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Optical forces due to spherical microresonators and their manifestation in optically induced orbital
motion of nanoparticles
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By considering the interaction between whispering-gallery modes of a spherical resonator and a subwavelength
polarizable particle, we demonstrate that spatial confinement of the electromagnetic field dramatically changes
the character of the optical forces exerted. We show that this phenomenon can be experimentally observed in the
optically induced orbital motion of the particle.
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I. INTRODUCTION

Since the early work of Ashkin on optical trapping with fo-
cused laser beams [1], particle manipulation by optical forces
has become a standard tool in atomic physics, biology, and
medicine. Optical forces are usually separated into two com-
ponents: the conservative “gradient” force, which in the dipole
approximation is proportional to the real part of the particle’s
complex polarizability α, and a nonconservative “scattering”
force, which is proportional to its imaginary part [2]. Recently,
a great deal of attention has been focused on optical trapping
of small dielectric particles using the modes of optical cavities
[3–8], both for classical applications [3–5] and for fundamental
studies in the field of quantum optomechanics [6–8]. In the
latter case, an established paradigm is based on the assumption
that the “gradient” component of the optical force remains
conservative even when the electromagnetic field is confined
within a cavity, and, therefore, can be characterized by a po-
tential. This potential in the dipole approximation is expressed
in terms of the particle-induced shift of the cavity resonance
[6–8]. However, the thermodynamic arguments relating the op-
tical force on a dipole to the effective potential are specifically
based on the assumption that the dipole introduced into a field
does not affect the distribution of charges or currents producing
it [9]. This assumption fails in the case of a particle interacting
with cavity modes because the distribution of the charges on
the cavity walls depends on the position of the particle. The
consequences of this dependence are much deeper than a sim-
ple change of the cavity’s resonance frequency. We will show
here that in this case the gradient component of the optical
force, defined by its dependence on Re[α], becomes noncon-
servative, which has obvious implications for the quantum
theory of optomechanical interaction in the cavities [7,8,10].

The first demonstration of the difficulties of the traditional
approach to optical forces in optical resonators was given in
Ref. [4], where it was shown that direct computation of the
gradient of the particle’s potential energy due to its interaction
with the one-dimensional cavity field results in spurious terms.
However, the cavity-induced modification of the optical force
has even more profound consequences in situations where the
particle’s motion is fully three dimensional. Such a situation
was, for instance, observed in Ref. [3] and subsequent works
[11,12], where a nanoparticle suspended in a solution was set
into orbital motion around a whispering-gallery mode (WGM)

resonator. The driving torque responsible for sustaining the
particle in orbit is clearly nonconservative and was presumed
to be of scattering origin [3]. However, we show here that this
torque has a contribution proportional to Re[α], which is not
related to the scattering force.

The orbital motion observed in Refs. [3], [11], and [12], be-
sides being a manifestation of the nontrivial effect of the cavity
on optical forces, is of interest in its own right. Unlike more
traditional optomechanical systems, where mechanical motion
is effectively one dimensional (see reviews [10,13]), this situa-
tion involves long-range displacement of the particle with op-
tically induced coupling between all three mechanical degrees
of freedom. Therefore this phenomenon introduces a wide
array of previously unexplored optomechanical phenomena.

In this paper, we pursue three main goals. First, using the
interaction of a particle with WGMs of a spherical resonator as
an example, we demonstrate the profound consequences that
cavity confinement has on optical forces. Second, we develop
an ab initio theory of the optically induced orbital motion,
and finally, we identify experimental manifestations of the
predicted cavity effects, and establish conditions required for
their observation.

II. INTERACTION BETWEEN A WGM AND A
SUB-WAVELENGTH PARTICLE

In our calculations we use representation of the electromag-
netic field of a spherical dielectric cavity (radius Rs , refractive
index ns) in terms of the vector spherical harmonics (VSHs),
characterized by polar l and azimuthal m indexes, as well as
polarization (E or M modes). For each l, there are 2l + 1
degenerate m modes with frequency ω

(0)
l,s and radiative decay

rate �
(0)
l,s . The index s distinguishes resonances with different

radial behavior. Modes with |m| = l � 1, s = 1 are localized
near r = Rs, θ = π/2 and are known as fundamental WGMs.
Since in this paper we only consider modes with s = 1, this
index will be omitted in what follows.

A subwavelength dielectric particle of radius Rp, refractive
index n, and mass Mp introduced into the evanescent field
of the resonator modifies its spectrum [14–16], giving rise, in
addition to ω

(0)
l , to one (TE) or two (TM) resonances [15,16].

This effect is best understood by switching from the traditional
coordinate system with its polar axis perpendicular to the
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FIG. 1. (Color online) Schematic representation of the resonator,
particle, WGM, and two coordinate systems.

plane of the fundamental WGM (XYZ system in Fig. 1)
to the rotated systems (X′Y ′Z′ in Fig. 1) and X̃ỸZ′ (not
shown), whose polar axes pass through the centers of the
resonator and the particle, and which are centered at the
resonator and the particle, respectively. The single VSH,
describing the field of the unmodified (in the absence of the
particle) fundamental WGM with polar number L, becomes a
linear combination of VSHs defined in the X′Y ′Z′ system.
The field scattered by the particle in the X̃ỸZ′ system is
described in the dipole approximation by the l = 1 mode with
m′ = 0, ± 1. Since the translation of these modes along the
Z′ axis does not affect their m decomposition, the particle
interacts only with m′ = −1,0,1 modes of the resonator,
shifting their resonance frequencies. The remaining 2L − 2
resonator modes with |m′| > 1 are completely unaffected by
the particle and resonate at ω

(0)
L . The modes m′ = ±1 are

degenerate and resonate at frequency ωp = ω
(0)
L + δωL with

width �p = �
(0)
L + δ�L (explicit expressions for δω and δ�

can be found in Refs. [15,16]). For TM polarized WGMs, the
m′ = 0 mode has an additional resonance, while for TE modes,
this mode is unaffected by the particle and resonates at ω

(0)
L .

This qualitative picture of the sphere-particle interaction
is verified by an explicit ab initio calculation of the field
distribution and resonances of the coupled resonator-particle
system, which in the dipole approximation can be presented
in closed analytical form [15,16]. Details of these calculations
are given in the Appendix. By using rigorous expressions for
the electric and magnetic fields obtained in Refs. [15,16], one
can compute optical forces on the stationary particle from the
Maxwell stress tensor. The extension of these results to the
case of a slowly moving particle is possible if the mechanical
time scale is much longer than the relaxation time of the
resonator Q/ω

(0)
L (so-called unresolved sideband regime) [10].

We demonstrate below that for a large range of experimental
parameters, this is indeed the case.

III. OPTICAL FORCE ON THE PARTICLE

The time-averaged force exerted by the electromagnetic
field on a spherical region V bounded by surface S is obtained

by integration of the Maxwell stress tensor
↔
T:

F =
∮

S

↔
T ·da, (1)

where
↔
T= n0

2
Re

{
ε0E∗E + μ0H∗H − 1

2
(ε0|E|2 + μ0|H |2)

↔
I

}
.

(2)

The unit dyadic
↔
I = x̂x̂ + ŷŷ + ẑẑ, and x̂,ŷ,ẑ, are the Cartesian

unit vectors.
For a field represented as an expansion in VSHs, the integral

in Eq. (1) can be presented explicitly in terms of the VSH ex-
pansion coefficients [17]. We employ several approximations
to simplify the result. Coupling to the particle excites VSHs in
the resonator with different polar numbers l �= L and different
polarizations [15,16]. However, if ω

(0)
L+1 − ω

(0)
L � δωL, we can

introduce the resonant approximation (RA), in which forces
are calculated neglecting these modes in the VSH expansion.
Additionally, rather than performing the integration over a
surface surrounding the particle, we use a surface surrounding
the resonator and appeal to Newton’s third law to find the force
on the particle. The validity of this procedure is confirmed by
calculation of the stress tensor integral over a surface surround-
ing the resonator and particle, which vanishes in the RA.

When the system is near one of the particle-induced
resonances, and |δωL| � �p, one can also introduce the
reduced resonance approximation (RRA) by retaining in the
VSH expansion only terms with m′ = ±1. The RRA will be
used later for comparison to the RA results.

We assume that the microsphere is excited by a steady-state
signal with constant frequency ω offset from the frequency of
the ideal WGM resonance of mode L: ω = ω

(0)
L + 	. The

relative detuning from the induced resonance depends only
on the distance rp between the centers of the resonator and
particle, y(rp) = (ω − ωp)/�p ≡ (	 − δωL)/�p. Coupling
is maximized when y = 0, that is, when the particle occupies a
position rp = r0 such that the induced resonance occurs at the
driving frequency of the system, ωp(r0) = ω. Since δωL < 0
for particles surrounded by an optically less-dense medium, the
nominal detuning 	 must be negative to satisfy this condition.
By keeping only terms linear in the particle’s polarizability, and
assuming 	/�

(0)
L = κ−1 > 1, the force can be presented as

F = Fr r̂ + Fφφ̂ + Fθ θ̂ = −f0A[r̂ + (gκ)(φ̂ + yθ̄ θ̂ )], (3)

where θ̄ is the deviation of the particle’s polar coordinate
θp from π/2: θ̄ = θp − π/2, r̂ , φ̂. θ̂ are radial, azimuthal,
and polar unit vectors in the XYZ coordinate system, while
dimensionless amplitude A(y,θ̄ ) = e−Lθ̄2

/(y2 + 1), and f0 is
given by

f0 = Re[α]|E0|2
12π

(
�

(0)
L

�p

)2
UL,1,σ√

πL
(UL−1,1,σ − UL+1,1,σ ). (4)

Here E0 is the amplitude normalization factor, which can
be related to the power radiated by a WGM, and Ul,1,σ are
translation coefficients describing coupling between the field
of a dipole and the WGM of the resonator with polar number
l and given polarization, which are given explicitly in the
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Appendix. Parameter g is of the order of unity and depends
on the polarization of the initial WGM of the resonator. If this
mode is of the magnetic type, we have

gM = �p

�
(0)
L

UL−1,1,M + UL+1,1,M

UL−1,1,M − UL+1,1,M

, (5)

while for the electric modes, the contribution of the additional
resonance with m = 0 modifies this expression to

gE = �p

�
(0)
L

(UL−1,1,E − UL+1,1,E)−1

[
(UL−1,1,E + UL+1,1,E)

×
(

1 + 	

	E

)
+ 	

	E

UL,0,E

UL,1,E

UL−1,0,E + UL+1,0,E

]
, (6)

where 	 = ω − ω
(0)
L and

	E = ω − �
(0)
L

Reα[UL,0,E]2

6πε0
.

Figure 2 presents a color plot of the forces for an initial
WGM of the electric type, which shows resonant dependence
of the force upon azimuthal and radial coordinates with two
resonances corresponding to |m| = 1 (y = 0) and m = 0 (y ≈
40) particle-induced frequencies. One can see from this figure
that nonoverlapping spectral resonances indeed yield well-
separated spatial resonances.

In order to relate the obtained results with phenomeno-
logical description of optomechanical interaction we replace
the RA field with its RRA approximation. In this case the
azimuthal and polar components of the force vanish while
remaining radial component can be presented as follows.

Making use of the recursion relation for Hankel functions,
one can show that in the large L limit (neglecting 1/L terms),
the translation coefficients obey the following recursion
relations:

2U ′
lmσ = Ul−1,m,σ − Ul+1,m,σ ,

where the prime denotes differentiation with respect to
argument. Comparing this result with Eq. (A12), one can see
that f0 may be written as

f0 = ε0|E0|2
2k3

√
πL

(
�

(0)
L

�p

)2 1

�
(0)
L

dδωL

drp

. (7)

To further elucidate the meaning of this expression,
we introduce the power radiated from the resonator, P =∮
S

S · da, where S = E × H, which is given by

P = ε0c
3

2ω2

∑
m,l,σ

|Clmσ |2.

In the RRA, this becomes

P ≈ ε0c
3|E0|2

ω2
√

πL

(
�

(0)
L

�p

)2

A ≡ P0A, (8)

where P0 is the power emitted by the resonator in the RRA
approximation at exact resonance. Now, defining the average
photon number as

N = A
P0

[
2�

(0)
L

]−1

h̄ω
,

FIG. 2. (Color online) Vector components of the optical force in
units of ε0|E0|2/k2. (a) Fr , (b) Fφ , (c) Fθ , for L = 39, E-type mode,
Rp/Rs = 0.01, n = 1.59, and κ−1 = 100.

where the factor of 2 is introduced to define the lifetime of
intensity of the resonator mode, rather than of its amplitude,
one can present F RRA

r as

F RRA
r = −f0A = −Nh̄

dδωL

drp

. (9)
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Using the classical analog of a commonly employed,
optomechanical Hamiltonian H = h̄δωâ†â [6,7], where â† and
â are photon creation-annihilation operators (â†â → 〈â†â〉 =
N ), to calculate the force, one would obtain F ∝ ∂(Nδω)/∂rp.
Since in cavities under steady-state illumination conditions N

depends on the particle’s position, this result is not equivalent
to the F (RRA)

r derived in this paper. The difference between the
two expressions is significant even in high-Q cavities, as was
demonstrated recently in Ref. [4].

Azimuthal and polar components of the force in Eq. (3)
can only be obtained by going outside of RRA. Physically it
means that while the radial component of the force can be
explained purely by the particle-induced frequency shift of the
resonator, the other two components are due to the particle-
induced change of the spatial configuration of the field. In
the case κ−1 > 1 considered here, the largest contribution to
the azimuthal and polar components of the force in Eq. (3)
is proportional to Re[α], and is not related, therefore, to the
scattering portion of the force. While originating from what
is usually thought of as the gradient force, the azimuthal
component of the force in Eq. (3) is clearly nonconservative,
reflecting fundamental change in the nature of the optical
forces brought about by the field confinement in the cavity.

IV. PARTICLE DYNAMICS

It is convenient to analyze particle dynamics by introducing
dimensionless time τ = t/T and angular momentum ζ =
Mpr2

pφ̇ cos θ̄/�, where T =√
Mpr0/f0 and � =√

Mpr3
0 f0. The

detuning y, linearized about zero, can be used as a dimen-
sionless radial coordinate of the particle, y = (rp − r0)y ′(r0)
(prime denoting differentiation with respect to rp), with
1/y ′(r0) playing the role of a spatial width of the mode.
It is inversely proportional to f0 and is characterized by a
dimensionless parameter b = [y ′(r0)r0]−1. Using asymptotic
expansions for the Hankel functions, one can show that
b = O(κ/L) � 1.

To the first order in θ̄ and its time derivatives, the equations
of motion for the particle take the form of

d2y

dτ 2
= ζ 2

b
− 1

b(y2 + 1)
, (10)

dζ

dτ
= − κg

y2 + 1
;

d2θ̄

dτ 2
= −

(
ζ 2 + κgy

y2 + 1

)
θ̄ , (11)

where the terms proportional to ζ 2 are of the usual kinematic
origin. Time and orbital momentum scales T and � correspond
to the period and angular momentum for the circular orbit of
radius r0 in the θ̄ = 0 plane in the absence of the azimuthal
component of the optical force. The increase of ζ (κ < 0)
over this time scale 	τ = 1 is dζ/dτ ≈ |κ|g < 1, which
shows that the angular momentum changes slowly over the
orbital time scale. In this case, the radial motion, described
by Eq. (10), occurs in an effective, slowly changing potential
characterized by a stable equilibrium y0 = −

√
ζ−2 − 1, which

exists for ζ < 1. However, if the angular velocity is too small,
the particle crashes on the surface of the resonator. Taking these
two limitations into account, one obtains that the radial motion
of the particle can be trapped by the resonator if ζmin < ζ < 1,
where ζmin = {[(r0 − Rs)/(br0)]2 + 1}−1/2. In this case, the

radial motion can be approximately described as harmonic os-
cillations with adiabatically time-dependent frequency �r =
ζ 2(−2y0/b)1/2 > 1. When the particle deviates from the θ̄ = 0
plane, second-order terms in the θ̄ coordinate [neglected in
Eqs. (10) and (11)] arising from the factor e−Lθ̄2

in the force in
Eq. (3) can play a role since L � 1. For constant y, Eq. (11)
describes harmonic oscillations about θ̄ = 0 with frequency
�θ ≈ |ζ | � �r . Therefore, the effect of the polar dynamics
on the radial coordinate can be described by replacing the
expression for the equilibrium with y0 → −

√
y0

2 − Lθ̄2/ζ 2.
This point oscillates with θ̄ over the time scale τθ = 2π/�θ ,
while increasing overall due to the increase in ζ .

Even though the presence of a nonconservative azimuthal
force makes the dynamics of the particle non-Hamiltonian,
qualitatively its radial dynamics can be understood by con-
sidering it as occurring in an adiabatically changing, effective
potential

ueff = (−ζ 2y + arctan y)/b − (Lθ̄2/b) arctan y,

with quasienergy

ε = (dȳ/dτ )2/2 + ueff .

Assuming for simplicity θ̄ = 0, we find that this potential
allows for two equilibrium points at ymax,min = ±

√
1/ζ 2 − 1,

with the one with negative sign corresponding to the stable
equilibrium. The plot of this potential for several values of
ζ is shown in Fig. 3. The depth of the potential can be
estimated as Urad ≡ ueff(ymax) − ueff(ymin) ∼ arctan(ymin)/b,
which, after translation to the physical variables, produces the
expression

Urad ≈ (�0/T ) arctan (
√

1 − ζ 2/ζ ).

The analysis provided above is possible because of the
clear separation of time scales between orbital, polar, and
radial degrees of freedom, with the latter being the fastest.
Therefore, radial frequency �r sets up limits of applicability
of the unresolved sideband approximation, which can now be
formulated as �r � T �p. In terms of external parameters,
this inequality can be rewritten in the form of the lower

−6 −4 −2 0 2 4 6−4

−3

−2

−1

0

1

2

3

4

y

u ef
f

ζ = 0.1

ζ = 0.3

ζ = 0.5

ζ = 0.7

ζ = 0.9

×103

FIG. 3. (Color online) The shape of the effective potential for
θ̄ = 0 and several values of angular momentum ζ . One can see how
the potential well disappears when ζ approaches unity.
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FIG. 4. (Color online) Time dependence of particle coordinates
computed for the same parameters as in Fig. 2 with initial conditions
y = 0,ζ = .4, and θ̄ = 0.08. The rapidly oscillating curve represents
the radial coordinate, the monotone line in the main figure shows the
azimuthal coordinate, and the inset shows the polar coordinate.

limit on the mass of the particle: Mp � P/(�pr2
0 b2ω2). For

instance, if Rp = 100 nm, Rs = 50 μm, P = 50 μW, and
ω = 3 × 1014 Hz, which are typical values for experiments
of this kind [3,6], we obtain that quasistatic approximation
for the field is valid for particles with Mp � 10−16g. The
minimum value of the orbital momentum allowing for the
particle to orbit the resonator in this case is ζmin ≈ 0.12. A
particle with Mp = 10−13g, similar to those used in Ref. [3],
will be trapped by the radial quasipotential if its linear velocity
v is in the range 10 < v < 100 cm/s. Numerical simulations
of the particle trajectories (Fig. 4) show that if the initial
velocity of the particle is close enough to its minimum value,
then the particle will undergo at least one complete revolu-
tion before its tangential velocity reaches the upper critical
value.

To estimate the feasibility of experimental verification of
the predicted properties of the optical force, one has to take
into account effects due to the particle’s environment, such as
thermal fluctuations and a viscous force Fv = −Mpβdrp/dt .
The latter limits the particle’s angular momentum to its
terminal value ζterm ∝ κ/(βT ), which is reached in time
τterm ∝ (βT )−1. If ζterm � 1, which also implies τterm � 1,
then the effect of the drag force can be neglected. However, if
ζmin < ζterm < 1, which ensures the existence of the radial po-
tential well, then the drag force can actually play a positive role
in stabilizing the particle’s motion against run-away growth of
the orbital momentum. For particles with the same parameters
as above and in air at normal pressure, βT ≈ 1. Thus, in order
to achieve the stable orbital motion of the particles, one needs
to place the particle in a moderately rarefied atmosphere with
densities just two orders of magnitude less than the ambient
value. The initial and/or terminal values of ζ must also be small
enough to ensure sufficient depth of the radial potential Urad

compared to the thermal energy. For the same parameter as
before, the former can be estimated as Urad ∼ 10−17J , which
by several orders of magnitude exceeds the thermal energy at
room temperature.

One also needs to be aware of the attractive van der Waals
force, which can play a role for particles orbiting too close to
the resonator surface. To estimate effects due to the van der

FIG. 5. (Color online) Color map of the field intensity of the
resonator at θ = π/2 and 0 < φs < 2π as a function of time. Brighter
tones correspond to larger intensity of the field.

Waals force, we use the estimate for the respective interaction
energy between a dielectric sphere and a planar dielectric
surface, which is suitable for the situation under consideration
since Rp � Rs [18]:

UV dW ≈ 1

6

HRp

r0 − Rs − Rp

.

Here H is the Hamaker constant whose typical value can be
taken to be H ≈ 10−19J . Assuming that the particle orbits the
resonator at just about 10 nm above its surface, we obtain the
estimate for UV dW ≈ 10−18J . The energy associated with this
force might have to be taken into account when designing the
experiment, but should not preclude the orbital effect from
being realized.

Actual observations of the predicted effects are facilitated
by the fact that the dynamics of the particle is directly
reflected in the properties of the electromagnetic field and
can be observed optically. Figure 5 illustrates this point,
showing time evolution of the surface field distribution of
the resonator in its equatorial plane (as defined in the XYZ

system). This field is strongly peaked along the axis connecting
the center of the resonator and the particle [15,16]. In the
regime under consideration here, the rotating particle drags this
“hot” spot along, so that its spatiotemporal behavior directly
reproduces the particle’s trajectory and provides information
about its angular frequency ζ/T . The flushes of intensity of
the field along these trajectories reflect radial oscillations of
the particle, while the decreasing intervals between
consecutive maxima allow one to determine angular accel-
eration of the particle. Polar oscillations result in additional
fluctuations of intensities with frequency different from that
of radial oscillations and can, therefore, also be inferred from
observation of the field.

V. CONCLUSION

In this paper, we demonstrate that confinement of the optical
field in cavities significantly changes the nature of the optical
forces exerted on small dielectric particles. We demonstrated
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this point by rigorously calculating optical forces exerted by
a spherical resonator on a small dielectric particle. The main
qualitative prediction of the theory is that the nonconservative
tangential component of the force in the high-Q resonators
is proportional to the first order of the particle’s static
polarizability. This prediction can be verified by experimental
observation of optically induced orbital motion of the particle
in a moderately rarefied atmosphere. This result has important
implications for the field of quantum cavity optomechanics,
which is currently based on the assumption of the conservative
nature of the cavity optical force. The developed theory also
contributes to the field of optical biosensing by providing a
theoretical framework for understanding the dynamic behavior
of particles in typical biosensing experiments [3]. In addition,
since dynamical aspects of particle behavior depend on their
masses, the developed theory can be used as a foundation for
optical mass sensing.
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APPENDIX

Here we give a more detailed account of the derivation
of various expressions presented in this work. The forces
are obtained from electromagnetic fields outside of the
resonator-particle system, which are found by applying the
multisphere Mie approach [19] to the system of two spheres:
one representing a resonator with radius Rs and refractive
index ns , and the other representing the particle with radius
Rp and refractive index np. Both the particle and the resonator
are assumed to be situated in a medium with refractive index
n0 and propagation constant k = n0ω/c, where ω is the driving
frequency and c is the speed of light in vacuum. It is assumed
that in the absence of the particle, an external field would
excite a single fundamental WGM of the resonator with polar
number l = L, polarization σ ′, frequency ω

(0)
L , and width �

(0)
L .

1. VSH properties

A general monochromatic field can be expressed as a linear
combination of vector spherical harmonics (VSHs) as

E = E0e
−iωt

∞∑
l=1

l∑
m=−l

∑
σ=M,E

[Clmσ Hlmσ (r) + Plmσ Jlmσ (r)],

(A1)

where Hlmσ and Jlmσ are vector spherical harmonics of the
order of l,m and polarization σ = E,M . Defining Xl,m =
−ir × ∇Ylm/

√
l(l + 1) (where Yl,m is the scalar spherical

harmonic), the magnetic (M) modes can be given as JlmM =
jl(kr)Xl,m and HlmM = h

(1)
l (kr)Xl,m, where jl and hl are,

respectively, the spherical Bessel function and spherical
Hankel function of the first kind. The electric (E) modes are
obtained by JlmE = −i/k∇ × JlmM and HlmE = −i/k∇ ×
HlmM . Magnetic fields H = (−i/ωμ0)∇ × E (where μ0 is

the permeability of free space) are obtained by swapping
polarizations on the coefficients in Eq. (A1), [P,Clm(E,M) →
P,Clm(M,E)] and multiplying by −i

√
n0ε0/μ0, where ε0 is the

permittivity of free space.
We use transformation properties of VSHs upon rotation

defined by [19]

Zlmσ (r′) =
l∑

m=−l

Dl
m′m(α,β,γ )Zlm′σ (r), (A2)

where Zlmσ stands for Jlmσ or Hlmσ , and r and r′ denote
the same point expressed in XYZ and X′Y ′Z′, respectively,
and Dl

m′,m is the Wigner D function. For L � 1, and in the
vicinity of β ≈ −π/2, we use the following approximate
representation of DL

m′,L:

DL
m,L(α,β,γ ) ≈

( m∏
n=0

√
L − n

L + n

)
[cot(β/2)]m

(πL)1/4
exp[−L(|β|

−π/2)2/2 − iαm + iγL + 1/8L]. (A3)

The transformation of VSHs upon translation r′ = r + d is
given by the addition theorem [19],

ZlmM (r′) =
∞∑

l′=1

l′∑
m′=−l′

{
Al,m

l′,m′ (k,d)Z̃l′m′M (r)

+Bl,m
l′,m′(k,d)[iZ̃l′m′E(r)]

}
, (A4)

iZlmE(r′) =
∞∑

l′=1

l′∑
m′=−l′

{
Al,m

l′,m′(k,d)[iZ̃l′m′E(r)]

+Bl,m
l′,m′ (k,d)Z̃l′m′M (r)

}
, (A5)

where the tilde denotes Hlmσ for |r| > |d| or Jlmσ for |r| <

|d|. Al,m
l′,m′ (k,d) and Bl,m

l′,m′ (k,d) are the so-called translation
coefficients, which describe coupling between VSHs with
different polar, azimuthal, and polarization indexes defined
in shifted coordinate systems. The choice of the X′Y ′Z′
coordinate system diagonalizes these coefficients with respect
to the azimuthal indexes m and, since the VSH expansion
of a dipole field contains only terms with l = 1, and σ = E,
one of the polar and one of the polarization indexes in the
translation coefficients are fixed at these values. Therefore, we
can abridge notations for the translation coefficients keeping
only three indexes referring to the mode of the resonator:

UlmE(krp) = A1,m
L,m(k,rp ẑ′)

= (−1)l
√

3

2

⎡
⎣

√
(l + 1)(l + |m|)

(2l + 1)(|m| + 1)
hl−1(krp)+(−1)m

×
√

2l(l + 1)(l − |m|) + |m|l2

2(2l + 1)
hl+1(krp)

⎤
⎦,

(A6)

UlmM (krp) = B1,m
L,m(k,rp ẑ′)

= i(−1)l+1

√
3

2
m

√
2l + 1hl(krp), (A7)
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where rp is the radial coordinate of the particle in the XYZ

system and ẑ′ is the unit vector along the Z′ axes.

2. Field of the bisphere system

The field expansion coefficients [Eq. (A1)] for the station-
ary bisphere system are [16]

Clmσ = DL
m,L(θp,φp)[

α
(1)
Lσ0

]−1 − α
(2)
1E[ULmσ0 ]2

×
{

1 l = L, σ = σ0

α
(1)
lσ α

(2)
1EULmσ0ULmσ otherwise

}
, (A8)

Plmσ = DL
m,L(θp,φp)[

α
(1)
Lσ0

]−1 − α
(2)
1E[ULmσ0 ]2

α
(2)
1EULmσ0ULmσ , (A9)

where θp and φp are the particle’s angular coordinates in the
XYZ system, and DL

m,L(θp,φp) ≡ DL
m,L(θp,φp,0). Here we

also use notation σ0 to denote the polarization of the excited
WGM. Quantities α

(k)
lσ are the Mie scattering coefficients for

the resonator (k = 1) and the particle (k = 2). The former in
the vicinity of a single WGM resonance can be presented as

α
(1)
lσ0

= δl,L

−i�
(0)
L

ω − ω
(0)
L + i�

(0)
L

, (A10)

while the latter in the limit nkRp � 1 is given by

α
(2)
1E = −i

2

3

pk3

1 − 2
3pk3

,

where

p = n2 − 1

n2 + 2
(RP )3.

This quantity is related to the dipole polarizability of small
particles (including radiation reaction) denoted in the main
text as α:

α = 4πε0p

1 − i(2/3)pk3
≈ 4πε0p

(
1 + i

2pk3

3

)
. (A11)

The form of coefficients (A8) and (A9) indicate that the
2L − 2 components of the initial WGM with |m| > 1 resonate
at ω = ω

(0)
L , while the remaining m = −1,0,1 modes are

shifted and broadened. The frequencies and widths for the

m = ±1 modes, ωp = ω
(0)
L + δωL and �p = �

(0)
L + δ�L, are

δωL = Re[α]k3

6πε0
�

(0)
L [UL,1,σ0 ]2, (A12)

δ�L = 2

3
pk3δωL = Im[α]k3

6πε0
�

(0)
L [UL,1,σ0 ]2. (A13)

The behavior of the m = 0 mode is polarization dependent. Its
frequency and width, ωσ

0 = ω
(0)
L + δωσ

L, �σ = �
(0)
L + δ�σ

L, are
obtained by substituting UL,0,σ0 in place of UL,1,σ0 in (A12)
and (A13). As UL,0,M = 0, this resonance is only affected by
the particle for E-polarized WGMs.

3. Equations of motion

The field and resulting forces are derived in the reference
frame associated with the particle. In order to derive equations
of motion for the particle, one needs to transform back to
the stationary frame associated with the resonator. Generally
speaking, in the case of a moving particle, this should involve
the Lorentz transform of the fields. Since, however, the
particle’s motion is very slow, one can neglect all relativistic
corrections including those resulting in the Doppler effect. In
this case, the coordinate transformation involves simple vector
rotation with a standard rotation matrix A, such that r = A−1r′,
and presents the dynamic equation as

md2(A−1r′)/dt2 = A−1F′,

where F′ is the force calculated in the primed system and
the particle’s angular coordinates appear as elements of the
rotation matrix. After introducing the dimensionless variables
as explained in the main text, the equations of motion for the
particle take the following form:

d2y

dτ 2
= 1 + yb

b

(
dθ̄

dτ

)2

+ ζ 2

b(1 + yb)3
+ Fr

bf0
, (A14)

dζ

dτ
= ζ

(
dθ̄

dτ

)
tan θ̄ + (1 + yb)

Fφ

f0
, (A15)

d2θ̄

dτ 2
= −2b

1 + yb

(
dy

dτ

)(
dθ̄

dτ

)
− ζ 2 tan θ̄

(1 + yb)4
+ 1

(1 + yb)

Fθ

f0
.

(A16)

Equations (10) and (11) are obtained by linearizing these
expressions with respect to θ̄ and its time derivative, as well
as by neglecting term yb in 1 + yb.
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