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A previously unknown mechanism of bistable behavior in lasers with single-mode cavities is proposed and
analyzed. It is shown that if losses in a cavity exhibit nonmonotonic dependence on frequency, the equation
for stationary lasing frequencies can have multiple solutions even in single-mode cavities. In such a case, a system
can generate one of several lasing outputs characterized by different frequencies and intensities. All these potential
lasing states are stable at the same pumping level, and the choice between them is determined by initial conditions.
The latter can be, in principle, controlled by seeding pulses. This mechanism does not depend on such nonlinear
effects responsible for most known types of bistability as saturable absorption or cross saturation. An example of a
cavity structure, in which such a mechanism can be realized, is presented. Standard lasing equations fail to de-
scribe dynamical behavior of such systems; therefore a generalized approach treating dynamic of lasing frequency
and intensity on equal footing is developed. © 2012 Optical Society of America
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1. INTRODUCTION

Bistability is one of the most important manifestations of non-
linear effects in various dynamic systems and it has been the
subject of intensive research. While bistability is characteris-
tic for nonlinear systems of various kinds, optical bistability
has attracted special attention during the last three decades
(see, for instance, [1-4] and references therein) because of
its importance for optical information processing. A special
case of optical bistable systems are optical amplifiers and
lasers whose output demonstrates bistable behavior as a func-
tion of the pumping power [5-8]. Most known sources of
bistability rely on intensity-dependent changes of real (disper-
sive bistability [9-11]) or imaginary (absorptive bistability
[2,12-19]) parts of the refractive index of the medium. Typi-
cally, bistability in these situations occurs when a function
representing the output intensity, I, versus the input power,
P;,, acquires a shape characterized by the existence of two
critical values of P;, at which the derivative dl,/dP;,
changes sign passing through infinity. Function 7, (P;,) in
the interval between these values becomes multivalued with
three (or more) possible values of [, for each P;,. Usually
only two of these solutions are stable, resulting in a familiar
hysteresis behavior. In lasers, bistability is also known to take
place due to other mechanisms such as mode competition [20]
and frequency-dependent feedback [21,22]. Bistability de-
scribed in [20] occurs when two stable lasing modes coexist
at the same pumping level, but mode competition makes a
two-mode operation unstable. In [21,22] the bistability is cre-
ated by combining a laser with an external frequency-selective
feedback, which again results in a multivalued form of func-
tion I,y (Py,) or, as in the case described in [15], in a multi-
valued dependence of lasing frequency versus input power.
In this paper, we propose and theoretically study a
mechanism of multistable behavior that differs principally
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from previously known mechanisms. It is realized in lasing
structures utilizing single-mode cavities with frequency-
dependent losses exhibiting multiple oscillations over a
frequency interval containing the cavity mode. Due to this os-
cillatory behavior of the losses, an equation for stationary las-
ing frequencies in such structures can have multiple solutions.
Each of these solutions yields a distinct lasing output with
its own frequency, intensity, and the threshold. Some of these
different lasing regimes can be stable at the same value of the
pumping power. The choice between these simultaneously
stable lasing states is determined by the initial conditions, which
can be, in principle, controlled by seeding pulses. In order to
emphasize that this type of multistable behavior does not de-
pend on mode competition between cavity modes (it takes place
in the single-mode cavities) and/or external nonlinear elements
such as, for instance, saturable absorbers, we will call it single-
mode intrinsic multistability (SMIM).

It should be emphasized that the existence of several
stationary frequencies and the single-mode nature of lasing
oscillations do not constitute a contradiction in terms. Indeed,
in the multimode regime, each lasing mode is characterized by
its own field function and frequency, which can be traced to
distinct individual modes of the “cold” cavity (there might ex-
ist certain exceptions in low-@) cavities, when a lasing mode is
a combination of several modes of the “cold” cavity [23,24],
but this situation has no bearing on the case under study in
this paper). In this paper we consider a situation in which
it is presumed that only one cavity mode is within the gain
spectrum of the active medium, which, however, can yield
several alternative values for the stationary lasing frequency.
Unlike bistable solutions in truly multimode lasers, these al-
ternative frequencies cannot coexist so that no effects of cross
saturation and mode competition usually accompanying mul-
timode lasing occur in the situation under consideration.
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It should be noted that the existence of multiple lasing fre-
quencies in single-mode lasers, albeit arising for completely
different reasons, has been also proposed in recent papers
[25,26] concerned with systems with spatially nonuniform
gain. According to [25,26], in systems with nonuniform gain,
in addition to the regular lasing mode originating from the
modes of the “cold” cavity, there might exist a surface mode
propagating along the boundary between the regions with dif-
ferent gain values. This additional mode is characterized by its
own stationary frequency and a much higher lasing threshold.
Despite formal similarity (several lasing frequencies arising
from a single cavity mode), the phenomenon considered in
this paper is drastically different from the one studied in
[25,26]. Indeed, in the case here, the lasing output at any of the
multiple frequencies corresponds to the same spatial “mode”
with field distributions at all lasing frequencies being very
similar to each other and to the mode of the “cold” cavity.
As a result, the lasing thresholds for different frequencies
are not drastically different from each other.

The existence of multiple frequency solutions in a single-
mode stationary regime makes the description of relaxation
kinetics less trivial than in the standard situations. Usually,
the relaxation to the stationary lasing state is described via
slow-changing amplitude approximation, which involves time-
dependent equations for intensity and the phase of the field
containing only the first-order time derivatives of the respec-
tive quantities. Neglecting the time derivatives of the phase
of higher orders is tantamount to assuming that the nonsta-
tionary contribution to the instantaneous value of the lasing
frequency does not have its own dynamics and follows adia-
batically the intensity [27]. In the situation under considera-
tion in this paper, such an approach is insufficient, and the
second-order time derivative of the phase plays an important
role and has to be taken into account. In the single-mode re-
gime this can be achieved by rewriting the phase equation as a
first-order differential equation for frequency and analyzing
the coupled intensity-frequency dynamics considering both
parameters as equal partners in establishing the final station-
ary state of the laser.

2. NORMAL FREQUENCIES AND MODES OF
THE STRUCTURE

The schematic of the structure under consideration in the
paper is shown in Fig. 1. This structure consists of two wave-
guides filled with an active medium and mirrored at their left
ends (the length of the active portion of the each waveguide is
L). The waveguides are coupled to each other via a disk or
ring resonator of radius R. We will show that this structure
can be described as an effective Fabry—Perot cavity of length
2L with frequency-dependent losses.

Fig. 1. Schematic of a structure considered in the paper: two wave-
guides filled with a gain medium (shaded area) are coupled to each
other via a passive ring resonator.
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For simplicity we shall assume that the structure is con-
structed of single-mode symmetrical waveguides supporting
a TE(, mode characterized by zero cutoff frequency. The field
in the waveguides can be presented in the following form:
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where k1 »(w) are the propagation constants of a given wave-
guide mode in the bottom and top waveguides, respectively,
and z is the coordinate along the waveguides counted from
their mirrored ends. Equation (1) is complemented by rela-
tions between amplitudes At B and A©), BO),

A = TA(_), B+ = TB(_), (&)
where 7 is a reflection coefficient at the mirrored ends of the
waveguides. We will assume that the coupling region between
the waveguides and the ring is much smaller than all other
lengths in the system so that its size can be neglected. The
coupling between the resonator and the waveguides will be
described using the phenomenological approach introduced
in [28]. If an incident signal propagates in a first (bottom)
waveguide in a positive (to the right) direction, it couples
to the counterclockwise propagating mode of the resonator,
which, in its turn, couples to a wave propagating to the left in
the second (top) waveguide. This situation is described by
introducing amplitudes af; and df; of the field incident
on the bottom coupling region in the waveguide and the reso-
nator, respectively, as well as amplitudes afout and dfout de-
scribing fields coming out of the bottom coupling region in the
waveguide and the resonator, respectively. These amplitudes
are related to each other via matrix relations

aiout) — ( D 2.K)(ai#.in)

(di‘:out B —iKx p diin ’ (3)
where p and « are coefficients that characterize this coupling
region. The energy conservation requires that these coeffi-
cients obey relation |p|?> + |x|> = 1. At the top coupling region,
one introduces amplitudes d;, i and d;’_ out fOr the field incident
on the coupler in the resonator, and amplitude a; , , for the
outgoing field in the waveguide. Since the direction of incom-
ing and outgoing fields at the second coupler is reversed com-
pared to the first coupling region, the respective amplitudes
are related via a Hermitian conjugated matrix

3 out — p* ix* 0 ) 4
(dzout) (_iK* p* )(dg—,in ' )

Equations (3) and (4) must be complemented by relations
between amplitudes of the field in the resonator taking into
account their internal dynamics. These relations can be writ-
ten as

+ o -i®/2 g+
dys, = ae / a7 outs
+ -id/2 3+
dl,in =ae / d2,out’ (5)
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where ® = n,wL, /cis a single round-trip change of the phase
of a wave of frequency w in a resonator with the refractive
index 7, and the length L, and the coefficient a introduces
losses in the couplers combined with propagating losses in
parts of the resonator between the two coupling regions.
We assume that the couplers are identical so that the complete
round-trip losses in the resonator are described by .

The mirrors at the ends of the waveguides complicate the
situation by producing a field in the top waveguide propagat-
ing to the right. This field excites a clockwise propagating
mode in the resonator, which couples to the field in the bot-
tom waveguide propagating to the left. Thus, Egs. (3)-(5), in
the case under consideration, must be complemented by equa-
tions describing this additional coupling process. To this end,
we introduce new amplitudes azf . a;_ out» A1 out fOT the incident
and outgoing field in the waveguides, and respective ampli-
tudes dg;, d5 oy Al @ oy fOr the field in the resonator.
The upper index “~” indicates clockwise propagating modes
of the resonator, while all other indices here and in expres-
sions for waveguide amplitudes are the same as previously
introduced. Incident and outgoing amplitudes are related to
each other by equations analogous to Eqs. (3) and (4), where,
however, the former corresponds to the coupling region in
the top waveguide, and the later to the bottom waveguide.
Relations between the amplitudes of the resonator field at dif-
ferent coupling regions is now given by expressions

diin = aeiq)/zdiout’ dé,in = aem)/zdiout’ (6)

where the sign change in the exponential terms explicitly
takes into account the clockwise nature of the resonator’s
mode.

Using Egs. (3)-(5), one can relate amplitudes of the
left-propagating waves in the top waveguide and the right-
propagating wave in the bottom waveguide:

alKlZe—iCD/Q

ow =T o2 e ® lin Q)
Using Eq. (1) one can rewrite the relation given by Eq. (7) in
terms of the respective field amplitudes at z = 0:
2 ,~id/2
B kPL — M A gL )
1- az |p|26—zd>
In a similar manner, we can relate fields coupled to the clock-
wise mode of the resonator:
0(| K|2 ei<1>/2

AQe Il = Z5 =
1- a2|p|26z(l>
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Multiplying Eq. (8) by Eq. (9) and taking into account the re-
lation between the amplitudes given by Eq. (2), one obtains a
secular equation for the propagating constants of the normal
modes in the structure under consideration:

a27.2 |K|4
o (10)

e 20k M +EP)L _
- 2
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Since the right-hand side of Eq. (10) is a real-valued quantity,
it is obvious that solutions to this equation are necessarily
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complex-valued, reflecting an inherently open nature of the
structure under consideration. Presenting the propagation
constants ki,ll'z) in the form k%Z) = qiylb'z) + 1-5%2) , we find that
the real part of the propagation constants obeys equation

(g + )L = zm. (11)

Equation (11) shows that even though the resonator provides
coupling between the waveguides, it does not affect the spec-
tral characteristics of the resulting cavity. Its role is to control
radiative losses of the cavity by determining the imaginary
part of the propagation constant:

(60 4+ 52)L = _% In S(w), (12)
where

§— (121”2|K|4
~ 1+aplt - 22%pf? cos (272)’

(13)

with ®, = (27c)/(n,L,). The resonator function S obeys
inequality 0 < S(w) < 1, ensuring thereby the positive sign
of 5;1‘2) .

The system of Egs. (8) and (9) also determines the ratio of
the field amplitudes in the waveguides

B ;
2= (~1)mev, (14)
A (

where

[p|2a? sin ©

=®/2-tan’! ————— .
v / 1 - |p|?a? cos ®

(15)
Normal modes of the cavity are usually used as a basis to re-
present an arbitrary field distribution in it. However, the open
nature of the structure under consideration in this paper,
manifested through complex modal propagation constants,
makes the standard expansion procedure impossible. Indeed,
the normal modes described above are not eigenfunctions of a
Hermitian operator, and as such, do not have to be orthogonal
to each other in the usual sense of Hermitian inner product.
The problem of introducing normal modes in open systems
has been discussed extensively in the past (see, for instance,
recent review in [29]) and is usually solved through introduc-
tion of a dual set of adjoint modes forming a biorthogonal sys-
tem [30]. In this paper we will use an approach introduced in
the context of laser physics in [31], which utilizes so-called
“constant-flux modes” (CFMs). The basis of CFMs has been
used to formulate so-called steady-state ab initio laser theory
generalizing earlier theories to the case of lasers with complex
cavities [23,24,31-33].

Adopting this approach to the situation under considera-
tion, we introduce the following set of adjoint functions,
Uﬁ,lbz) (2) and Uﬁ,lf) (2) defined in the bottom and top wave-
guides, respectively, as

U;}L’Z) (2) = Te?ikf,,“mz + e—iki,l,‘z’z’
U502 (2) = reltn™= 4 g ™'z, (16)

We have not included into the definition of these modal func-
tions the phase y defined in Eq. (15), as it is more convenient
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to include this phase in the respective modal amplitudes,
when using Eq. (16) to construct the total field in the wave-
guides. It is important that CFMs are defined with boundary
conditions at infinity formulated in terms of the real-valued
generic spectral parameter @, which later becomes identified
with the lasing frequency, rather than in terms of complex-
valued eigenfrequencies [23,31-33]. This circumstance distin-
guishes CFM from so called quasi- or Gamow modes [29]
diverging at infinity, and enables one to introduce a biortho-
gonality condition involving integration over the space occu-
pied by cavity only. Taking into account that Eq. (11) for the
modal propagation constants indicates that the coupled wave-
guides behave as an effective cavity of total length 2L, one can
conjecture that the biorthogonality condition in the particular
case considered here can be written down as

/mUﬁ%@uﬂﬁwnﬂw—k/miﬁ?@nﬁf%ardz=Auﬁmm
0 L
(17)

where normalization factor N,, is complex-valued because of
the open nature of the effective resonator.

An important consequence of using a generic spectral para-
meter to define behavior of the CFMs outside of the cavity
is that these modes, as well as their eigenfrequencies, become
w-dependent. In our case this is manifested via w-dependence
of the imaginary parts of the propagating constants and of the
interwaveguide phase, . This dependence plays an important
role in determining lasing properties of the structure under
consideration.

3. DERIVATION OF LASING EQUATIONS

The system of the modes presented in Eq. (16) can be used as
a basis for expansion of the electric field in the waveguides in
the presence of the gain medium and to derive equations for
the respective modal amplitudes. Since this derivation devi-
ates from the textbook examples [27,30], we sketch it briefly
in this section of the paper.

In the presence of an active medium, the field in each
waveguide satisfies equations

ng, PE1D RE1ID 47 2P0
& o 922 &2 a2

(18)

where n,, is the refractive index of the waveguides and P12 is
the polarization of the gain medium in each waveguide. Within
the framework of the standard semiclassical laser theory,
this field is presented in the form of the linear combination
of the cavity modes defined in Eq. (16) with time-dependent
amplitudes, which are separated into a part oscillating at yet
unknown lasing frequencies (), and slowly changing ampli-
tude A2 (1) = |ALD (1) |eion®:

1 L
EUD (2 ) = QZUA;%)(::)|e-zﬂmf-wii” UL (2) + c.c.]. (19)

m

In the traditional semiclassical laser theory only the absolute
value and the phase of the amplitude A,, are allowed to have
its own relaxation dynamics described by the respective time
derivative, while the lasing frequencies (},, are assumed to fol-
low the amplitude adiabatically. Hence, the time derivative of
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the frequency is neglected. We will see, however, that in the
situation under consideration in this work, the relaxation
toward stationary lasing states can only be described cor-
rectly if one treats both the amplitude and the lasing frequency
on equal footing taking into account terms with frequency
time derivatives dQ,,/dt.

In order to connect this approach with a more conventional
treatment based on time-dependent phase, one can combine
Q,,t term in Eq. (19) with the phase term into a form

%W=%+[%@M

which is similar to quasi-classical expression for the phase of
the wavefunction of a quantum particle in a spatially smooth
potential. In this case, when introducing the slow changing
amplitude approximation, one should retain time derivatives
of the phase up to the second order. It is more convenient,
however, to assign the time dependence directly to (,, as it
is done in Eq. (19).

The idea of time-dependent lasing frequency reflects the
presence of fast and slow time scales in the system, which
allows for introducing frequencies dependent of the “slow”
time via Fourier transform with respect to the “fast” time. Phy-
sically, time dependence of lasing frequencies reflects the fact
that in the course of establishing stationary lasing output, an
“average” frequency of an initial spontaneously emitted spec-
trally broad signal slowly evolves toward its stationary value.
In usual situations, when each mode is characterized by a sin-
gle stationary value of the lasing frequency, the dynamic of
this process is not important. If, however, a single-mode can
evolve to one of several stationary frequencies, the frequency
dynamics becomes as important as that of intensity. We show
below that the possibility of multiple stationary frequencies
in single-mode cavities can indeed be realized in the system
described in this paper.

Since we consider here a single-mode cavity, we can sim-
plify the derivation of the lasing equations by retaining only
one term in Eq. (19). Allowing explicit dependence of the
lasing frequencies upon time and introducing standard rotat-
ing waves and slow changing amplitude approximations, we
obtain

dAG? dpy®  dQ
[ a2 - - G0, ) |00

= 470, PY? (2, 1), (20)
where Pi,lb'z) (2, 1) is a positive frequency component of the po-
larization of the active medium in the respective waveguide.
We also introduced eigenfrequencies, w%'z) = cki,lt'Z) /n,, of the
waveguide modes characterized by propagation constants
ki,lb‘z). One should note, however, that Eq. (10), which deter-
mines propagation constants of the normal modes of the
coupled waveguide-resonator system, only specifies their
sum ki,lb) +k§3) , leaving their individual values undefined.
While in the stationary state characterized by the frequency
Q,,, it is obvious that kﬁ,lb’ = k,(,,%) = (,,n,/c, this is not so when
the system is still in the process of relaxation. During this
process the phase difference between the field in the top
and bottom waveguides, expressed by Eqgs. (14) and (15),
changes due to the time dependence of (). The time derivatives
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of the respective phases, which appear in Eq. (20), contribute
to the apparent frequencies of the field in their respective
waveguides. These apparent frequencies must be equal to
each other, resulting in the following condition imposed on
the propagation constants:

(1) (2)

dg d

1 p 2 @

a)sn) - —d;n = wﬁ,) - —d;n . 2D

This condition, in combination with Egs. (11) and (14), allows

one to define values of prop:;lgation constants ki,lb‘z) and
respective eigenfrequencies w%‘z):
. 1d
Y = v =ik £ 5 (22)
where
wp
Uy, = Mwp; m =5 In S(Qy). (23)
with
cn
wp = . 29
2nwL

being the fundamental frequency of the effective lasing cavity.

Now one can eliminate the modal functions from Eq. (20)
using the orthogonality condition of Eq. (17) and taking into
account that |A§,1L) | = |A§,2L)|, according to Eq. (14). The result-
ing equation for the amplitude and frequency of the lasing
mode takes the form

A 1 Q
—2¢M+|A|(u+i5——d—"’-td——9)

dt 2dt dt
470 (2L _
= | PreolUEds, (25)
0

where N is the normalization constant defined in Eq. (17),
Pt =PY 4+ P@ and we abridged the notations by dropping
superficial mode index m.

Using a standard two-level model of the gain medium and
calculating the polarization term in the constant population
approximation [27] we can rewrite Eq. (25), separating its real
and imaginary parts, as

dQ 1+ W(Q)
—(t+7———)+0Q
dt ( T 20, ) +

[0}

=v +PQg(Q)[ J__QFI(I, Q) - Fy(I, Q)], (26)

where

2|p[*a*(cos @ - |p|*a®)
w@Q) = , 27
@ 1-2|p|?a® cos @ + |p|tat @7

originates from the time derivative of the phase difference y
expressed in terms of the time derivative of frequency (), and

Vol. 30, No. 1/ January 2013 / J. Opt. Soc. Am. B 83

I =8I SQ) + PQg(QI|F(I,Q) + Do~ QF2(I, Q) |,
dt 2z« YL
(28)
where [ is dimensionless intensity defined as
155
I= AP —— 29)
202y vy

via dipole matrix element of the lasing transition ¢ and the
relaxation rate of the population inversion y;. In Egs. (26)
and (28), we also introduced the effective pumping rate P
and dimensionless gain Lorentzian

o
g(Q) = ,
4 + (0 - Q)?

(30)
where y| and w, are the dephasing rate and the central

frequency of the atomic transition responsible for gain.
Functions F; and F, in Egs. (26) and (28) are defined as

_ 1 [2LU(2) U*(2) )
Fi(I,0) = Re(N . itk dz ); a0
_ 1 (2L U@R)T*(2)
FZ(I,Q)—Im(N A ) dz |,
where the saturation parameter R
R=1UR)Pg(®. (32)

takes into account saturation of the population inversion. Pre-
sence of function F'y (I, Q) in Eq. (26) is the consequence of the
openness of the effective lasing cavity in the structure under
consideration. Since in the closed cavities U(z) = U(z), the
integral in Eq. (31) becomes real valued, rendering Fy = 0.
We will see in the following sections of the paper that this
term plays an important role in determining the lasing proper-
ties of the system.

4. BISTABLE LASING

A. Stationary Regime

We begin our study of the laser emission described by Eq. (26)
by considering the stationary regime, when both frequency
and intensity time derivatives turn to zero. Lasing (I = 0) sta-
tionary states are found as solutions of the following system of
equations for the stationary frequency and intensity:

@y

Q-v= Pﬂg(ﬂ)[ ~ O (1.Q) -yl Q)],
1

CU(]—Q
[N

In S(Q) = -27

PO gy + L rr0)] @)
wp

When F; vanishes (nearly closed cavities), one can immedi-
ately reduce Eq. (33) to a closed-form equation for the station-
ary lasing frequencies:

21y, Q-
InS@Q) =L >=7Y

(39

wg Q-wy’
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which is independent of pumping level as long as it exceeds
the lasing threshold. The latter is obtained by setting I = 0 in
the second of Eq. (33):

wp

=" 209 @)

In S(Q). (35)

In open cavities, similar to the one considered in this paper,
function F'5 does not vanish, making the analysis more com-
plicated. Equation (34) in this case defines the lasing fre-
quency only at the lasing threshold, which can be seen
considering that F';(0,Q) = 1; F,(0,Q) = 0. Above the thresh-
old, the frequency, which now depends on P, must be found
together with intensity from full system (33).

Despite the fact that Eq. (34) is valid only at P = Py, it pro-
vides an important insight into the properties of the lasing
in this system. Under certain conditions, which can be con-
trolled by the design of the structure, this equation allows
for multiple solutions. Multiplicity of the stationary frequen-
cies creates conditions for possible multistable behavior since
the system in the single-mode regime can only laze at one
of them at any given time. This mechanism of multistability
significantly differs from all other known mechanisms: it does
not rely on cross-saturation effects in multimode operations
and does not require any additional nonlinear elements such
as saturable absorbers [2,12-19]. As was mentioned in the in-
troduction, we shall call this phenomenon SMIM to emphasize
its independence of the mode competition and external non-
linear elements.

The left-hand side of Eq. (34) is always negative, while its
right-hand side changes from negative infinity to zero between
w, and v, thus guaranteeing the existence of at least one sta-
tionary frequency in this interval. The possibility of multiple
solutions derives from periodicity of S(w), which oscillates
between its minimum value

: Car \?
s = () ©6)

occurring at

QUm0 — (n - —)wr, n=123.., 37

and its maximum value

2 2
S(max) _ (l) , (38)
1-o?p?
at
QM = pe . n=1,23... (39)

It is necessary, while not sufficient, for the existence of mul-
tiple solutions that S(Q)) undergoes several oscillations when
) moves through the gain spectrum. For this to happen, the
fundamental frequency of the resonator must obey inequality
®, <y, which imposes limits for the minimum size of the re-
sonator: L, > (2zc)/(n,y ). In addition, the function at the
right-hand side of Eq. (34) must bend downward fast enough.
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As a guide in the design of structures with multiple lasing fre-
quencies, one can use the following set of inequalities ensur-
ing the existence of at least three solutions:

ngmin) _

27y | v
wp Qn — Wy (40)
9 (max)
7y | O -v
|In Spax| > —’ |
Wp Qn, — @

These inequalities can be satisfied by manipulating the size
of the effective cavity determined by parameter L.

An example of the situation, in which Eq. (34) has three
solutions, is shown in Fig. 2. The calculations were carried
out for the following values of parameters r = 0.8, |p|> =
0.51, @ = 0.9, v = 1.0002wy, y | = 0.001wy, and n,,L = 5.241;
n,L, = 2 x 10%,, where /], is the vacuum wavelength at
atomic frequency wq. This choice of the parameters corre-
sponds to a very lossy cavity with the @Q-factor oscillating
between minimum value of Q.;, *50 and maximum value
of Qax = 175. This choice of parameters was made to demon-
strate that the phenomenon under consideration does not
require cavities with extremely high @-factors; thus its obser-
vation will not be hindered by parasitic nonlinear effects,
which might occur in high-Q cavities.

It should be understood that each of the solutions shown
in Fig. 2 exist at different pumping rates corresponding to
their respective lasing threshold. Enumerating the frequencies
such that Q; > (Qy > ()3, one can show that the respective
thresholds obey inequalities Pgl? < Pgﬁ) < Pﬁ?. The system
starts lasing when P slightly exceeds the lowest threshold
P&) at a frequency equal to (;, while two other solutions
are not relevant at this point as they correspond to nonlasing
states. With increasing pumping, the actual frequency of the
lasing mode deviates from (; and is determined together with
respective intensity by the full system of Eq. (33). When the
pumping reaches value P = Pg]), the possibility of the second
lasing state with frequency () = (), emerges. Further increase
of pumping rate results in the frequencies of the both potential
lasing states to deviate from their respective threshold values.
Finally, at P = P{ the third potential lasing solution with
Q = Q3 becomes possible.

Solving the complete system of equations Eq. (33), one
can find stationary frequencies and respective intensities for
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1.0 - - -right side
15
k2]
' 2.0
=}
£
< -25

3.0}, R

1 1 1
1.00002 1.00003 1.00004
Frequency, Q

Fig. 2. Left- and right-hand sides of Eq. (34) as functions of frequency
normalized by the frequency of atomic transition, illustrating the ex-
istence of three stationary frequencies.
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various values of pumping. Figure 3 shows the results of nu-
merical solution of this system, demonstrating dependence of
possible lasing frequencies upon pumping emerging whenever
P exceeds respective thresholds. The bottom panel of this
figure shows pumping dependence of the lasing intensity
for each of the possible stationary frequencies. One can see
that when P > Piﬁ), three stationary solutions with different
values of lasing frequency and intensity coexist, signifying a
possibility of multistable behavior.

The results presented in Fig. 3 reflect several features of the
structure under consideration, distinguishing it from other
multistable lasing systems. First of all, the intensity, as a func-
tion of pumping, does not show a standard hysteresislike be-
havior typical for bistable systems. Instead, at a certain value
of pumping rate, the two stationary frequencies together with
respective intensities coalesce and disappear when the pump-
ing is further increased. This phenomenon is a direct conse-
quence of the openness of the system under consideration,
and is sensitive to the parameters of the structure. Another
important feature of this system is that the intensity, which
normally determines radiative properties of lasers, is subordi-
nate to the frequency. It is the behavior of the latter as a func-
tion of the pumping rate that determines the number and
properties of the lasing states in the system.

B. Relaxation Dynamics and Stability Analysis

The actual realization of multistable behavior depends, of
course, on the stability of the found stationary solutions.
Equation (26) for the frequency contains explicit dependence
on time, making the standard linear stability analysis impos-
sible. Therefore, one is forced to rely on direct numerical
simulation of time-dependent Egs. (26) and (28) for various
values of the pumping and initial conditions. The results of
the simulations are presented in Fig. 4. Immediately above
the lowest of the threshold values P:ﬁ) > P> P&) , the solution
with zero intensity becomes unstable, and a single stable state,
corresponding to the frequency (); and its respective intensity,
emerges (see Fig. 3). As this behavior is trivial, it is not pre-
sented in Fig. 4. When the pumping rate exceeds the second
threshold, Pg) >P > P&zl), a new situation is observed: while
the ; solution remains stable, the nonlasing solution also re-
gains its stability. The behavior of the system is determined
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Fig. 3. Dependence of the stationary frequencies and respective las-
ing intensities on the strength of pumping.
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Fig. 4. Temporal evolution of the emission intensity and frequency
toward their stationary values for various pumping rates and initial
conditions.

mostly by the initial value of the frequency, Q;,: if (, is below
), at the same pumping rate, the system evolves toward zero-
intensity solution (solid black curves in Fig. 4), but if Q;, > Qy,
the system relaxes toward the (); lasing state (black dashed
curves in Fig. 4). The () solution remains unstable for all va-
lues of P, but plays an important role of separating the regions
of initial conditions evolving to different stationary states. The
principal role of the frequency as opposed to the intensity in
this system is also seen from the fact that it is the initial value
of frequency, which, in most cases, determines the final point
of the evolution. While we observed situations when extre-
mely small initial values of the intensity would prevent the sys-
tem from relaxing to the lasing state, it would occur only when
the dynamics of frequency would bring it at some point below
), even if the initial frequency is above this value. Coexistence
of stable lasing and nonlasing states at the same pumping level
is fairly typical for systems with saturable absorbers [4,34],
and was also reported in [21].

With further increase of the pumping rate Pg‘? <P<P,,
the nonlasing solution loses its stability, but the (3 lasing so-
lution becomes stable. The original (); solution still retains its
stability so that in this range of pumping one has two simul-
taneously stable lasing states, which differ from each other by
their intensities and frequencies. The actual realization of one
or the other of these states again depends on the position of
the initial frequency with respect to the unstable (), solution.
This situation is shown by gray curves in Fig. 4, where we plot
curves obtained for three different initial conditions, two of
which (solid and dashed) relax to the Q3 solution, and one
(dotted) converges to the ); solution. Eventually, for the cho-
sen values of the systems’ parameters, there exists another
threshold value of pumping, P,,., at which Q3 = Q5 and above
which both these solutions disappear. Thus, for P > P,,, one
is left again with a single lasing state.

5. CONCLUSION

We demonstrated in this paper that there exist special types of
structures in which a previously unknown mechanism of bist-
ability can be realized. This mechanism exists in a single-mode
lasing regime, does not require additional nonlinear elements,
and depends on linear properties of the lasing structure. The
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system investigated shows several different types of bistability
such as the coexistence of simultaneously stable lasing and
zero-intensity states or of two lasing states with different
intensities and frequencies. Control over the actual lasing
state is provided by initial conditions, which can be prepared
with the help of seeding pulses. However, to better under-
stand switching dynamics of this system and its stability with
respect to spontaneous emission noise, additional studies
should be conducted. An interesting feature of this structure
is the existence of a bifurcation point, at which two of station-
ary states collapse in one, and disappear. This bifurcation can
result in a sudden change of the lasing intensity and frequency
provoked by a very small change of the pumping intensity.
Thus, the system studied in this paper demonstrates several
types of bistable behavior based on a linear bistability
mechanism, and can have potential applications in all-optical
logical devices and optical memory.

Consideration in this paper was conducted in the single-
mode approximation. This approximation remains valid for
all the range of considered pumping intensities, if the thresh-
old for two mode lasing exceeds the highest level of pumping
required for observation of the effects considered in the
paper. To establish an accurate criterion for the stability of the
obtained results with respect to emergence of two-mode
lasing, one needs to develop a multimode lasing theory for
the system under consideration, which is outside of the scope
of this paper. One can, however, note that by making the free
spectral range of the effective cavity exceed the width of the
gain line of the active medium, one almost guarantees the
absence of the two-mode lasing in the system. To achieve this,
the active region of the waveguides forming the structure
must be much smaller than the circumference of the disk
or ring resonator. Practically this can be achieved by defining
the active area of the waveguides by using periodic grating on
its surface as a mirror.
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