ri) + b
(i)
l,mM(3)

l,m(ri)
]
, (1)

E(i)
int(ri) = E0

∑
l,m

[
c

(i)
l,mN(1)

l,m(ri) + d
(i)
l,mM(1)

l,m(ri)
]
. (2)
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We also assume that an incident field Einc can be expressed in
terms of VSH by the expansion

E(i)
inc(ri) = E0

∑
l,m

[
η

(i)
l,mN(1)

l,m(ri) + ζ
(i)
l,mM(1)

l,m(ri)
]
. (3)

Here index i numerates the spheres i = 1,2 with i = 1
corresponding to the larger sphere and each position vector
ri is defined in the local coordinate system. Functions N(j )

l,m

and M(j )
l,m are the VSH fields of TM and TE polarization,

respectively [8], with j = 1 or j = 3 indicating radial depen-
dencies given by either the spherical Bessel function [jl(x)]
or the Hankel function [h(1)

l (x)] of the first kind, respectively.
They take dimensionless frequency x = kr , with wave vector
k = nk0 = nω/c, where n is the refractive index of the region
in which the respective field is defined. The corresponding
magnetic fields, H, are determined from the same coefficients
by switching Nl,m and Ml,m and multiplying by −i

√
ε/µ0 [16],

where ε and µ0 are, respectively, the dielectric permitivity and
permeability of the region (we consider only nonmagnetic
media).

Presentation of the incident field in the form of Eq. (3)
is standard for the theory of Mie scattering, as one usually
considers the incident wave to be a plane wave. However, in the
situation considered here the incident wave is typically a mode
of a tapered fiber, which might not have an expansion of this
form. The Mie theory, however, hinges only on the possibility
of presenting the angular dependence of the incident field
as a series of spherical harmonics, which is always possible.
The remaining dependence of the incident field on the radial
coordinate can be left arbitrary. In this article we assume that
this field is such that in the absence of the defect, it excites a
single WGM in the resonator. This means that we only need to
consider a single term in Eq. (3) making most of the presented
results independent on the exact form of the radial dependence
of the incident field. We keep it in the form of Eq. (3) for
concreteness and easier comparison with the standard Mie
theory.

The total physical field at each point is in general a
linear combination of fields associated with each sphere.
For the external defect case, there are three distinct regions
corresponding to the interior of each of the two spheres
(regions I and II, respectively), plus the exterior region (III) in
which both spheres are situated. In the case of internal coupling
configuration, the same three regions exist, except that the
interior of the main sphere excludes the volume occupied by
the internal defect. The standard Maxwell boundary conditions
are applied at the surfaces of the spheres r1 = R1 and r2 = R2

by demanding continuity of the tangential components of the
total fields E and H.

In the case of external coupling, the field in regions I and II
is given simply by Eq. (2) for i = 1,2, respectively. In region
III, the total field in coordinate system Oi , E(i)

III , is composed
of the incident field and the scattered field from each sphere:

E(1,2)
III = E(1,2)

inc + E(1)
sc + E(2)

sc . (4)

For the internal coupling case, the field in region II is again
given by Eq. (2) for i = 2, but the interior of the main sphere,

region I, now includes a contribution from the scattered field
of the defect:

E(1)
I = E(1)

int + E(2)
sc . (5)

The field in region III now consists of the incident field and
the scattered field of only the main sphere:

E(1)
III = E(1)

inc + E(1)
sc . (6)

Equations (4) and (5) involve combinations of fields that are
referred to different coordinate systems. By utilizing the VSH
addition theorem [8,25], the total field can be expressed in
a single coordinate system. Each VSH function is expanded
in terms of the translation coefficients Am1,l1,m2,l2 (k,d), which
connect fields of the same polarization, and Bm1,l1,m2,l2 (k,d),
which connect fields of different polarization. The translation
vector d = (d,θt ,φt ) connects the origins of the two systems.
The addition theorem simplifies considerably when azimuthal
symmetry is present in the system, as in our case where the
polar axis of each coordinate system coincides with the line
connecting the centers of the spheres. In this case, one only
deals with translation vectors d = (d,0,0) and d = (d,π,0).
Consequently, the addition theorem couples fields of different
polarizations and different polar numbers, but does not couple
different azimuthal components so that the azimuthal number
m can be used to classify modes of the system as a whole.

Applying the boundary conditions and making use of the
orthogonality of the VSH, one obtains a system of coupled
equations for expansion coefficients of the scattered and
internal fields. For the external defect, this system of equations
is that of the standard Mie theory found in Refs. [13,16,17]. For
the internal defect the application of the boundary conditions
results in a different set of equations, which we present in
Appendix A for the most general case (as well as the standard
set of equations for the external defect for easy reference). The
general expressions for the translation coefficients are given in
Appendix B.

III. DEFECT SCATTERING IN WGM RESONATORS

A. Exact solution for the dipole scatterer

We shall assume that in the absence of a scatterer the
incident field would have excited in a microsphere a single
WGM of either TM or TE polarization with a given angular
number l = L, dimensionless vacuum frequency x

(0)
s,L, and

width γ
(0)
s,L found from a complex pole of the Mie coefficients

α
(1)
L (TM polarization) or β

(1)
L (TE polarization). Note that the

effective Mie coefficients α̃
(1)
L and β̃

(1)
L which arise for the

internal defect case have the same poles (see Appendix A).
To mimic the experimental situation of excitation by a tapered
fiber, we also assume that this incident field impinges only
on the main sphere, so that E(2)

inc = 0 and E(1)
inc = Einc. We are

interested in the fundamental mode (FM) characterized by a
field distribution concentrated in one of the equatorial planes of
the sphere with no oscillations in radial and polar directions. In
the coordinate system with the polar axis perpendicular to the
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plane of the mode (X′Y ′Z′ axes in Fig. 1) this field distribution
is described by a single VSH with |m| = L:

Einc(r′) = E0 ×
{

N(1)
L,L(r′) (TM mode),

M(1)
L,L(r′) (TE mode).

(7)

However, as discussed in the previous section, the two-
sphere problem is more conveniently described when the fields
in the main sphere are expressed in the XYZ system of Fig. 1
whose polar axis passes through the centers of both spheres.
The field distribution of the FM in this coordinate system
cannot be described as a single VSH, but requires a linear com-
bination of VSH with all −L � m � L. This representation is
found with the help of the rotation transformation properties of
the spherical harmonics [8]. If the unprimed system is obtained
from the primed through successive rotation by Euler angles
α,β,γ (following the conventions of [8]), then the incident
field of Eq. (9) for the TM mode is expressed in the unprimed
coordinates as

Einc(r1) = E0

L∑
m=−L

DL
m,L(−γ, − β, − α)N(1)

L,m(r1), (8)

where DL
m,L are Wigner D functions [8]. TE polarized

fields obey the same transformation law. As mentioned, the
system possess axial symmetry about the Z axis of the XYZ

coordinate system. Several conclusions can be drawn from this
fact. First of all, due to this symmetry the azimuthal number m

remains a “good quantum number” that can be used to classify
the normal modes of the resonator-defect system. It means,
in other words, that the interaction only couples modes of
resonator and the defect which have the same m. Since the
field of the defect is composed of the |m| � 1 dipole modes,
it is only these modes of the resonator which will be affected
by the interaction. The sub-basis comprising the remaining
2L − 1 components of the resonator do not sense the defect at
all, and therefore the scattering expansion coefficients for these
components can be simply read off from the single-sphere
problem:

a
(1)
L,m = α

(1)
L DL

m,L, |m| > 1 (TM mode),

b
(1)
L,m = β

(1)
L DL

m,L, |m| > 1 (TE mode),
(9)

with respective components of the D functions [Eq. (8)]
playing the role of the expansion coefficients of the incident
field. An immediate consequence of this observation is that
in the presence of the defect, 2L − 1 components of the L

mode will resonate at the Mie frequency of the ideal single
sphere. Therefore, one of the peaks in the spectrum of the
resonator-defect system must correspond to this resonance and
its frequency and width should not depend on the position of
the defect. This conclusion is in complete agreement with
experimental results of Ref. [9].

We now turn to the full quantitative solution for the
expansion coefficients. Within the dipole approximation for
the defect, these coefficients can be decoupled exactly for
both the internal and the external defect cases. The dipole
approximation is introduced by setting all coefficients a

(2)
l,m with

l > 1 to zero. Formally, this approximation can be justified by

considering the asymptotic form of the scattering amplitude of
the second sphere for kR2 = ρ � 1:

α
(2)
l (ρ) ≈ −

[
1 + i

(2l + 1)!!(2l − 1)!!

(l + 1)ρ2l+1

(
ln2

2 + l + 1

n2
2 − 1

)]−1

.

(10)

In this limit, α
(2)
l decays fast with increasing l, which allows

one to safely neglect α(2)
l for all l > 1 and set the corresponding

a
(2)
l,m to zero. Note, that in the same approximation the β

(2)
l

coefficients vanish identically, reflecting the pure TM behavior
of true dipole radiation. Therefore, TE field coefficients b

(2)
l,m

can also be set to zero. The fact that dipole radiation formally
corresponds to a TM field does not mean that a TE mode in the
resonator would not interact with the defect. Since the addition
theorem couples TE and TM WGMs, both polarizations of
the field of the resonator are scattered by the defect. The
quantitative characteristics of this interaction, however, will be
different for WGMs of different polarization due to different
properties of Am1,l1,m2,l2 (k,d) and Bm1,l1,m2,l2 (k,d) translation
coefficients. This fact is completely lost in phenomenological
theories of WGM scattering.

After applying the dipole approximation to system (A1)
and (A2) presented in Appendix A, the remaining equations
can be solved exactly. The solution for the a

(1)
l,m coefficients

for an external defect with a TM mode in the resonator can be
presented in the form

a
(1)
l,m = α

(1)
L DL

m,Lδl,L + α
(1)
l α

(1)
L DL

m,LA
(3)
m,1,m,L(k, − d)

× α
(2)
1 A

(3)
m,l,m,1(k,d)

1 − α
(2)
1 σ

. (11)

The general solution of all coefficients for both internal and
external defect cases, for either type of incident field polariza-
tion can be understood by giving a physical interpretation to
Eq. (11). The first term in this equation describes the response
of the resonator in the absence of the defect. The presence
of the TM Mie coefficient of the resonator, α

(1)
l , in the next

term indicates that it describes the response of the resonator
to the field scattered by the defect. This term is proportional
to the field incident on the defect due to scattering of the
initial excitation by the resonator, α

(1)
L DL

m,LA
(3)
m,1,m,L(k, − d),

presented in the defect-centered coordinate system. The
indices L and 1 in the translation coefficient imply that this is
the portion of the original L mode contributing to the l = 1
dipole mode at the position of the defect. The presence of the
“A” (rather than a “B”) coefficient denotes that this L mode
is of the same polarization as the (necessarily TM) dipole
mode of the defect. The term α

(2)
1 (1 − α

(2)
1 σ )−1A

(3)
m,l,m,1(k,d)

corresponds to the field scattered back to the l mode of
the resonator, with a similar interpretation of the translation
coefficient. The denominator (1 − α

(2)
1 σ ) in this expression is

responsible for modification of the resonant frequencies of the
resonator-scatterer system.

All coefficients a
(1)
l,m and b

(1)
l,m, for either type of incident field

polarization and defect position (internal and external) can be
presented in the similar form. The results are summarized in

053827-4



Ab INITIO THEORY OF DEFECT SCATTERING IN . . . PHYSICAL REVIEW A 81, 053827 (2010)

TABLE I. Functions f
(e)

1 –f
(e)

5 .

f
(e)

1 f
(e)

2 f
(e)

3 f
(e)

4 f
(e)

5

a
(1)
l,m TM mode α

(1)
l δl,L α

(1)
L U

(3)
m,L U

(3)
m,l

TE mode α
(1)
l 0 β

(1)
L V

(3)
m,L U

(3)
m,l

b
(1)
l,m TM mode β

(1)
l 0 α

(1)
L U

(3)
m,L V

(3)
m,l

TE mode β
(1)
l δl,L β

(1)
L V

(3)
m,L V

(3)
m,l

Tables I and II. For an external defect, one has{
a

(1)
l,m,b

(1)
l,m

}
= DL

m,L

[
f

(e)
1

] {[
f

(e)
2

]+ [f (e)
3

][
f

(e)
4

][
f

(e)
5

] α
(2)
1

1 − α
(2)
1 σ

}
,

(12)

where functions f
(e)
1 through f

(e)
5 for both a and b coefficients

and for both polarizations of the incident wave are defined in
Table I.

Expansion coefficients for an internal defect can be pre-
sented as{
a

(1)
l,m,b

(1)
l,m

}
= DL

m,L

[
f

(i)
1

] {[
f

(i)
2

]+ [f (i)
3

][
f

(i)
4

][
f

(i)
5

] 1

n2
0x

2
1

α
(2)
1

1−α
(2)
1 σ̃

}
,

(13)

where fuctions f
(i)
1 through f

(i)
5 for both a and b coefficients

and for both polarizations of the incident wave are defined in
Table II and x1 = k0R1.

When deriving these expressions we have taken into
account the symmetry properties of the translation coefficients
[26],

A
(j )
m,1,m,l(kd,0,0) = (−1)1+lA

(j )
m,l,m,1(kd,0,0),

(14)
B

(j )
m,1,m,l(kd,0,0) = (−1)l+1B

(j )
m,l,m,1(kd,0,0),

and introduced the following quantities:

U
(j )
m,l = (−1)lA(j )

m,1,m,l(ρ,0,0)

= (−1)l
√

3

2

[√
(l + 1)(l + |m|)

(2l + 1)(|m| + 1)
z

(j )
l−1(ρ)

+ (−1)m
√

l(l + 1 − |m|)
(2l + 1)(1 + |m|)z

(j )
l+1(ρ)

]
, (15)

TABLE II. Functions f
(i)

1 –f
(i)

5 .

f
(i)

1 f
(i)

2 f
(i)

3 f
(i)

4 f
(i)

5

a
(1)
l,m TM mode α

(1)
l δl,L n1/G

(1)
α,L U

(1)
m,L U

(1)
m,l/N

(1)
α,l

TE mode α
(1)
l 0 1/G

(1)
β,L −V

(1)
m,L U

(1)
m,l/N

(1)
α,l

b
(1)
l,m TM mode β

(1)
l 0 1/G

(1)
α,L −U

(1)
m,L V

(1)
m,l/N

(1)
β,l

TE mode β
(1)
l δl,L 1/(n1G

(1)
β,L) V

(1)
m,L V

(1)
m,l/N

(1)
β,l

V
(j )
m,l = (−1)lB(j )

m,1,m,l(ρ,0,0) = i(−1)l+1

√
3

2
m

√
2l+1z

(j )
l (ρ).

(16)

Here radial functions are defined as z
(1)
l (ρ) = jl(ρ) and

z
(3)
l (ρ) = h

(1)
l (ρ). Throughout this article, translation coeffi-

cients with j = 1 take argument kd = n1k0d, while those with
j = 3 take argument kd = n0k0d. Both translation coefficients
take m = −1,0,1 and vanish explicitly for |m| > 1. Parameters
σ in Eq. (12) and σ̃ in Eq. (13) are defined as

σ = σa − σb, σ̃ = σ̃a − σ̃b, (17)

where

σa =
∑

ν

α(1)
ν

[
U (3)

m,ν

]2
, (18)

σb =
∑

ν

β(1)
ν

[
V (3)

m,ν

]2
, (19)

σ̃a =
∑

ν

α̃(1)
ν

[
U (1)

m,ν

]2
, (20)

σ̃b =
∑

ν

β̃(1)
ν

[
V (1)

m,ν

]2
. (21)

Equations (12) and (13) completely characterize the scattered
field of the main sphere. For the external defect case, the
total external field includes a contribution from the dipole
scatterer itself, whose single coefficient a

(2)
1,m is, for TM and

TE excitations, respectively:

a
(2)
1,m = DL

m,Lα
(2)
1

1 − α
(2)
1 σ

×
{−α

(1)
L U

(3)
m,l (TM mode),

β
(1)
L V

(3)
m,l (TE mode).

(22)

The validity of the solutions presented relies on the
convergence of the infinite sums appearing in the definition of
σ and σ̃ , which is not trivial since spherical Hankel functions
entering these sums increase with increasing polar number
l. Considering the asymptotic forms of the spherical Hankel
functions of the first kind h

(1)
l (ρ) in the limit l → ∞, ρ

fixed [27], we can show that the terms in these sums behave in
the limit of large l as

lim
l→∞

{
α(1)

ν

[
U (3)

m,ν

]2
α̃(1)

ν

[
U (1)

m,ν

]2
}

= 3

2
i

(
1 − m2

2

)
1 − n2

1

1 + n2
1

ν2

(kd)3

×
{

(R1/d)2ν+1

−n−3
1 (d/R1)2ν+1

}
. (23)

Equation (23) proves the required convergence, given that d

is always less than R1 for internal defects, and always greater
than R1 for external defects. Cross-polarization parameters σb

and σ̃b converge much faster, independent of the translation
distance. This reflects the fact that translation does not couple
high-order multipoles of different polarizations, since the
fields Nl,m and Ml,m have pure radial or pure circulatory
polarization for l → ∞.

We have shown that the problem of interaction between
a WGM of a spherical resonator and a dipole has an exact
solution, so that the expansion coefficients of the field in
different spatial regions of this system can be obtained
analytically in the explicit form. In the next section of the
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article we analyze the obtained solutions in the vicinity of the
defect-induced resonances.

B. Defect-induced resonances

Resonances are found by examining the behavior of the ex-
pansion coefficients in a frequency range close to the ideal Mie
resonance with l = L. The most important quantities for this
analysis are σ and σ̃ appearing in the denominator of Eqs. (12)
and (13) and defined in Eq. (17). If the l = L resonance is
well separated from other resonances so that in its vicinity no

WGMs with l �= L have their own resonances, we can assume
that the largest contribution to σ and σ̃ comes from the terms
which contain resonant scattering amplitudes α

(1)
L and α̃

(1)
L (for

TM excitations) or β
(1)
L and β̃

(1)
L (TE excitations). Separating

these terms out we define reduced sums σ ′ and σ̃ ′ such that
for an external defect and a TM polarized mode we have

σ ′ = {σa − α
(1)
L

[
U

(3)
m,L

]2}− σb, (24)

with the similar definition for the other cases. With this
modification, coefficients a

(1)
l,m for the case of the external

defect for a TM excitation can be presented as

a
(1)
l,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DL
m,L

[
1 − α

(2)
1 σ ′][

α
(1)
L

]−1[
1 − α

(2)
1 σ ′]− α

(2)
1

[
U

(3)
m,L

]2 l = L, |m| � 1, (25a)

DL
m,Lα

(1)
l α

(2)
1 U

(3)
m,LU

(3)
m,l[

α
(1)
L

]−1[
1 − α

(2)
1 σ ′]− α

(2)
1

[
U

(3)
m,L

]2 l �= L, |m| � 1, (25b)

α
(1)
l DL

m,Lδl,L |m| > 1, (25c)

while for the internal defect they take the form

a
(1)
l,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Ñ
(1)
α,L

DL
m,L

{
λLα

(2)
1

[
U

(1)
m,L

]2 + N
(1)
α,L

[
1 − α

(2)
1 σ̃ ′]}[

α̃
(1)
L

]−1[
1 − α

(2)
1 σ̃ ′]− α

(2)
1

[
U

(1)
m,L

]2 l = L, |m| � 1, (26a)

n1

x2
1G

(1)
α,lÑ

(1)
α,L

DL
m,Lα

(2)
1 U

(1)
m,LU

(1)
m,l[

α̃
(1)
L

]−1[
1 − α

(2)
1 σ̃ ′]− α

(2)
1

[
U

(1)
m,L

]2 l �= L, |m| � 1, (26b)

α
(1)
l DL

m,Lδl,L |m| > 1, (26c)

The preceding formulas demonstrate that both internal
and external defect cases result in a breaking of the de-
generacy of the azimuthal components, and, as discussed
in what follows, resonant behavior. The b

(1)
l,m coefficients,

as well as both coefficients for the case of a TE exci-
tation, take an analogous form. The degeneracy breaking
is evidenced by the three distinct groups of coefficients
in these equations. First, for |m| > 1 all translation coeffi-
cients vanish and we recover the single-sphere case as it
was anticipated on the basis of the symmetry arguments.
Coefficients with l = L describe modification of the initial
FM by its interaction with the defect. Finally, coefficients
for l �= L and |m| < 1 describe scattering-induced intermode
coupling.

In the vicinity of a single-sphere resonance, Mie coefficients
αL and βL can be presented in the form of a complex
Lorentzian:

α
(1)
L (z) ≈ −iγ

(0)
s,L

z − x
(0)
s,L + iγ

(0)
s,L

. (27)

The modified Mie parameters α̃L and β̃L can be presented
in a similar form differing only by an overall factor. Since
γ

(0)
s,L is very small for WGMs, the Mie parameters are the

fastest-changing quantities in Eqs. (25) and (26). Therefore,

using Eq. (27), and calculating all other quantities at x = x
(0)
L ,

we can present the coefficients a
(1)
l,m and b

(1)
l,m in the Lorentzian

form with new poles zL,m = xL,m − iγL,m (the radial index
s has been suppressed for brevity). For externally positioned
defects, the poles are

zL,m = x
(0)
L − iγ

(0)
L − iγ

(0)
L

α
(2)
1

1 − α
(2)
1 σ ′

×
⎧⎨
⎩
[
U

(3)
m,L

]2
(TM mode),

−[V (3)
m,L

]2
(TE mode),

(28)

whereas for internal defects, one has

zL,m = x
(0)
L − iγ

(0)
L − iγ

(0)
L

α
(2)
1

1 − α
(2)
1 σ̃ ′

×
⎧⎨
⎩
[
Ñ

(1)
α,L

/
N

(1)
α,L

][
U

(1)
m,L

]2
(TM mode),

−[Ñ (1)
β,L

/
N

(1)
β,L

][
V

(1)
m,L

]2
(TM mode).

(29)

Separation of the real and imaginary parts of the last terms in
Eqs. (28) and (29) gives the frequency shifts and broadenings
induced by interaction with the defect.
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For a given set of experimental parameters n0, n1, n2, R1,
R2, D, and L, there are different resonances zL,m for the
different values of m. The number of these resonances is deter-
mined by the m dependence of U

(j )
m,l and V

(j )
m,l . Both functions

vanish for |m| > 1, giving the standard Mie resonance. U
(j )
m,l

can take m = 0 or |m| = 1, while V
(j )
m,l vanishes for m = 0,

and its square, [V (j )
m,l ]

2, is identical for m = ±1. Thus, for TM
modes there are two additional defect-induced resonances,
while for TE modes there is one. Combining this with the
response at the single-sphere frequency for |m| > 1, we see
that instead of a simple doublet our theory predicts either
two or three peaks based on the polarization of the incident
mode.

Another qualitative feature of the resonance conditions
Eqs. (12) and (13) is that they do not contain the
DL

m,L(−γ,−β,−α) and are therefore independent of the the
angular position of the defect. Thus, a change in the angular
position of a defect does not change the position or width of
the resonance. However, the appearance of DL

m,L(−γ,−β,−α)
in the numerator of Eq. (25) results in a dependence of
the amplitude of the resonance on the angular coordinates
of the defect, which is due to the longitudinal and latitudinal
phase oscillations of the excited mode. On the other hand,
a change in the defect’s radial distance from the resonator
always leads to a change in the resonant frequency. The
assumption that intensity oscillations correspond to resonant
frequency shifts was taken in Ref. [9] as confirmation of
the backscattering paradigm. In fact, it is seen here that
the amplitude and frequency of a resonance can be altered
independently.

If one neglects the small contribution from nonresonant
modes [terms σ ′ and σ̃ ′ in Eqs. (25) and (26)], the defect-
modified resonance frequencies can be found as

zL,m = x
(0)
L (1 − δxL,m) − iγ

(0)
L (1 + δγL,m), (30)

where

δxL,m = γ
(0)
L

p
[
x

(0)
L

]
R2

1d
F,

(31)

δγL,m = 2

3

p2
[
x

(0)
L

]5
R5

1d
F,

and

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
(e)
L,m

[
n0k

(0)
s,Ld

]
(TM, external),{

g
(e)
L

[
n0k

(0)
s,Ld

]}2
(TE, external),

Re
[

Ñ1
α,L

N1
α,L

]
ψ

(i)
L,m

[
n1k

(0)
s,Ld

]
(TM, internal),

Re
[

Ñ1
β,L

N1
β,L

] {
g

(i)
L

[
n1k

(0)
s,Ld

]}2
(TE, internal).

(32)

Parameter

p = n2
rel − 1

n2
rel + 2

(
n2

nrel
R2

)3

(33)

is the polarizability of a dielectric sphere, with nrel = n2/n0

for the external case, and nrel = n2/n1 for the internal case.
The functions g

(e,i)
L and ψ

(e,i)
L,m describe the dependence of

the defect-induced resonance shift and broadening upon the
position of the defect and the azimuthal number. They are
defined as

ψ
(e,i)
L,m (ρ) = 1

2L + 1

⎡
⎣(−1)m

√
(L + 1)(L + m2)

(L − 1/2)(1 + m2)
g

(e,i)
L−1(ρ)

+
√

L(L + 1 − m2)

(L + 3/2)(1 + m2)
g

(e,i)
L+1(ρ)

⎤
⎦

2

, (34)

g
(e)
L (ρ) = 1√

q
exp{ν[arctanh(q) − q]},

q =
√

1 −
(ρ

ν

)2
, ν = L + 1

2
,

g
(i)
L (ρ) = 1√

w
cos{ν[w − arcsec(ρ/ν)] − π/4},

w =
√(ρ

ν

)2
− 1, ν = L + 1

2
.

Here the functions g
(e,i)
L (ρ) are derived from the asymptotic

forms of radial functions for L � 1 in the region of in-
terest, ρ/L < 1 and ρ/L > 1 for the external and internal
cases, respectively. All functions g

(i)
L [n1k

(0)
s,Ld], g

(e)
L [n0k

(0)
s,Ld],

ψ
(i)
L,m[n1k

(0)
s,Ld], and ψ

(e)
L,m[n0k

(0)
s,Ld] are positive definite so

that the sign of the shift of the resonance is determined
solely by the polarizability of the defect, with red shifts for
scatterers with nrel > 1 and blue shifts for nrel < 1. However,
the precise asymptotic behavior of functions is different,
which translates into a different dependence of the frequency
shifts and broadenings of the resonances upon defect dis-
tance d.

It is instructive to compare our predictions for the frequency
shift and broadening of the defect-induced resonances with
those obtained in Ref. [9]. While the phenomenological
approach employed in Ref. [9] is not capable of predicting the
actual dependence of these quantities upon the defect position
and cannot distinguish between TM and TE polarizations or
predict the existence of the third peak for TM excitation, it
does reproduce certain features of our solution. For instance,
it captures the respective linear dependence of the frequency
shift and the quadratic dependence of the broadening on the
polarizability of the defect, as well as the fact that both the shift
and the broadening are determined by the same function of the
defect’s position. At the same time, while Mazzei et al. predict
linear and fourth-power dependence of the frequency shift and
the broadening on the frequency of the resonance, respectively,
our calculations give for these quantities, respectively, [x(0)

L ]2

and [x(0)
L ]5 dependencies multiplied by some slower changing

functions. The discrepancy can be traced to different asymp-
totic properties of WGMs in the evanescent and propagating
regions: Had we used the asymptotic expansions of the Hankel
functions for the latter region instead of former, our formulas
would yield the same power laws as the phenomenological
theory.
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FIG. 2. Frequency shift (left) and broadening (right) of the |m| = 1 resonance for an external defect with L = 39 for both TM and TE
polarization.

Equation (31) has been obtained in what we call the
“resonance approximation,” which neglects the reduced sums
σ ′ and σ̃ ′ in Eqs. (28) and (29) containing contributions from
all terms with l �= L. This is equivalent to neglecting intermode
coupling, since both the reduced sums and nonresonant mode
expansion coefficients vanish when we disregard nonreso-
nant Mie parameters. Analysis of these terms summarized
in Eq. (23) shows convergence of the series, but it also
shows that for the defect positioned very close to the surface
of the main sphere, this convergence can be rather slow, and
the contribution of σ ′ and σ̃ ′ can be appreciable. With σ ′
and σ̃ ′ taken into account, the expressions for defect-induced
frequencies still can be presented in the same form as Eq. (31).
The coupling to nonresonant high-l modes manifests itself
as a renormalization of the defect’s dipole polarization:
Instead of the standard Eq. (33), this parameter takes the
form

peff = p0

{
1 + p0

2
[
x

(0)
L

]3
3R3

1

Im[σ ]

}−1

, (35)

where p0 is defined by Eq. (33), and we have neglected a
small real part of σ . The most significant consequence of
this renormalization is the dependence of the polarizability
on the position of the defect. This reflects the fact that the
field which polarizes the defect (i.e., the scattered field of
the resonator) is itself strongly dependent on the position
of the defect. One can recall in this context a modification
of quasistatic polarizability of a dipole placed near a plane
dielectric surface, which is described by an expression similar
to Eq. (35) with Imσ ∝ 1/z3, where z is the distance between
the dipole and the surface [28]. It should be understood,
however, that in spite of the formal analogy, the nature of the
effect considered here is essentially different. Indeed, in the
static case the renormalization is caused by interaction between
the dipole and the electrostatic field of its image, while for
the situation considered here it is mainly due to interaction
of the dipole with the evanescent fields of the high-order
WGMs.

IV. NUMERICAL EXAMPLE AND DISCUSSION

In order to illustrate the general results obtained and
discuss their experimental implications, we calculated various
physical quantities for the particular case of the TM mode

L = 39 with n1 = 1.59, which corresponds to an experimental
situation considered in Ref. [29]. We choose the external
defect to have the same refractive index n2 = 1.59 and radius
R2/R1 = 0.008, while the internal defect is modeled as a
vacuum cavity with n2 = 1 and the same radius. Both are
positioned in the plane of the fundamental mode, where the
interaction strength is strongest. These calculations require
truncation of two types of infinite sums: first, the σ or σ̃ ,
which appear in the denominators of Eqs. (12), (13), and
(22) for the expansion coefficients, and second, the overall
summation of VSH over mode number l, required for the
evaluation of the field itself. By checking convergency of
the sums, we determined that a reasonable accuracy for all
calculated quantities is obtained when both sums are truncated
at lmax = 60.

We begin by presenting dependence of frequency shifts and
broadening of the defect-induced resonances versus defect
position. For external defects, the functions {g(e)

L [n0k
(0)
s,Ld]}2

and ψ
(e)
L,m[n0k

(0)
s,Ld], appearing in Eqs. (34) and (35), are

monotonically decreasing with d, resulting in smaller shifts
and broadening at larger distances. This reflects the weakening
of the interaction as the external defect is removed from the
evanescent field concentrated at the surface of the sphere. This
behavior is demonstrated in Fig. 2, where we have plotted
relative frequency shift and broadening vs defect distance for
the |m| = 1 induced resonance for both the TM and the TE
polarized modes. It is interesting to note that the scattering is
stronger for TE-polarized modes as evidenced by the frequency
shift and broadening.

For internal defects, the internal field of the resonator is
strongly nonmonotonous with a sharp peak slightly away
from the surface. This field also behaves differently for m = 0
and m = ±1 azimuthal components. As a result, the distance
dependence of the spectral characteristics of the internal defect
system is more complex, as it can be different for different
resonances and is also nonmonotonic. These properties can
also be illustrated by the radiative power spectrum of the
sphere-defect system, which we calculate by integrating the
Poynting vector of the total scattered field in the far zone.
The results of these calculations for TM excitation are shown
in Fig. 3 for different defect distances d. One can see
that for both defect configurations the m = 0 resonance is
shifted further from x

(0)
L and is weaker than the m = ±1

resonance, signifying a much stronger interaction between
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FIG. 3. Radiated power of the microsphere-defect system with varying distance δ = d/R1 for the internal (left) and external (right) defect
cases. The plots are scaled relative to the power radiated by the ideal resonator at the ideal Mie frequency.

the defect and the sphere for the mode with m = 0 than
for modes with |m| = 1. The m = 0 mode corresponds to
the orientation of the dipole moment of the defect along the
Z axis of the coordinate system, while for m = ±1 modes
this dipole moment lies in the XY plane. Therefore, the
difference between these two cases reflects the dependence
of the interaction strength between the electric field and
the dipole upon the orientation of the latter. This is one of
the main factors overlooked by the traditional backscattering
approach. This also explains why a TE polarized WGM, which
has no radially outward component, gives rise to only the
|m| = 1 resonance. The m = 0 peak is only found in TM
polarized WGMs, and its weakness makes it more difficult
for experimental identification. We suggest, therefore, that the
experimentally observed spectral doublets correspond to the
original single-sphere resonance and the m = ±1 resonance
introduced by the defect. The presence of the third peak
can still be confirmed in an experiment with the controlled
scattering of the type carried out in Ref. [9], but covering a
broader spectral range. This search might be complicated by
the fact that the real microresonators are not ideal spheres
so that their spectra contain many more spectral lines due to
lifting of the degeneracy of the WGMs. In order to identify
the additional defect related spectral feature in this situation,
one would have to purposefully study modifications of the
spectrum caused by changing the position of the scatterer.

The presented plots also demonstrate a significant differ-
ence between the internal and the external defects. The most

obvious of them is the difference in the sign of the frequency
shift (redshift for external defect and blueshift for the external
defect) caused by the difference in the relative refractive index
of the defect for these two configurations. More fundamental
is the difference in dependence of the magnitudes of the
shifts upon the defect distance d. The monotonous decrease
in the shift and broadening for both resonances of the external
defect reflects the evanescent nature of the field outside of the
resonator. In the case of the internal defect, the m = 0 and
|m| = 1 resonances demonstrate opposite behavior: As the
defect is moved inward, away from the surface, the |m| = 1
peak moves closer to the single-sphere resonance, while the
m = 0 peak is pushed farther away. Since the magnitude of the
shift is a measure of the strength of interaction, this behavior
can be explained by examining the intensity of the field that
interacts with the defect. Figure 4 plots field intensity of the
m = 0 mode and the sum of intensities of modes with m = ±1
as functions of the radial coordinate at the angular position
of the defect’s center. This figure shows that farther away
from the surface the |m| = 1 field decreases and the m = 0
field becomes stronger, in agreement with the behavior of
the resonance frequency shifts. One can predict that moving
the defect even further toward the sphere’s center will result
in nonmonotonic behavior of the m = 0 peak, which will
begin moving backward toward the unperturbed single-sphere
resonance.

Another important characteristic of the scattered field is the
directional dependence of its intensity. It is more convenient

FIG. 4. Field intensity in the radial direction of the unperturbed m = 0 (left) and |m| = 1 (right) modes.
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FIG. 5. Directional plot of the radiated energy in the far field for
internal (left) and external (right) defect cases.

to describe this dependence using the X′Y ′Z′ coordinate
system, whose equatorial plane coincides with the plane of
the initially excited FM. The dependence of the intensity upon
azimuthal angle φ′ of this coordinate system in its equatorial
plane calculated for the |m| = 1 defect-induced resonance is
shown in Fig. 5. In these simulations the defect was placed
directly at the surface of the larger sphere for both internal
and external configurations, and the intensity was calculated
in the far-field region. One can see that there is a drastic
increase in the field intensity along the line that bisects the
plane of the larger sphere and intersects the defect, resulting
in strong directionality of the scattering. A similar effect of
defect-induced directionality of scattering in two-dimensional
microdisk resonators was discussed recently in Ref. [30]. The
fundamental cause of this effect is similar for both defect
configurations: The shift of the resonance frequency of |m| = 1
azimuthal components results in selective excitation of these
particular modes at the respective frequencies. As a result, the
scattered field pattern is also very close to that of an ideal
sphere with two m = ±1 modes excited simultaneously. This
assertion can be verified by comparing Fig. 5 with Fig. 6,
where the scattering intensity calculated for the latter situation
is presented.

The directional dependence of the intensity of the scattered
field can be related to the spatial distribution of the internal
field of the microsphere. To find this distribution, one can use
coefficients of the scattered field in combination with original
coupled equations to calculate the expansion coefficients of
the internal field. Figure 7 plots the surface field intensity in
the plane of the WGM for the external defect (the internal
defect yields a very similar plot). At the frequency of the
|m| = 1 defect-induced peak, the field profile demonstrates 2L

FIG. 6. Scattered field of two m = ±1 modes excited in a single
ideal sphere.

oscillations and a drastic increase in intensity in the vicinity
of the defect, which also manifests itself in the far field. At
the frequency of the single-sphere resonance the situation is
reversed: There are 2L oscillations which are phase shifted
compared to the defect-induced resonance and are accompa-
nied by a significant decrease in the field’s intensity in the
defect’s proximity. Figure 7 is again explained by the fact that
the field at the defect-induced resonance is mainly composed
of the m components with |m| = 1. The field of these WGMs is
characterized by L − |m| + 1 = L oscillations for θ changing
between 0 and π , giving their total number equal to 2L. These
modes are also characterized by the enhancement of the field
in the vicinity of θ = 0, which explains a drastic rise in the in-
tensity around the location of the defect. The field distribution
at the single-sphere resonance can be understood by noting
that this field is composed of modes with |m| > 1, which
when added to the remaining |m| � 1 components would
have produced a flat distribution of the intensity. Therefore,
removal of these components obviously results in the decrease
of the field around the defect and phase-shifted oscillations
elsewhere.

We complete our discussion of optical properties of
the resonator-defect system with a brief analysis of the
defect-induced coupling between modes with different po-
lar numbers l of the same or different polarizations. The
latter constitutes the effect of cross-polarization scattering.
Quantitative and qualitative significance of these effects
are strongly dependent on the parameters of the particular
structure and the polar number of the excited mode. In the
case considered here, the L = 39 TM mode is spectrally
separated from other TM and TE modes, and therefore one
should expect that intermode and cross-polarization scatter-
ing to be small. Indeed, our calculations of the scattered
and internal TM fields show that all qualitative effects are
described by considering only l = L terms. Nevertheless,
taking into account the intermode coupling is still essential
for obtaining accurate quantitative results. If, however, one or
several TM modes overlap spectrally with the main excited
mode, which might be possible for larger values of L, one
can expect significant qualitative effects due to intermode
coupling. Cross-polarization scattering in the situation under
consideration is a more experimentally significant effect
because it is observable even with a calculated conversion
efficiency of about 5%. Moreover, we found that by increasing
the size of the defect one can achieve a more significant
polarization conversion while remaining within the range
of applicability of the dipole approximation. This situation
is illustrated in Fig. 8, where we present the spectrum of
the sum of squared absolute values of the TE coefficients
characterizing the scattered field due to cross polarization
in comparison with the respective quantity for the l �= L

modes of TM polarization. These plots show the spectrum
in the vicinity of the |m| = 1 resonance at two distances. One
can see that the polarization conversion is comparable with,
and, for the internal defect, even exceeds the contribution
from the nonresonant TM modes. We also note that at the
second of the defect-induced resonances (m = 0), there is
no contribution from TE modes, due to vanishing of cross-
polarization translation coefficients B

(j )
0,l′,0,l . This effect might

aid in experimental identification of the m = 0 resonance
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FIG. 7. Variation of the surface field intensity with azimuthal coordinate in the primed system (φ′) at the frequency of ideal Mie resonance
(left) and the defect-induced resonance (right).

by considering polarization-resolved spectra. The |m| = 1
resonance will be characterized by a peak in both TM and
TE spectra, while the m = 0 resonance will only have a peak
in the TM spectrum.

Finally, we comment on the relation between our results
and the multidefect problem. In the approximation of nonin-
teracting defects, the field in the presence of multiple defects
is a sum of fields due to each defect separately. Therefore, the
generalization of these results would include finding the field
distribution for a generic position of the defect and averaging
it over different a defect’s coordinates. However, since the
interaction with each defect can be considered independently,
we can always analyze each one in a coordinate system with
its polar axis passing through the centers of the defect and
the main sphere. Therefore, since we are free to specify an
arbitrary inclination of the defect with respect to the plane
of the incident mode (by way of the Euler angles in DL

m,L),
the results obtained here can be directly used to analyze the
multidefect case. If all defects are identical and positioned
at the same distances from the center of the main sphere,
the position and the width of the defect-induced resonances
will remain the same as in the single-defect case. However,
the fluctuations in size and position of the defects will
introduce additional shifts and inhomogeneous broadening of
the resulting peaks. A more detailed account of the extension
of the results obtained here to the multidefect case will be
given in a subsequent presentation.

V. CONCLUSION

The theory presented here gives a complete solution
to the problem of scattering of WGMs of a spherical
microresonator due to a single dipole defect. The treatment
is based on a presentation of a defect as a small sphere and
solving the resulting two-sphere problem. The latter has
been generalized compared to previous works to include the
case of a smaller sphere situated inside of a larger sphere.
This situation takes into account a possibility of internal
defects, which can appear either spontaneously during a
fabrication process or be introduced deliberately. In both
external- and internal-defect cases, the two-sphere Mie
theory is shown to yield a closed-form analytical solution
for modal expansion coefficients of the electromagnetic
field. The developed theory successfully explains all salient
experimental results on an ab initio basis without recourse to
any ad hoc assumptions. Moreover, this theory shows that the
currently accepted paradigm of WGM scattering based on the
backscattering hypothesis is incomplete and misses important
features of the phenomenon under consideration. Instead, we
offer a transparent physical picture of this effect based on
consideration of normal modes of the sphere-defect system.

In addition to providing exact expressions for defect-
induced shifts and broadening of experimentally observed
peaks, the theory predicts a number of new phenomena. In
particular, we show that WGMs of TE and TM polarizations

FIG. 8. Individual radiation contributions from TM (solid lines) and TE (dotted lines) modes for internal (left panel) and external (right
panel) defects for the |m| = 1 resonance at two difference distances. The spectra are scaled relative to the power radiated by the ideal resonator
at the ideal Mie frequency.

053827-11



J. T. RUBIN AND L. DEYCH PHYSICAL REVIEW A 81, 053827 (2010)

interact with defects differently. In particular, TE WGMs
give rise to only one defect-induced resonance, which in
combination with the unaffected single-sphere resonance
yields a spectral doublet. At the same time TM modes produce
two defect-induced resonances, giving rise to a triplet of peaks.
This polarization dependence of the scattering can be used to
observe and identify the predicted third peak. Furthermore, the
theory predicts defect-induced cross-polarization scattering,
which is shown to depend strongly on the parameters of the
system under consideration and can be a significant effect.

The predictions of our theory concerning the details of the
frequencies and broadening of the defect-induced resonances
can also be verified experimentally. For instance, it would
be interesting to compare the position dependencies of these
quantities shown in Fig. 2 with the results of Ref. [9]. In
addition, the authors of Ref. [31] used the results of Ref. [9] to
determine the size distribution of nanoparticles by their effect
on WGM resonances. Our predictions for these quantities
[Eq. (31)] differ significantly from those of Ref. [9] (see more
details in Sec. III B). As a result, the size distributions obtained
on the basis of the results of this article may deviate from those
derived from results of Ref. [9]. By performing experiments
similar to that in Ref. [31] and utilizing particles with known
size distribution, this distinction might be observed.
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APPENDIX A: EQUATIONS FOR FIELD EXPANSION
COEFFICIENTS

In the case when a defect is positioned outside of the
resonator, the application of Maxwell boundary conditions
results in a standard set of equations for the field-expansion
coefficients, which we present here for completeness:

a
(1,2)
l,m = α

(1,2)
l

{
η

(1,2)
l,m +

∑
ν

[
a(2,1)

ν,m A
(3)
m,ν,m,l(k,d1,2)

+ b(2,1)
ν,m B

(3)
m,ν,m,l(k,d1,2)

]}
, (A1)

b
(1,2)
l,m = β

(1,2)
l

{
ζ

(1,2)
l,m +

∑
ν

[
b(2,1)

ν,m A
(3)
m,ν,m,l(k,d1,2)

+ a(2,1)
ν,m B

(3)
m,ν,m,l(k,d1,2)

]}
. (A2)

After applying the dipole approximation, a
(2)
l,m = 0 for l > 1

and b
(2)
l,m = 0, the remaining set of equations can be solved

exactly to give the results presented in Eqs. (11) and (12).
Application of MSMT to the situation where a small

sphere is completely surrounded nonconcentrically by a larger

sphere leads to a different system of equations connecting the
scattered and internal field coefficients of each sphere:

c
(1)
l,m = α̃

(1)
l

∑
ν

[
a(2)

ν,mA
(1)
m,l,m,ν + b(2)

ν,mB
(1)
m,l,m,ν

]− in1

x1G
(1)
α,l

ηl,m,

(A3)

d
(1)
l,m = β̃

(1)
l

∑
ν

[
b(2)

ν,mA
(1)
m,l,m,ν + a(2)

ν,mB
(1)
m,l,m,ν

]− i

x1G
(1)
β,l

ζl,m,

(A4)

a
(2)
l,m = α

(2)
l

∑
ν

(−1)l+ν
[
c(1)
ν,mA

(1)
m,l,m,ν − d (1)

ν,mB
(1)
m,l,m,ν

]
, (A5)

b
(2)
l,m = β

(2)
l

∑
ν

(−1)l+ν
[
d (1)

ν,mA
(1)
m,l,m,ν − c(1)

ν,mB
(1)
m,l,m,ν

]
, (A6)

a
(1)
l,m = i

x1

c
(1)
l,m

Ñ
(1)
α,l

− λl

Ñ
(1)
α,l

ηl,m, (A7)

b
(1)
l,m = i

n1x1

d
(1)
l,m

Ñ
(1)
β,l

− �l

Ñ
(1)
β,l

ζl,m, (A8)

c
(2)
l,m = in2

n1x2

1

N
(2)
α,l

a
(2)
l,m, (A9)

d
(2)
l,m = i

n1x2

1

N
(2)
β,l

b
(2)
l,m, (A10)

where we introduce standard (αl and βl) and modified (α̃l and
β̃l) Mie parameters,

α̃
(1)
l = − Ñ

(1)
α,l

G
(1)
α,l

, β̃
(1)
l = − Ñ

(1)
β,l

G
(1)
β,l

,

(A11)

α
(2)
l = −N

(2)
α,l

G
(2)
α,l

, β
(2)
l = −N

(2)
β,l

G
(2)
β,l

,

with numerators and denominators defined as

Ñ
(1)
α,l = hl(n0x1)[n1x1hl(n1x1)]′

− (n1/n0)2hl(n1x1)[n0x1hl(n0x1)]′, (A12)
Ñ

(1)
β,l = hl(n0x1)[n1x1hl(n1x1)]′ − hl(n1x1)[n0x1hl(n0x1)]′,

(A13)
N

(2)
α,l = jl(n1x2)[n2x2jl(n2x2)]′

− (n2/n1)2jl(n2x2)[n1x2jl(n1x2)]′, (A14)
N

(2)
β,l = jl(n1x2)[n2x2jl(n2x2)]′ − jl(n2x2)[n1x2jl(n1x2)]′,

(A15)

G
(i)
α,l = hl(nxi)[nixijl(nixi)]

′ − (ni/n)2jl(nixi)[nxihl(nxi)]
′,

(A16)

G
(i)
β,l = hl(nxi)[nixijl(nixi)]

′ − jl(nixi)[nxihl(nxi)]
′. (A17)

Additional quantities λl and �l in Eqs. (A7) and (A8) are
defined as

λl = jl(n0x1)[n1x1hl(n1x1)]′

− (n1/n0)2hl(n1x1)[n0x1jl(n0x1)]′, (A18)
�l = jl(n0x1)[n1x1hl(n1x1)]′ − hl(n1x1)[n0x1jl(n0x1)]′.

(A19)
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In all these expressions, [yjl(y)]′ = d
dρ

[ρjl(ρ)]|ρ=y , xi = k0Ri ,
and ni and n are the vacuum refractive indices of the ith
sphere and its surrounding medium, respectively. Note that for
sphere 2, the surrounding medium is the first sphere. Functions
A

(1)
m,ν,m,l(k,d) and B

(1)
m,ν,m,l(k,d) are the vector translation

coefficients with distance dependence given by spherical
Bessel functions [8], where k = n1k0 and translation vector
d = (d,0,0). The modified Mie parameters α̃

(1)
l and β̃

(1)
l arise in

this problem because, unlike the case of the external defect, the
field in the interior of the resonator has a radiating component

due the presence of the inner sphere. These functions have the
same denominators as their respective counterparts α

(1)
l and

β
(1)
l and therefore have resonances at the standard Mie poles

x
(0)
s,l − iγ

(0)
s,l .

APPENDIX B: TRANSLATION COEFFICIENTS

In this article we follow the conventions for the VSH and
the addition theorem employed in [8]. The VSH obey the
normalization:

∫ 2π

0
dφ

∫ π

0
dθsin θM(j )

l,m · M(j )∗
l′,m′ = [z(j )

l (kr)
]2

δl,l′δm,m′ , (B1)

∫ 2π

0
dφ

∫ π

0
dθsin θN(j )

l,m · N(j )∗
l′,m′ =

⎛
⎝[z

(j )
l (kr)

kr

]2

+
{[

krz
(j )
l (kr)

]′
kr

}2
⎞
⎠ δl,l′δm,m′ , (B2)

where [yzl(y)]′ = d
dy

[yzl(y)]. Consequently, the translation coefficients are defined by

A
(j )
m′,l′,m,l(kd,θt ,φt ) = γml

γm′l′
(−1)m

p=|l+l′ |∑
p=|l−l′ |

a(m,l; −m′,l′; p)a(l,l′,p)z(j )
p (kd)

(B3)
×P m−m′

p (cos θt ) exp[i(m − m′)φt ],

B
(j )
m′,l′,m,l(kd,θt ,φt ) = γml

γm′l′
(−1)m+1

p=|l+l′ |∑
p=|l−l′ |

a(m,l; −m′,l′; p,p − 1)b(l,l′,p)z(j )
p (kd)

(B4)
×P m−m′

p (cos θt ) exp[i(m − m′)φt ],

where

a(m,l; m′,l′; p) = (−1)m+m′
(2p + 1)

√
(l + m)!(l′ + m′)!(p − m − m′)!
(l − m)!(l′ − m′)!(p + m + m′)!

(
l l′ p

m m′ −(m + m′)

)(
l l′ p

0 0 0

)
, (B5)

a(m,l; m′,l′; p,q) = (−1)m+m′
(2p + 1)

√
(l + m)!(l′ + m′)!(p − m − m′)!
(l − m)!(l′ − m′)!(p + m + m′)!

(
l l′ p

m m′ −(m + m′)

)(
l l′ q

0 0 0

)
, (B6)

a(l,l′,p) = il
′−l+p(2l′ + 1)

2l′(l′ + 1)
[l(l + 1) + l′(l′ + 1) − p(p + 1)], (B7)

b(l,l′,p) = − il
′−l+p(2l′ + 1)

2l′(l′ + 1)

√
(l + l′ + 1 + p)(l + l′ + 1 − p)(p + l − l′)(p − l + l′), (B8)

γml =
√

(2l + 1)(l − m)!

4πl(l + 1)(l + m)!
, (B9)

and P m−m′
p (cos θt ) are the associated Legendre polynomials. The symbols(

l l′ p

m m′ −(m + m′)

)
(B10)

are the Wigner 3j symbols [8].
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A. Tünnermann, Phys. Rev. A 77, 051801 (2008).
[16] J. Bruning and Y. Lo, IEEE Trans. Antennas Propag. 19, 378

(1971).
[17] J. Bruning and Y. Lo, IEEE Trans. Antennas Propag. 19, 391

(1971).
[18] K. Fuller and G. Kattawar, Opt. Lett. 13, 90 (1988).
[19] K. Fuller and G. Kattawar, Opt. Lett. 13, 1063 (1988).
[20] Y. Xu, Appl. Opt. 34, 4573 (1995).
[21] J. Fikioris and N. Uzunoglu, J. Opt. Soc. Am. 69, 1359 (1979).
[22] B. Yan, X. Han, and K. Ren, J. Opt. A 11, 015705 (2009).
[23] K. Fuller, J. Opt. Soc. Am. A 12, 893 (1995).
[24] L. Deych and J. Rubin, Phys. Rev. A 80, 061805(R) (2009).
[25] O. R. Cruzan, Q. Appl. Math. 20, 33 (1962).
[26] K. T. Kim, Progress in Electromagnetics Research (EMW

Publishing, Cambridge, MA, 2004), Vol. 48.
[27] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs and Mathematical Tables
(National Bureau of Standards, Washington, DC, 1972).

[28] B. Knoll and F. Keilmann, Opt. Commun. 182, 321 (2000).
[29] Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami,

Phys. Rev. Lett. 94, 203905 (2005).
[30] C. P. Dettmann, G. V. Morozov, M. Sieber, and H. Waalkens,

Europhys. Lett. 82, 34002 (2008).
[31] J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R.

Chen, and L. Yang, Nat. Photonics 4, 46 (2010).

053827-14

http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1364/JOSAB.17.001051
http://dx.doi.org/10.1364/JOSAB.17.001051
http://dx.doi.org/10.1364/OL.20.001835
http://dx.doi.org/10.1364/OL.22.000004
http://dx.doi.org/10.1364/OL.22.000004
http://dx.doi.org/10.1364/OL.27.001669
http://dx.doi.org/10.1364/OL.27.001669
http://dx.doi.org/10.1364/OPEX.13.001515
http://dx.doi.org/10.1364/OPEX.13.001515
http://dx.doi.org/10.1103/PhysRevLett.99.173603
http://dx.doi.org/10.1103/PhysRevLett.99.173603
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1364/AO.30.004716
http://dx.doi.org/10.1103/PhysRevB.62.7976
http://dx.doi.org/10.1103/PhysRevA.77.051801
http://dx.doi.org/10.1109/TAP.1971.1139944
http://dx.doi.org/10.1109/TAP.1971.1139944
http://dx.doi.org/10.1109/TAP.1971.1139925
http://dx.doi.org/10.1109/TAP.1971.1139925
http://dx.doi.org/10.1364/OL.13.000090
http://dx.doi.org/10.1364/OL.13.001063
http://dx.doi.org/10.1364/AO.34.004573
http://dx.doi.org/10.1364/JOSA.69.001359
http://dx.doi.org/10.1088/1464-4258/11/1/015705
http://dx.doi.org/10.1364/JOSAA.12.000893
http://dx.doi.org/10.1103/PhysRevA.80.061805
http://dx.doi.org/10.1016/S0030-4018(00)00826-9
http://dx.doi.org/10.1103/PhysRevLett.94.203905
http://dx.doi.org/10.1209/0295-5075/82/34002
http://dx.doi.org/10.1038/nphoton.2009.237

