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Abstract:  In this paper we discuss the force exerted by the field of an
optical cavity on a polarizable dipole. We show that the modification of
the cavity modes due to interaction with the dipole significantly alters the
properties of the force. In particular, al components of the force are found
to be non-conservative, and cannot, therefore, be derived from a potential
energy. We also suggest asimple generalization of the standard formulas for
the optical force on the dipole, which reproduces the results of calculations
based on the Maxwell stress tensor.
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1. Introduction

Starting with the pioneering works of Ashkin [1,2], where trapping and manipul ation of objects
by optical forces was first demonstrated, there has been an explosion of interest in optical
forcing of particles. Optical tweezers have since been developed into a standard tool used in
many applications, while on the fundamental side optical cooling of atoms has opened unique
opportunities for exploring various quantum mechanical many-body phenomena. Recently a
great deal of interest has been devoted to the possibility of optical cooling of macroscopic
objects such as mechanical hanoresonators [3-6], membranes [7-9] or particles oscillating in
optical traps[10-15]. Whiletraditional optical trapping experimentsinvolve freely propagating
laser beams, optical microcavities, which confine light in a small volume, have emerged as a
candidate for the source of optical forces [16,17]. The spatial confinement of light within the
small mode volume of the cavity resultsin an increase of the strength of the force. Additionally,
a material object interacts with the cavity mode, resulting in a shifted modal frequency and
altered field distribution. As a result, the dynamics of mechanical degrees of freedom become
coupled with those of the field giving rise to so-called dynamical backaction [18] responsible
for effects such as cavity cooling or heating of mechanical degrees of freedom [5, 12, 19].
Understanding cavity optomechanical phenomena depends on correct representation of the
optical force exerted by the cavity modes. In the case of free-propagating optical fields (i.e.
laser beams), the force on a subwavelength object (dipole) is naturally separated into gradient
and scattering components [20]. The gradient component is analogous to the force on a static
dipole, which tends to draw a particle into regions of greater field intensity. It can be presented
asthe gradient of the electromagnetic energy of the polarized particle and istherefore conserva-
tive. The scattering component results from radiation pressure and is expressed in terms of the
momentum flux impinging on the particle per unit time. Thisforce is non-conservative because
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it results from the process of irreversible exchange of momentum and energy between the par-
ticle and optical field. Due to its conceptual simplicity and apparent universality, this paradigm
has become firmly engrained in the current literature and has been accepted as a framework
for calculating optical forces also due to cavity modes. The effects of spatial confinement are
taken into account by using cavity modes to represent electromagnetic field while allowing the
resonant frequencies of the cavity to depend on mechanical degrees of freedom.

However, in our recent paper [21] we pointed out that the validity of the conserva-
tive/gradient, non-conservative/scattering paradigm explicitly depends on the assumption that
the particle itself does not change sources of the incident field. While this condition is fulfilled
for free-propagating electromagnetic fields, it is violated for fields confined within a cavity.
The position-dependence of the cavity resonance frequencies is just one manifestation of this
phenomenon. In order to elucidate all consequences of the particle-induced modification of the
cavity field, we considered the interaction between whispering-gallery-modes of a spherical mi-
croresonator and asmall dielectric particle. In this system forces can be calculated by arigorous
analytical approach based on the Maxwell stress tensor. These cal culations show that the force
cannot be described within the standard paradigm [21]. In particular, no vector component of
the optical force is conservative, i.e. derivable as a gradient of potential energy. Furthermore,
the force tangential to the surface of the cavity, which is responsible for the " carousel” effect
observed in Ref. [22], was found to have a contribution proportional to the real part of the
particle’s polarizability. This contradicts the assertion of Ref. [22] that the tangential optical
force, which isin the direction of the momentum flux of the unmodified by the particle cavity
mode, is of strictly " scattering” origin. In Ref. [21] these results were obtained using formal
ab initio approach, which while providing accurate expressions for the force, does not allow
for the simple physical interpretation of the results and for finding connections between them
and heuristic approaches used in works of other authors. The objective of this paper isto show
how the traditional gradient-scattering force approach can be generalized to derive the results
of Ref. [21] without relying on complicated Maxwell stress tensor calculations. It can be con-
jectured that the " pseudo-gradient” formalism of this paper can be applied even in situationsin
which rigorous treatment is not possible. In addition, the results presented here allow elucidat-
ing limitations of previous heuristic approaches to optical forces.

To achieve this objective in the most efficient way, we organize this paper in the following
manner. We begin by reviewing the derivations of the gradient and scattering forces paying
particular attention to the assumptions involved. Based on this discussion we propose a psuedo-
gradient procedure as away to extend standard gradient/scattering approach to optical cavities.
We use thisideato determine the force on a particle due to a spherical whispering gallery mode
resonator and compare it with the results of stress tensor based cal culations.

2. Optical force on a small polarizable particle

2.1. Gradient force: thermodynamic derivation

We begin by recalling the thermodynamic approach to deriving the electrostatic force on asmall
dielectric particle. This approach emphasizes one of the key requirementsfor the validity of the
gradient paradigm. Following the classical textbook by Landau & Lifshitz [23] the electrostatic
component of the free energy of the polarizable particleis

1
utot:é/EDdV, )

where D = gE + P and the integral runs over the volume of the particle. E here refers to the
total field in and around the particle, and P is its polarization. This total energy contains the
energy, Ue, Of the external field, &, which would have existed in the absence of the particle.
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Subtracting Uey, the energy required to polarize the particleis

Upol = Utot — %(/EO\Q\ZdV
Using this expression one can derive the change in upo due to asmall variation of € as
SUpg = —/P~6€dv. )
Theforceis determined by substituting in dupg the changein thefield, &, due to an infinites-

imal translation of the particle, 6rp, whichisgiven by: 6¢& = (8r- V) €. Equation 2 then takes
the following form:

SUpg = —5rp~/(P~V)€dV. ©)

Taking into account that this change in energy can be related to the work of the force F acting
on the particle: dupo = —F - 81 p, one obtains expression for the force as

F:/(P-V)Qfdv. 4

If ¢ isapproximately constant over the dimensions of the particle (dipole approximation), it
can be taken out of the integral, giving

where the dipole moment p = [ PdV. Assuming linear polarizability of the particle, p = a €,
one derives the final gradient expression for the force:

1
F= EaOV\Q‘S\Z (6)

It should be noted, however, that this derivation depends critically on the assumption that a
displacement of the particle does not affect the distribution of the sources of the external field
¢. Without this assumption one would not be able to equate the change of & due to small
variations of the sources (Eq. (2)) with its change due to particle’s displacement making the
subsequent equationsinvalid.

2.2. Gradient force: direct derivation

An alternative derivation, which is also commonly encountered in the textbooks, is based on a
model of an electric dipole as a system of equal and opposite charges +q, separated by some
small, ultimately infinitesimal distance d. The same approach can be used to describe forces
on an induced dipole characterized by polarizability o.. The dipole is assumed to be placed
in some externa field E, so that p = aE. We make no demands on E other than that p be
defined self consistently with it. In particular, E may be dependent on the dipole itself. For
example, if the external field E is due to charges on a conductor, the presence of the dipole
will alter the charge distribution and thus E. We make this explicit by writing E = E(r,rp),
wherer and r, are respectively afield point and the position vector of the particle. The total
force is derived by considering the Coulomb forces at each charge comprising the dipole: F =
q[E(rp+d/2,rp) —E(rp—d/2,rp)] (see Fig. 1). By taking the limit |d| — O, keeping |p| =
g|d| constant, the force derived in this caseis:

F=[(p-Vo)E],, ™
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where V, refersto agradient with respect to field coordinates r. While this result [ooks similar
to Eq. (5), there is an important difference between them. The force given by Eq. (5) implies
that before taking the spatial derivative of the field with respect to field coordinates r, one sets
coordinate of the particle rp to coincide with r. On the other hand, Eq. (7) requires that this
procedure is reversed. Physically, it reflects the fact that the electric force on a dipole results
from the spatial variation of the electric field acrossit. The two equations, Eq. (5) and Eq. (7),
produce identical results only if the field exerting the force does not depend upon particle’s
position.
Equation (7) can also be transformed into a” gradient” form

1
F= Eocvr|E(r,rp)\2 lr=rp- (8)

which, however, differs from Eq. (6). Unlike the latter, Eq. (8) involves taking the gradient
of the function of two variables, and, therefore, the expression o|E(r,rp)|?/2 cannot be inter-
preted as a potential energy unless E isindependent of r . Correspondingly, the force calcul ated
according to Eq. (6) does not have to be conservative.

To simplify terminology and notations in the subsequent consideration we will call the oper-
ation presented in Eq. (8) a” pseudo-gradient” and will use notation V to represent it.

Fig. 1. Set up for evaluating the force on adipole modeled as a system of equal and opposite
charges. The distance between the charges will be taken to zero.

2.3. Total forceon adipole

In this subsection we generalize the previous results to the case of a dipole interacting with a
time-dependent harmonic electromagnetic field. The oscillating dipole moment creates a cur-
rent density dp/dt, giving rise to a magnetic force. The total Lorentz force on the particle for
incident fields independent of the dipole’s position €,8 = —i/@V x € have the standard form
F=(p-V)&+dp/dt x B. Thetime averaged expression for thisforce can be rewritten as [24]:

(F) = %%"e{cxwmz + %ﬂm[a] (0Ze[€ x B +.7m[(€*-V)¢)). ©)
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where o now is a complex valued (with radiative corrections included) polarizability of
the dipole. Based upon analysis of the previous sub-section we conjecture that the expres-
sion for the force in the case of the field dependent on the particle’s position {E,B} =
{E(r,rp),B(r,rp)} can be obtained from Eq. (9) by substituting ¢,5,V with E, B,V respec-
tively. For astandard dipole particle with radius Ry, refractive index np, and polarizability

2.
o = 4meg( o+ §|k3oc§),
where
a0 = Ry(ng—1)/(ng +2),

Equation (9) for the force can be re-written as

(F) = —V (u) + oc(g) +cc2%fm[(5*ﬁ)E], (10)

where (u) isthe average polarization energy of thedipole (u) = — %%’e[p -E], o isitsscattering
cross section o = .m[a]k/ep, and (g) is the average momentum density of the field (g) =
$%€leoE x BJ, and c is the speed of light in vacuum.

In the subsequent sections of the paper we will apply Eq. (10) to the case of asmall dielectric
particleinteracting with awhispering gallery mode (WGM) of aspherical resonator. Comparing
the obtained expressions for the force with results of Ref. [21], where the optical force in this
system was calculated using Maxwell stress tensor approach, we will be able to substantiate
validity of Eq. (10) and shed additional light on physical properties of the optical forces due to
cavity-confined electromagnetic field.

3. Optical force of aWGM resonator

3.1. WGMsof a single spherical resonator

An optical whispering gallery mode is a long living excitation of a spherical resonator, which
can be thought of as aray of light propagating along the equator of the sphere and trapped in
it due to total internal reflection. In a spherical coordinate system with polar axis perpendicu-
lar to the plane of the propagation of the mode (XYZ system in Fig. 2), its field is described
by a single vector spherical harmonic (VSH) characterized by polar, azimuthal, and radial in-
dexes |, m, s respectively and polarization, TE or TM. For concreteness we focus only on TE
polarized modes with radial index s = 1 defined asE = Eg.Zh" (kr)X; (6, ¢) (time harmonic
factor e'! is assumed and suppressed). Here Eg is a normalization factor, . is the scatte-
ring amplitude describing response of the resonator to an incident radiation with frequency o,

hl(l) (kr) isthe spherical Hankel function of thefirst kind, and k is the magnitude of the wavevec-
tor k= @/c. In the close vicinity of a chosen resonant frequency the scattering amplitude can
be approximated as

£ =% /(0 - o +ir?) (11)

with a)l(o) and %(0) being respectively the resonant frequency and decay rate of the mode. The

angular portion of the VSH is defined as Xjm = LY m(6.¢)//I(I +1), where L is the di-
mensionless angular momentum operator L = —ir x V, and Y (0, ¢) is the scalar spherical
harmonic. We focus here on so called fundamental modes with m= 1. WGMs with long life-
time are characterized by | > 1 and in expressions that follow we neglect terms of order 1/1
compared to those or order unity.

For calculation of optical forces due to this WGM it is also convenient to find an expression
for its field in a coordinate system with polar axis connecting the center of the sphere and
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Fig. 2. Coordinate systems used for evaluation of optical forces together with schematic
presentation of the resonator, WGM, and the dipole. The axis always connects the center of
the resonator and the point of observation. When using this coordinate system to calculate
the forces, this axis passes through the center of the particle.

the point of observation (X'Y’Z’" system in Fig. 2). Such an expression can be obtained using
rotational properties of VSH [25] expressed as

|
Xim(6,9") = ¥ DY (ct.B.7)Xim(6,6) (12)
m=-—|

Wher_e Dwﬁm(aﬁ? Y) i_s the Wigner D funct_ion and o, 3,y are the Eu_ler angles s!oecifyi ng the
rotation from the unprimed to primed coordinate system. The D-functions are defined by

| _j |
D) (o, B,7) = e (Momgl) (p),

where the function dr(T'])I (B) for m=1 can be written as

| m
dl)(B) = Mrrs)z!l()l!rm![cosgsing} [cot(g)} (13)

In order to find an expression for the WGM in the primed system one has to apply inverse
transformation Dgfim(—y,—[i,—oc) = [Df:]?m(oc,[i,y)]* to the VSH defined in the unprimed
coordinate system. Rotation by the angle y is equivalent to shifting the ¢’ coordinate, so we

only consider transformationswhith y = 0. Applying thistransformation to aWGM with orbital
number | = L we find its representation in the rotated system in the following form:

E' = Eoh” Y am X (14)
m

where ‘ 0
—iet*dy | (—B)

— D" (0,—-B,—a) = .
m L(0,—B,—a) Yoti

m,

(15)
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Here we introduced dimensionless variable yo = (w — a)lfo)) / l“f_o) representing the relative de-
tuning of the external frequency from the resonance of the WGM with respect to its width. At
any point on the polar Z’ axis (6’ = 0), all X_m vanish except for X +1. Assuming L > 1, and
dispensing with the prime on E/, the field can be written explicitly as:

E = EohY (kr) \/E (aLlé+ + alé,) (16)

where &, = (16 + ¢)/v/2 and 6 and ¢ are the spherical coordinate unit vectors referred to the
global, unprimed system. The magnetic field H = B /o = —i/ ooV x E isgiven by:

o /L . b8k . kehPko)) 2 .
H:EO\/E\/; [—I\ﬁL Lkr aof + Lkr (a1§+—aplﬁ,) (17)

where the prime denotes differentiation with respect to argument kr. We can expressthe field at
any point in spacein theform of Eq. (16) and Eqg. (17) by changing the Euler angles appearingin
anm. It isimportant to note that angles o and 3 correspond to the respective angular coordinates
¢ and 0 of the Z’ axis as viewed from the unprimed coordinate system.

3.2. Calculation of the force neglecting particle-resonator coupling

In order to elucidate the effects of the particle-induced modification of WGMs on the properties
of the optical force, we first compute this force with this modification neglected. In this case,
assuming that a particle with coordinates rp, = (rp, 6p, ¢p) as defined in the XYZ coordinate
system, lies on the Z" axis of the X'Y’Z’ system, we can substitute the results of the previous
sub-section, Eq. (16) and (17), into Eqg. (10) for the force, while replacing the operator of
pseudo-gradient with the regular gradient. In the limit L > 1, m function dr(#)L(—[S) can be
approximated as - '
1 L )2 9

dr(r|{>L(—9p) = Weﬁz(ep*z) [cot (—zpﬂ (18)
where we took into account that B = 6. Consequently, the field coefficients a, for m= +1 can
be presented in terms of the m= 0 coefficient ag as am = ag[cot6p/2]™. It is clear, therefore,
that products of the form aj,a,y in this case are purely real, so that any terms in the force
proportional to .#m[aja] vanish. Since the field strength decays quickly when the particle
moves out of the equatorial plane 6, = /2, we only consider 6 = 6, — n/2 < 1, and expand

d,(T';_)L(—Gp) in terms of 6. However, since for L >> m, L6 >> 6 we shall only expand the terms,
which do not contain L. Keeping linear terms in the expansion of [cot6/2]™, and taking into
account that for L > 1 the imaginary part of the Hankel function h(l_l)(p) is much greater than
itsreal part intheregion p < L, we obtain the gradient portion of the optical force F(9 = V (u):

e L .
" S@ <[nL(krp)] - kran(krp)99> )

where 1 7
§ = grapelolBolPkv/in (krp)e " (20)

and n_(krp) is the spherical Neumann function. B
The leading term in oc52 .#m[(E* - V)E] is of the second order in 6 and can be neglected

compared to the scattering force, F(® = oc(g), which takes the form:

L ~
ES) — Ptk 21
S g (21)
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where p = 2k3ap/3 < 1. Thus, in this approximation, the gradient force draws the particle
toward the resonator radially, and maintains it in the equatorial plane viaits 6 component. It
is important to note that its dependence on the particle's position follows the behavior of the
Neumann function n(kr), which is aimost exponential in the considered range of parameters.
At the same time, the azimuthal component of the force is of purely scattering nature and pro-
portional to the moment density, which can be presented in the simple form (g) = (L /Kr)Uem@,
where Uem = & <|€ |2> is the electromagnetic energy density (the use of & symbol for the field
emphasizes that it is not affected by the presence of the particle).

3.3. Effect of the particle-induced modification of the WGM on the optical force
3.3.1. Moadification of the WGM by the particle

The problem of determination of the electromagnetic field of the coupled resonator-dipole sys-
tem is analytically tractable and was solved in Ref. [26, 27]. The dipole is modeled as a small
sphere with radius Rp, where kR, < 1, and refractiveindex np, and thefield isfound in the form
of a general expansion in terms VSHs with al |, m and polarizations. The particle is found to
modify the WGM in two significant ways. First, it creates an additional resonance at frequency
wp = w,fo) + S, with width I'y = 1“,(_O> + 8I'L in addition to the w,fo) resonance of a single
sphere, with § . and 6T depending only on r,. Second, the steady state of the resonator field
associated with the wp, resonance is significantly modified compared to the field distribution of
theinitial WGM. Initially isotropic field turnsinto ahighly directional distribution oriented pre-
dominantly toward the particle. Thus, a displacement of the particle in the q§ direction causes
the resonator’s field to move with the particle (see for details Ref. [26, 27]). In addition, the
interaction with the particle excites in the resonator WGMs with different | and polarization.
However, these contributions are small, and can be neglected. In this approximation, the scat-
tered field of the resonator can again be presented in the form of Eq. (14), but with expansion
coefficients, which are no longer given by Eq. (15). They have the following form

0 Yo+i] ™t mz#+1

= —id%d\ (—p ©)

ém m"l( 2 %[y—i—i}’l m= +1
P

(22)

where y = (0 — wp)/T'p. The frequency shift and additional broadening of the resonance
are[26,27]:
Zelok®
67‘680
where V_1(krp) is the VSH trandlation coefficient [25], which arises when the field scattered
by one sphere is expressed in terms of VSH centered about the other, and is given by

5w|_ =

T ML (krp)]% 8TL = pla | (29)

VL m(krp) = i(—l)“?wzu Thy (krp)® ~ (—1)-/3L/2n; (krp).

3.3.2. Calculation of the force with particle-modified field

In this part of the paper we assess the effects of the particle-induced shift of the resonance
frequency and of the changes in the spatial configuration of the field of the resonator on the
optical forces exerted by it. To this end we shall analyze the expressions for the force obtained
by evaluating Eq. (10) with the field at the location of the particle given by Eq. (14). The role
of the pseudo-gradient operator in this equation is to distinguish between field coordinates r
and particle coordinates r, even though we calculate the force at the point r = r. Taking into
account that dependence onrp, isonly contained in the expansion coefficients am, this procedure
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becomes rather trivial: one needs to find the gradient of all respective expressions treating these
coefficients as constants, and after that equate r = rp. Calculating the required gradients we
obtain for the pseudo-gradient component of the force: F(P9 = V{u)

1 d|h{M (kr)[2

RO9 = JeolEofLot (a 12+ [ayf?) A HOC (24)
r=rp

1 Lza * * * *

R = JeolEoP I (krp) P~ Aefan(ag - a3) —aa(@g-a'y)] ()
p

1 Lza * * * *

A = —enlEalt ) P (e ey e rats)] 29D

The scattering component of the force, F(9), takesin this case the form of

|h (kr)[? {6.7m(a5(a-1—a1)] + gZe[(as(ar +a-1)]}  (27)
A contribution from the remaining term in Eq. (10), which is proportional to .#m(E* V)E
remains negligible and will not be considered any further.

One can see that EqQ. (24) and Eq. (27) differ significantly from the respective Eq. (19) and
Eq. (21) obtained under the assumption of the unmodified WGM. Further analysis of the ob-
tained expression will be performed in two steps. Since it is often assumed that the main effect
of the particle on the cavity mode consistsin changing the resonance frequency, wefirst separate
this effect. To achieve this we alow the particle to shift and broaden the resonance according
to Eq. (23), but will assume that the field coefficients are given by the unmodified Eq. (15)
with replacement of (yo+i)~* by (Fp/l“ﬁo))(er i)~L. In this case the particle can modify the
amplitude of the resonator’s field, but does not change its spatial distribution. Then, one im-
mediately sees that in Eq. (24), F(;pg), which contains terms proportional to .# mjamayy| with
m = m' vanishes. For the same reason the 6-component of the scattering force also vanishes.

In order to present the radial component in the form easily related to expressions used in
papers of other authors such as those of Ref. [10, 13, 28], we introduce the power radiated by
those modes of the resonator that interact with the particle as,

3 £0C3 r 1
= |Eo \2 > (laa]?+ |i1\)—|E0\2 [dg,J? %p Vil

and the number of photonsin them as

_ Pl
=R =

The expression for the radial component of the force can be written down now as

d5(D|_

F = —NR
r dl’p )

(28)

which should be contrasted with the expression obtained from the usual derivative of interaction
energy
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Thelast termin this expression is spurious as was first noticed in Ref. [28], where it was shown
by direct numerical simulations that the force on a dipole in Fabry-Perot resonator must be
given by Eq. (28) rather than by Eq. (29).

This result is a clear demonstration of the fac the polarization energy of the particle
cannot be considered a true potential energy even if one neglects the spatial modification of
the cavity mode due its interaction with the particle. However, taking this modification into
account results even in more drastic changes in the optical force yielding a non-zero azimuthal
component of the pseudo-gradient force and anon-zero polar component of the scattering force.
The expression for the total force F = F(P9) 1 F(9) in this case is found by using the correct set
of the field coefficients as defined by Eq. (22). The radial component of the force does not
change from Eq. (28), while its polar and azimuthal components now can be presented as

LT —
Fop= 2N 0[5 (1+Yyo) + 8T (Yo—Y)] (30)
rol (Y3+1)(y2+ 1)
LTp
Fs = 2AN (6o (yo—Y) +6TL(1+Yoy)] (31)

rol” (Y3 + 1) (y? +1)

Terms proportional to § w. come from the psuedo-gradient force, while 6T terms come from
the scattering force. These expressions demonstrate significant deviation of the force from both
completely unmodified and frequency-only modified WGM approximations. First, let us note
that the radial dependence of the force is determined by the factor (y? 4 1)~ in addition to
the Neumann function in 6 and 8T°.. The role of this factor can be seen as follows. The
condition y = O is satisfied for some r, = ro at which driving frequency @ coincides with the
particle-induced resonance. If onelinearizesy(rp) about thispoint asy = (rp, —ro)y'(ro), where

1 dow.

)/(ro) = 71—‘7[) drp

(1+yp)

If pissufficiently small, then in the region where y(ro) can be considered constant, the factor
déwL/drp inF isaso constant. Therefore the spatial profile of the force has Lorentzian shape
peaked at rp = ro with width 1/y’. Let us recall that in the unmodified WGM approximation
the magnitude of the force monotonically (essentially exponentially) decreases withrp,.

The azimuthal force Fy is no longer solely due to the scattering contribution. Two differ-
ent limits are of interest based upon choice of the external driving frequency . In the limit

o — wﬁo), Fy o< yow + 6T'L. The magnitude of the pseudo-gradient term exceeds that of the
scattering term unlessy < p. Thiscan only happen for very small values of 6 ., when the mag-
nitude of the force is also very small. When y > p, the pseudo-gradient contribution exceeds

the scattering force, and the tangential component can be written as Fy = (Fq§0> F(L°>) /(ypI'p),

where Fdfo) isthe scattering force in the unmodified WGM approximation as given by Eq. (21).

Ifysatisfies1 <y < l“f_O> /(PI'p), the tangential force exceeds ngo). When o — w,fo) > l“f_O> the
scattering contribution to Fy becomes negligible as well. In this case the force can be written

Fo = F(;o) F<LO) /PI'p, which also exceeds the magnitude that would have been obtained in the
unmodified WGM approximation. These results show that the force propelling the particle in
the experiments like the one of Ref. [22] is not necessarily of scattering origin and might have
a pseudo-gradient contribution. The two can be distinguished by their dependence on ogp: while
the pseudo-gradient forceis linear in this parameter, the scattering force is quadratic.

Even in the range of parameters where the pseudo-gradient contribution to the azimuthal
component of the force dominates, it remains non-conservative since it imparts net kinetic

#150321 - $15.00 USD Received 1 Jul 2011; revised 20 Sep 2011; accepted 1 Oct 2011; published 24 Oct 2011
(C) 2011 OSA 24 October 2011 / Vol. 19, No. 22 / OPTICS EXPRESS 22347


Lev Deych
Sticky Note
See previous comment

Lev Deych
Highlight

Lev Deych
Highlight

Lev Deych
Sticky Note
This Lorentzian is superimposed on the exponential tail, but its spatial scale is much shorter, so that the exponential decays is essentially constant on the scale, where Lorentzian dependence plays out.

Lev Deych
Highlight

Lev Deych
Sticky Note
This offers direct experimental verification of the nature of the azimuthal force: pseudo-gradient and scattering components depend differently on particle's size. While the former is proportional to R^3, the latter goes as R^6.

Lev Deych
Highlight


energy to the particle moving along a closed orbit around the resonator. This occurs because @

thereisafield gradient which pushesthe particle in the (5 direction. When the particle movesto
anew point, the field re-adjusts so that thereis again afield gradient in the ¢3 direction. Implicit
in this analysis is the assumption that the particle moves slowly enough to consider the field
always remaining in the quasi-steady state. Velocity dependent effects can become significant
when the time scale of particle motion is comparable to the relaxation time of the resonator,
1/Tp.

The relative magnitudes of the force components can be analyzed by comparing (L/rp)d .
to dow /drp. From the asymptotic expansions for the spherical Nuemann functions and their
derivativesin theregion L > 1, kr < L, we have n_/n| ~ —cosh(a) [29] where prime denotes
differentiation with respect to argument and a is defined by krp, = (L + 1/2)sech(a). Since
resonances are in the region krp ~ L/n, where n is the refractive index of the resonator, we
haven_/n ~ —nand thus (ddw/drp) /(LS /rp) =~ —2nkr,/L ~ 2. Thus, assuming we are
near a particle induced resonance so that 0 < |y| < O(1), the relative magnitude of the forces
will be determined by the factor (y§+ 1)~tin Fy and Fy. If the system is driven at afrequency
closeto theideal Miefrequency, so that yg is of order unity, then the radial and azimuthal forces
will be of comparable magnitude, while the polar force will be smaller by afactor 6. 1f yp > 1
on the other hand, then the azimuthal force will be smaller than the radial force by a factor
1/yo, While the polar force is smaller by afactor 8y/yo.

It can aso be seen that the scattering contribution to the azimuthal and polar forces is in
general smaller than the pseudo-gradient contribution due to the fact that 6T /6w, = p < 1
(where p = 2k3ap/3). In the limit where both the driving frequency and particle induced res-
onance frequencies are very close to the ideal Mie resonance, so that y,yo — 0, the scattering
contribution to F, becomes appreciable, while it vanishes in Fy. This is to be expected given
that y,yo — 0 isthe limit where the particle induced modification of the cavity mode becomes
vanishingly small, and accordingly the behavior of the forces approaches that of their unmodi-
fied forms of Eq. (19) and Eqg. (21). Thisislikely the regime encountered in the experiments of
Ref. [22].

The results of the calculation of the force within the pseudo-gradient approach can be com-
pared with calculations carried out by integrating the Maxwell stress tensor over a surface of
the particle, which is assumed to have a small, but finite size. For afield represented by aVSH
expansion, the stress tensor integral over a spherical region can be performed analytically and
the force given in terms of the VSH expansion coefficients [30]. For the present case these co-
efficients are given in Ref. [27] while full details of the calculations of the force can be found
in Ref. [21]. In the large L limit, the forces obtained agree exactly with those calculated from
the pseudo-gradient approach validating the latter.

It is interesting to note that the large L limit of the stress tensor calculations is necessary to
maintain consistency with the assumed point-like nature of the particle in the pseudo-gradient
approach. To see this, note that for a given resonator of radius R and refractive index n, the
lowest order approximation to the resonant frequency is the geometric optical condition nkR ~
L. At the same time, a point dipole is defined by the the limit R, — O with electromagnetic size
parameter p = kRp, kept constant. Combining these two conditions we have nRp = LR, which
implies that taking R, — O requiresthat L — o.

4. Conclusion

We have presented here a generalization of the theory of optical forces on a dipole for the
case when it interacts with the electromagnetic field of an optical cavity. The traditional gra-
dient/scattering paradigm is shown to be invalid when the dipole can modify the source of the
field. In particular, all vector components of the force are found to be non-conservative and,
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consequently, no component can be derived from a gradient of electromagnetic polarization
energy. We have further shown that, when the particle-induced modification of the resonator
field is taken into account, the force in the direction of the energy and momentum flux of the
wave cannot be interpreted as a ’scattering’ force. In place of the gradient/scattering paradigm
we have proposed a pseudo-gradient framework which is conceptually simpler and computa-
tionally more efficient than the exact Maxwell stress tensor approach. Using an example of
a small dielectric particle interacting with whispering-gallery-modes of a spherical resonator
we demonstrated that the suggested pseudo-gradient formalism reproduces al results of the
calculations based on the Maxwell stress tensor.

The results of thiswork have important implications for the quantum theory of optomechani-
cal interaction, which is commonly based on the assumed potential nature of the gradient force.
These results are also of importance for proposed optofluidic sensors which rely on atangential
force to drive the particle in orbit around the resonator.
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