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Exciton polaritons in one-dimensional photonic crystals based on multiple quantum well structures are
investigated. The effects due to interplay between resonant interaction of light with quantum well excitons, and
light scattering from well-barrier interface, are elucidated. Polariton dispersion equations and reflection spectra
in structures with two wells in an elementary supercell of the periodic structure are studied. Several examples
of different compound elementary supercells are considered. Special attention is paid to structures with the
period or the distance between quantum wells satisfying the resonance Bragg condition. Such structures are
characterized by a presence of a larger-than-usual polariton stop band. It is shown that in structures with a
complex elementary supercell, the width of such a stop band can be significantly enhanced in comparison to
that in simple structures.
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I. INTRODUCTION

The physics of structures with periodically modulated di-
electric permeability allowing for Bragg diffraction of light
(photonic crystals) is an exploding field that attracts both
fundamental and technological interests(see Ref. 1, and ref-
erences therein). Depending upon the type of modulation one
can consider three-, two-, or one-dimensional photonic crys-
tals. In its simplest realization, a photonic crystal(PC) con-
sists of two materials,A and B, with different indices of
refraction, which are assumed to be constant in the frequency
region of interest. One-dimensional photonic crystals of this
kind are simply periodic multilayer structures, which were
intensively studied in the past,2 but still attract significant
attention.3–5An assumption of frequency independent dielec-
tric constant in such structures implies absence of internal
excitations of the medium in a given frequency region; there-
fore, such structures are sometimes called passive photonic
crystals. If, however, one of the materials constituting a PC
has dipole active internal excitations in the PC’s operational
frequency region, the assumption of constant indices of re-
fraction breaks down, and one has to take into account fre-
quency dispersion of the dielectric permeability. Such struc-
tures, which can be called optically active or resonant PC,
were earlier considered in Refs. 6–8, and has recently been
enjoying growing interest.9–11

A special class of resonant PCs arises when one considers
periodical structures with semiconductor quantum dots,
quantum wires or quantum wells.12–18External excitations in
these materials are excitons affected by quantum confine-
ment in zero, one, or two dimensions respectively. Multiple
quantum wells(MQW), which form one-dimensional peri-
odic structures, are of most interest from a practical point of
view. This is because existing growing technologies allow

for creating MQW structures of a very high quality with
values of parameters that can be varied within a wide range.
The main difference between multiple quantum wells and a
passive one-dimensional PC lies in the role played by radia-
tive coupling between excitons in different quantum wells.
This coupling is particularly important when the period of
the structure is comparable with the wavelength of light at
the exciton frequency.12,19 In this case, radiation induces a
strong coherent interaction between excitons of different
wells, which leads to a significant modification of both dis-
persion of electromagnetic waves propagating in such a
structure and radiative dynamics of the quantum well exci-
tons. Particularly drastic changes occur in so-called Bragg
MQW structures, in which oscillator strength of all but one
mode vanishes, and the strength of coupling of the remaining
mode with radiation becomes proportional to the number of
wells in the structure.19

In the limit of infinitely long periodic structures, the ra-
diative coupling gives rise to a photonic band structure with
the largest photonic stop-band in the vicinity of the exciton
frequency. Since in this frequency region light most strongly
interacts with excitons forming polaritons, we shall call this
region a polariton stop-band. The formation of this polariton
band-gap is not related to the scattering of light due to the
spatial modulation of the refractive index; it exists even in
the absence of a dielectric contrast between different layers
of the structure. For this reason, the systems of this kind
should be classified as a semiconductor analog of optical
lattices,20 which are usually understood as periodic arrange-
ments of atoms in vacuum or a homogeneous dielectric.21

Thus, we can distinguish between two essentially differ-
ent mechanisms of formation of band structure: periodically
modulated coupling between light and internal excitations of
a medium in optical lattices, and light scattering from spatial
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inhomogeneities of dielectric constant in PCs. In real MQW
structures, however, radiative coupling coexists with the di-
electric mismatch between wells and barriers. Therefore,
propagation of light in MQWs is controlled by an interplay
between radiative coupling(optical lattice mechanism) and
scattering from well-barrier interfaces(photonic crystal
mechanism). While the contrast in the indices of refraction of
wells and barriers was taken into account in some earlier
calculations of the reflection coefficients of MQW
structures22 and in the analysis of the modification of the
exciton oscillator strength due to presence of cladding
layers,23 the general picture of the polariton spectrum in such
structures has not yet been elucidated. One of the objectives
of this paper is to give a complete theory of polariton disper-
sion and optical spectra of optically active one-dimensional
PC structures based on multiple quantum wells, in which
radiative coupling and interface scattering play equally im-
portant roles.

Another important extension of the theory of resonant
PCs, which we introduce in this paper, involves consider-
ation of periodic structures with more than one well in an
elementary supercell. While previous studies were mostly
concerned with structures having a simple basis consisting of
a single sphere, cylinder, or a quantum well, extending con-
sideration to more complicated structures would give more
flexibility in designing structures with desirable optical char-
acteristics. It was shown, for instance, that by including one
or several “defects” in an MQW structure(a well with dif-
ferent characteristics, increased distance between adjacent
wells, etc.), one can significantly modify optical properties of
the structures allowing for engineering spectra with pre-
defined properties.24–27 Introducing structures with a com-
plex basis further extends capabilities to design the optical
properties of materials. From experimental and technological
points of view, growing periodic MQW structures with sev-
eral wells in a supercell does not involve significant difficul-
ties, and actually such structures have already been studied
experimentally in Refs. 28 and 29, where reflection of light
from structures with alternating quantum wells of two kinds
has been considered. In the present paper, we derive disper-
sion equations for exciton polaritons in one-dimensional
MQW based photonic crystals with a complex basis consist-
ing of several quantum wells, and analyze the reflection
spectrum of such structures.

II. EXCITON POLARITONS IN MQW PHOTONIC
CRYSTALS WITH A SIMPLE SUPERCELL: ROLE OF THE

REFRACTIVE INDEX CONTRAST

As it has been explained in the Introduction, an accurate
description of optical properties of MQW in the region of an
exciton resonance requires taking into account both mecha-
nisms of interaction between light and a MQW: radiative
coupling to excitons and interface scattering due to mismatch
between dielectric properties of well and barrier layers. The
general effect of this mismatch on the exciton polaritons in
long-period quantum well structures has been previously
considered in Ref. 22. In particular, an expression for the

transfer matrixT̂ was derived for a layer of the widthd with

a quantum well in its middle. A dispersion equation relating
the Bloch wave numberK and the light frequencyv can be
written in terms of the elements of this transfer matrix as12

cosKd = 1
2sT11 + T22d, s1d

whereT̂ is the v-dependent transfer matrix through the pe-
riod d. Using results of Ref. 22 and assuming that the well
and barrier layers have widthsa andb and are characterized
by indices of refractionna andnb, respectively, this equation
can be presented in the following convenient analytical form:

cosKd = Gsv,a,bd ;
D1 + D2Ssvd

1 − rba
2 , s2d

where

D1 = cosf+ − rba
2 cosf− = s1 − rba

2 dFcosfa cosfb

−
1

2
Sna

nb
+

nb

na
Dsinfa sinfbG ,

D2 = sinf+ + rba
2 sinf− − 2rba sinfb, s3d

fa=kaa, fb=kbb, f±=kbb±kaa, ka,b=sv /cdna,b, rba=snb

−nad / snb+nad and the single-pole functionSsvd is defined as

Ssvd =
G0

v − v0 + iG
. s4d

HereafterG0 andG denote exciton radiative and nonradiative
decay rates, respectively. In the limitna→nb one hasrba
→0, f+→kd and Gsv ,a,bd→Gsv ,dd, where the function
Gsv ,dd determines the polariton dispersion equation in the
absence of the mismatch12

cosKd = Gsv,dd, Gsv,dd = coskd+ Ssvdsinkd. s5d

On the other hand, in the absence of the exciton contribution,
Eq. (2) transforms into the standard dispersion equation,

cosKd =
D1svd
1 − rba

2 , s6d

for the normal light waves in an optical superlattice.2,33

Equation(2) can be rewritten in two equivalent forms:

cos2
Kd

2
=

D3D4

1 − rba
2 or sin2 Kd

2
=

D5D6

1 − rba
2 s7d

with factorized right-hand sides, where

D3 = cossf+/2d − rba cossf−/2d, D5 = sinsf+/2d

− rba sinsf−/2d, s8d

D4 = cossf+/2d + rba cossf−/2d + Ssvdfsinsf+/2d

− rba sinsf−/2dg,

D6 = sinsf+/2d + rba sinsf−/2d − Ssvdfcossf+/2d

− rba cossf−/2dg.

These forms are particularly convenient for analyzing polar-
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iton dispersion in quantum well structures, when exciton
resonance frequencyv0 is close to a characteristic frequency
v̄ defined by

v̄snbb + naad/c = p. s9d

Naive consideration could lead to an expectation that this is
the frequency at which the Bragg resonance in structures
with the refraction index contrast would take place. Reality,
however, is more complicated. Let us introduce the param-
eter j=kasv̄da which can be rewritten assv̄ /cdnaa
=panasana+bnbd−1, see the definition(9). Assuming the pa-
rameterj to be small, we can use in our analysis the follow-
ing approximations:

cos
f+

2
< −

p

2

v − v̄

v̄
, cos

f−

2
< −

p

2

v − v̄

v̄
+ j,

sin
f±

2
< 1.

Solutions to the equationsD3svd=0 andD4svd=0 give three
exciton-polariton frequencies at the Brillouin zone edgeK
=p /d. Neglecting the nonradiative damping rateG in (4),
they can be written as

v1,2= v0 +
1

2
sd − V8d ±

1

2
Îsd − V8d2 + 4

na

nb
D2, s10d

v3 = v̄ +
nb

na
V8,

where

d = v̄ − v0, V8 =
jsna − nbd

pnb
v̄ andD =Î 2

p
v̄G0.

In the absence of the dielectric-constant mismatch, Eq.(10)
reduces to Eq. 12 in Ref. 16. The frequency atK=0 is found
from the equationD6svd=0 and given by

vsK = 0d ; v4 = v0 +
na − nb

2nb
jG0 < v0. s11d

The knowledge of the polariton frequencies atK=0 andK
=p /d permits one to determine the structure of allowed and
forbidden minibands. Figure 1 illustrates this structure as a
function of the detuningd. Actually, the figure shows the
evolution of a polariton band structure with variation of the
barrier thicknessb (or the periodd=b+a), provided five
other parametersa, v0, G0, na, andnb are fixed.

One can see that the double forbidden-gap structure turns
into a single minigap at two different values ofd. The first of
them satisfies the conditionv1=v4. At this value the allowed
miniband between two forbidden gaps becomes completely
dispersionless and, in fact, vanishes. The exact value of the
periodd where it happens can be presented in the form

dBrsna,nbd = dBrsnbd + sna − nbdF 2

p
dBrsnbdarctan

sinsv0naa/cd
na + nb + sna − nbdcossv0naa/cd

−
a

nb
G , s12d

where

dBrsnbd = spc/v0nbd s13d

defines a Bragg structure in the absence of the contrast. It can
be shown that the perioddBr defined by Eq.(12) in fact
satisfies the conditionD1sv0d / s1−rba

2 d=−1 or D3sv0d=0
similar to that given by Eq. 23 in Ref. 22. The physical
meaning of this condition becomes clear if one realizes that
in this case the exciton frequencyv0 coincides with the
lower frequency boundaryvPC of the respective band gap in

a passive(i.e., without excitons) PC characterized by the
same indices of refraction. Then the conditionv0=vPC can
be recast in the form

KPCsv0ddBr = p, s14d

where KPC is the wave number of electromagnetic waves
propagating in the respective PC. Equation(14) clearly dem-
onstrates that the Bragg condition in MQW photonic crystals
has essentially the same form as the one in optical lattices:
wavelength of electromagnetic waves in a medium without

FIG. 1. Allowed minibands(white) and forbidden minigaps
(gray) for propagation of light through MQW structures with a con-
trast of refraction indices in dependence on relative detuning of the
characteristic frequencyv̄ from the exciton resonance frequency
v0. The boundary curves 1–4 describe the exciton-polariton fre-
quencies(10), (11) at the Brillouin-zone edge and center. The fol-
lowing parameters are taken in the calculation:G0/v0=7310−5,
na/nb=1.1, anda/b=0.05.
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excitons taken at the exciton frequency must be equal to the
doubled period of the structure. The only difference is that in
optical lattices, the wavelength is determined by a standard
linear form for electromagnetic dispersion law, while in
MQW PCs this dispersion law is determined by a dispersive
equation, Eq.(6), for passive photonic crystals.

In the case of small contrast, the exact condition, Eq.(14)
can be presented in a simple formv0=vr −Dr, which is, of
course, equivalent to Eq.(12). Herevr =pc/ f2snbb+naadg is
the center of the band gap in the passive PC andDr
=2vrurbausinsvrnaa/cd /p is the half-width of this gap.
Analysis shows that taking into account radiative coupling
between excitons does not change the position of the center
of the band gap, which remains at frequencyvr, but it modi-
fies the half-width of the stop band. In the presence of both
radiative coupling and the refractive index contrast, the half-
width is given by the following expression:

Dc < ÎDr
2 + DOL

2 , s15d

whereDOL is the half-width of the forbidden gap in structure
without the contrast and is given by well-known expression12

DOL =Î2v0G0

p
. s16d

A single-gap miniband structure is also realized atv̄, sat-
isfying the equationv1=v3. It is a case of the accidental
degeneracy of the two exciton-polariton states at the point
K=p /d. Therefore, the disappearance of one forbidden gap
can be considered an effect of crossing the statesv1 andv3.
Since these states have different symmetries(one is symmet-
ric and another is antisymmetric with respect to the reflection
in the interface plane), the states do not couple, and an ex-
pected anticrossing effect does not occur.

III. DISPERSION EQUATION FOR EXCITON
POLARITONS IN MQW WITH COMPLEX

ELEMENTARY SUPERCELL

In this section we analyze the dispersion properties of
polaritons in MQW optical lattices with several wells in an
elementary supercell. Thus, we neglect here the contrast in
the indices of refraction of wells and barriers, which was
studied in the previous section in the case of structures with
a simple basis.

Let us enumerate the quantum wells in the periodic struc-
ture by the pair of indicesm and j , where m= . . . ,−2,
−1,0,1,2. . . numerates elementary supercells, andj
=1,2, . . . ,n is the well’s number inside the supercell. As the
elementary supercell, we choose a region between two
planes shown by vertical dashed lines in Fig. 2. One of the
planes lies in the middle between the centers of the last well
in the supercellm−1 and the first well in the supercellm,
and the second plane is in the middle between the centers of
the last well in the supercellm and the first well in the

supercellm+1. The transfer matrix,T̂, for a supercell can be
written as the product

T̂ = p
j=1

n

T̂j , s17d

where T̂j is the transfer matrix through the three-layer sub-
system that consists of the quantum wellj and the halves of
the adjacent barriers. This matrix can be expressed in terms
of the reflection and transmission coefficients

T̂j =
1

tj
Stj

2 − rLjrRj rRj

− rLj 1
D , s18d

wheretj is the transmission coefficient of the three-layer sub-
system with the wellj , and rLj and rRj are the reflection
coefficients from the subsystem for the electromagnetic wave
incident from the left and from the right, respectively. In
each well only the ground-state exciton resonancev0j is
taken into account, unless otherwise is stated. The exciton
frequenciesv0j in different wells can be different or coin-
cide, but the possible difference is assumed to be small in
comparison with the spacing between the ground- and
excited-state exciton levels.

If one neglects the mismatch between the background di-
electric permeabilities of the quantum well,ea, and the bar-
rier, eb, then, in the vicinity of the exciton resonance, the
reflection and transmission coefficients can be presented as

tj = eikd̄js1 + Zjd, rLj = eikdLjZj, rRj = eikdRjZj , s19d

where

Zj =
iG0j

v0j − v − isG0j + G jd
.

Here k=sv /cdnb, nb=Îeb, G0j and G j are the exciton radia-
tive and nonradiative decay rates in the well of the sortj , and
dLj and dRj are the distances between the center of thej-th
well and the center of the well situated to the left or to the

right from the j th well, respectively,d̄j =sdLj +dRjd /2. Let us

note thattj
2−rLjrRj=e2ikd̄js1+2Zjd and the matrix(18) can be

presented in the form

T̂j = T̂0sd̄jd + iSjsvdT̂8sdRj,dLjd, s20d

where

FIG. 2. The periodic structure with two quantum wells(dark
rectangulars) in the elementary supercell. Indicesm and j enumer-
ate the supercells and quantum wells inside one supercell.
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T̂0sd̄jd = Seikd̄j 0

0 e−ikd̄j
D ,

T̂8sdRj,dLjd = S − eikd̄j − eiksdRj−dLjd/2

eiksdLj−dRjd/2 e−ikd̄j
D ,

and

Sjsvd =
G0j

v − v0j + iG j
. s21d

Therefore each component of the transfer matrixT̂jsvd as a
function of complex variablev=v8+iv9 has the same pole
of the first order at the frequencyv0j −iG j where the trans-
mission tj is zero. Hence the sumT11+T22 has poles of the
first order at all frequenciesv0j − iG j s j =1, . . . ,nd and this
sum is real as soon asG j =0 and the frequencyv is real. This
property allows one to represent rhs of Eq.(1) in the form

1

2
sT11 + T22d = coskd+ o

j=1

n

Cj
sndSjsvd, s22d

where the coefficientsCj
snd are real. It is worthwhile to stress

that the functionsSjsvd do not contain the radiative decay
rates G0j in their denominators, in contrast toZjsvd. The
reason is that, first,G0j describes the strength of the photon-
exciton interaction that leads to the formation of exciton po-
laritons and, secondly, in an infinite periodic structure and in
the absence of the nonradiative decay, this interaction do not
result in the absorption of the polaritons.

In a structure with one quantum well in the elementary
supercell this dispersion law is reduced to Eq.(5),12 where
the periodd is merely the distance between the nearest quan-
tum wells.

Here we present the dispersion equation for the normal
light waves in a periodic structure with alternating quantum
wells of two kinds(Fig. 2). After the substitution of Eqs.(18)
and (19) to Eq. (22), the dispersion law can be reduced to a
rather simple form:

cos2sKd/2d = G1sv,d/2dG2sv,d/2d − S1svdS2svdsin2skd/2d,

s23d

where the period of the structured is equal to the sumd1
+d2, d1,2 are the distances between the nearest-neighbor
wells (Fig. 2), d=d2−d1, and

Gjsv,ld = coskl + Sjsvdsinkl. s24d

In two particular cases, the dispersion equation(23) turns
to Eq.(5). Indeed, if there are no excitonic states in the wells
with even numbers,(i.e., G02=0), then Eq.(23) becomes

cos2sKd/2d = cosskd/2dG1sv,d/2d or cosKd = G1sv,dd

and, therefore, coincides with Eq.(5). Another limiting case
is a structure with the identical wells 1 and 2 andd1=d2
=d/2. It is nothing more than a multiple quantum well-
structure with the periodd/2 and one well in the elementary

supercell. As a result, Eq.(23) reduces to Eq.(5), where the
periodd must be replaced byd/2.

As has been shown in Ref. 13, a resonant Bragg
structure with the perioddBr satisfying the condition given in
Eq. (13) has a forbidden gap in the interval between the
frequencies v0−D and v0+D, where D is
given by Eq.(16) (in this section we drop subindexOL). In
structures with the periodd=NdBr exceeding that of a con-
ventional resonant Bragg structure by the integer factorN,
the width of the forbidden gap 2DN decreases by a factor of
ÎN. This can be shown by expandingGsv ,dd in Eq. (5)
in powers of v−v0. In addition, it follows from Eq.
(23) that, in structures with two identical wells in the el-
ementary supercell and the interwell distancesd1,2=N1,2dBr,
the width of the forbidden gap is given by
2Î2/sN1+N2dD.

We provide the detailed analysis of Eq.(23) for a few
specific structures. First of all, we consider the structures
with the elementary supercells containing two identical
quantum wells with arbitrary distancesd1,2. In this case, the
dispersion equation(23) can be rewritten in the form with a
factorized right-hand side, namely, cos2sKd/2d=D+D−,
where

D± = cosskd/2d + Ssvdfsinskd/2d ± sinskd/2dg. s25d

There are several resonant structures satisfying particular
conditions imposed on their geometrical characteristics. Let
the period of the structure satisfy the Bragg condition,d
=dBr. While analyzing the dispersion of exciton polaritons,
we neglect the nonradiative exciton decay and setG=0. The
sequence of allowed minibands and forbidden gaps is deter-
mined by the frequencies of exciton polaritons at the points
K=0 andK=p /d. The four frequencies at the edge of the
Brillouin zone are solutions of the equationD+D−=0, and
they are given by

v±
s1d = v0 ± DÎ1 + sinskd/2d, v±

s2d = v0 ± DÎ1 − sinskd/2d.

s26d

The two frequencies at the center of the Brillouin zone,K
=0, are equal tov±

s3d=v0± I0 secskd /2d. The interval between
v−

s3d andv+
s3d is a narrow forbidden gap surrounded by a pair

of allowed windows(or minibands):

v−
s2d , v , v−

s3d andv+
s3d , v , v+

s2d

which, in their turn, are sandwiched between the forbidden
gaps

v−
s1d , v , v−

s2d andv+
s2d , v , v+

s1d.

When decreasing the distance between the wells in the el-
ementary supercell the allowed windows converge while the
forbidden gaps increase and tend toÎ2D. This can be under-
stood by taking into account that the limitd1→0 corre-
sponds to the structure with one quantum well in the elemen-
tary supercell and the doubled exciton radiative decay rate,
2G0. In the opposite case, where the wells are equally sepa-
rated in the structure, the frequenciesv−

s1d ,v−
s2d (or v+

s1d ,v+
s2d)

coincide, and the lower and higher gaps disappear; only the
central narrow gap survives. This result also follows from the
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fact that whend1=d2 the structure under consideration is the
regular structure with a simple elementary supercell, but with
the period two times smaller than the Bragg widthdBr. It
corresponds to the so-called anti-Bragg case with the small
gap 2G0.

31

The next resonance geometry concerns a structure with
the periodd being twice as thick as the Bragg period and an
arbitrary ratiod1/d2. In this case, there is one narrow gap
embracingv0 and two wide gaps on the opposite sides ofv0.
To analyze the spectrum in the vicinity of this frequency, it is
convenient to subtract unity from both parts of Eq.(23) and
to transform this equation into sin2sKd/2d=D+8D−8, with

D±8 = sinskd/2d − Ssvdfcosskd/2d ± cosskd/2dg. s27d

The smallest gap is defined by the conditionuv−v0u
øG0usins2pd1/ddu, while the wide gaps lie between the fre-
quenciesv=v0±D sinspd1/dd andv=v0±D cosspd1/dd as
shown in Fig. 3. Asd1→0, d/2 or d, the wide gaps merge
and form a single gap defined byuv−v0uøD. We note that
here, in accordance with the discussion in the paragraph after
Eq. (16), the band gap isÎ2 times smaller than in the case
d=dBr, d1→0.

The next example is a structure with two wells in the
elementary supercell with the same values of the exciton
frequencies and the nonradiative decay rates,v01=v02;v0
and G1=G2;G, while the relation betweenG01 and G02 is
arbitrary. Let the distances between the wells coincide,d1
=d2=d/2, and satisfy the Bragg conditionsv0/cdnbsd/2d
=p. In the frequency regionuv−v0u!v0, the dispersion of
the exciton polaritons consists of two branches

v − v0 = ±Î 1

p
sG01 + G02dv0 +

1

4p2S2p

d
− KD2

− iG,

s28d

the same as in a periodic system of identical quantum wells
with the periodd/2, the exciton resonance frequencyv0 and
the radiative decay ratesG01+G02d /2.

Now we consider a structure with a close pair of quantum
wells, d1!d2<d, which differ both in the radiation decay
ratesG0i and the exciton frequenciesv0i. In the limit d→d
Eq. (23) takes the form

cosKd = coskd+ S G01

v − v01 + iG1
+

G02

v − v02 + iG2
Dsinkd.

s29d

It is interesting to compare this result with the polariton dis-
persion law in a structure with a simple elementary supercell,
but with two exciton frequencies taken into account. In gen-
eral, the coupling of the electromagnetic field with the exci-
tonic states leads to the radiative decay ratesG01 andG02 as
well as to a renormalization of the exciton frequencies. How-
ever, if one neglects this renormalization, which is valid if
ka!1, wherea is the width of the quantum well, then the
exciton dispersion relation coincides with Eq.(29).

As the final example, let us consider the same two-well
compound structure, the interwell spacingd/2 and different
exciton frequenciesv01 andv02. The dispersion equation of
the excitonic polaritons in such a structure has the simple
form

cos2sKd/2d = G1sv,d/2dG2sv,d/2d. s30d

One can see that the set of polariton frequencies at the edge
K=p /d consists of those in the two independent structures
with one quantum well, either 1 or 2, in the supercell and the
period d/2. Assuming thatG01=G02;G0 and the periodd
satisfies the Bragg condition at the average frequencyv̄
=sv01+v02d /2, (i.e., v̄nbd/c=p), we obtain a set of four
frequencies atK=p /d,

v1
s±d = v̄ +

v21

4
±ÎSv21

4
D2

+ D2,

v2
s±d = v̄ +

v21

4
±ÎSv21

4
D2

+ D2, s31d

wherev21=v02−v01 andD is defined according to Eq.(16).
A special case, when two band gaps coalesce to form a single
wide band gap, is realized when the frequency spacingv21
equalsÎ2D. Under this condition, the width of the forbidden
gap is 2Î2D.

Using the general Eqs.(1), (18), and(19), one can prove
that, for periodical structures containingn=2,3,4, . . .quan-
tum wells in the elementary supercell with equal distances
d/n between them, the dispersion equations take the form

cosKd = 2G1
s2dG2

s2d − 1 sn = 2d,

FIG. 3. The dependence of the position and the width of the
forbidden minigaps upon the distanced1 between the quantum
wells in the elementary supercell of the periodic structure with the
period satisfying doubled resonant Bragg conditionsv0/cdnbsd1

+d2d=2p. Bright and dark regions correspond to the bands and
forbidden gaps, respectively. The third forbidden banduv−v0u
øG0usins2pd1/ddu is indistinguishable on this scale sinceG0!D.
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cosKd = 4G1
s3dG2

s3dG3
s3d − sG1

s3d + G2
s3d + G3

s3dd sn = 3d,

s32d

cosKd = 8G1
s4dG2

s4dG3
s4dG4

s4d − 2sG1
s4dG2

s4d + G2
s4dG3

s4d + G3
s4dG4

s4d

+ G4
s4dG1

s4dd + 1 sn = 4d,

where

Gj
sndsvd ; Gjsv,d/nd = cosskd/nd + sinskd/ndSjsvd.

s33d

Formally, the structure of the right-hand sides of these equa-
tions can be obtained by expanding coskd with respect to
powers of cosskd/nd,32

coskd= o
l

Ml
snd coslskd/nd = 2n−1 cosnskd/nd

−
n

1!
2n−3 cosn−2skd/nd +

nsn − 3d
2!

2n−5 cosn−4skd/nd

−
nsn − 4dsn − 5d

3!
2n−7 cosn−6skd/nd + ¯

and replacing coslskd/nd by symmetrized products ofl func-
tions Gj

sndsvd, so that cosn−2skd/nd turns to

cosn−2skd/nd → 1

n
fUns1;n − 2d + Uns2;n − 1d + Uns3;nd

+ ¯ + Unsn;2n − 3dg, s34d

where

Unsl ;n − l8d = p
j=l

n−l8

Gj
snd, Unsl ;n + l8d = Uns1;nd

Uns1;l8d
Uns1;l − 1d

.

s35d

The coefficientMl=0
snd independent of cosskd/nd remains un-

changed. Let us note that Eq.(32), for n=2 coincides with
Eq. (30) since cos2sKd/2d=s1+cosKdd /2.

Taking into account PC effects(refraction index contrast)
in systems with complex elementary supercells makes a con-
sideration of the polariton spectrum much more complicated.
Therefore, we will restrict ourselves by presenting here a
general form of the polariton dispersion equation for a two-
well structure, which in the optic lattice case is described by
Eq. (30). Taking the contrast of the indices of refraction into
account, we have to introduce separately well and barrier
thicknesses,aj ,bj, which, however, in this structure are inde-
pendent ofj , i.e., a1=a2;a, b1=b2;b so that the period of
the structure equals 2sa+bd. The dispersion equation for ex-
citon polaritons in this case can be written as

cos2sKd/2d = G1sv,d/2dG2sv,a,bd

+
F1 + F2S1svd + F3S2svd + F4S1svdS2svd

1 − rba
2 ,

s36d

where

F1 = 1 − cossk−ad − rba
2 f1 − cossk+adg,

F2 = − fsinsk−ad + 2rba sinskaad + rba
2 sinsk+adg,

F3 = sinsk−ad + 2rba sinskbad − rba
2 sinsk+ad,

F4 = 1 − cossk−ad + 2rbafcosskbad − cosskaadg

+ rba
2 f1 − cossk+adg,

k±=ka±kb. One can check that, atna→nb, this equation
transforms into Eq.(30). The numerical solution of this
equation will give form of polariton spectrum, including po-
sitions and widths of polariton stop bands. A more detailed
analysis of this equation will be presented elsewhere.

IV. REFLECTION SPECTRA

The reflection spectrum of a structure containing 10 pairs
of identical quantum wells is shown in Fig. 4. The calcula-
tion has been performed using the following parameters:d
=2dBr, d1/d=0.1,G0=G=7310−5v0. We have taken into ac-
count that the transfer matrix for any symmetrical inhomo-
geneous layer can be written in terms of its reflectionsRd
and transmissionsT d coefficients as

T̂ =
1

TST 2 − R2 R
− R 1

D . s37d

For a layer of the widthd with two identical quantum wells
inserted symmetrically inside the layer, the coefficientsR
andT have the form30

R2 = ieikdS 1 − cosf

V + is1 − hd
−

1 + cosf

V + is1 + hdD , s38d

FIG. 4. The evolution of the reflection spectrum with increasing
the number of supercells in the structure withd1/d=0.1 and the
period satisfying the doubled Bragg condition. Curves 1, 2, 3 are
calculated forN=10, 40, and̀ correspondingly.
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T2 = eikdF1 − iS 1 − cosf

V + is1 − hd
+

1 + cosf

V + is1 + hdDG ,

where V=sv−v0+ iGd /G0, f=kd1, d1 is the interwell dis-
tance andh=eif.

Figure 4 shows the reflection spectrum fromN such pairs
with the period satisfying the double Bragg condition

ksv0dd=2p. The transfer matrixT̂ sNd of such a system has
the same form(37), with R andT replaced by the reflection
sRNd and transmissionsTNd coefficients of the whole system.
This transfer matrix is obtained from the transfer matrix
through a single supercell by raising the latter to theNth
power. If one neglects a small frequency variation of the
wave vectorksvd=nbv /c and replacesksvdd with 2p then
one can see that the coefficientsRN= uRNu2 andTN= uTNu2 as
functions ofv and d1/d possess some important symmetry
properties. First, the substitutiond1/d→ s1/2d+sd1/dd leads
to

sinf → − sinf, cosf → − cosf, h → − h,

and, therefore,

R2 → − R2, T2 → T2, T̂ sNd → T̂ sNdT, s39d

RNSv − v0;
d1

d
D = UT21

sNd

T22
sNdU2

= RNSv − v0;
1

2
+

d1

d
D ,

becauseuT21
sNdu= uT12

sNdu. Similarly, the change

d1

d
→ 1

2
−

d1

d

leads to

v − v0 → − sv − v0d, sinf → sinf, cosf → − cosf,

R2 → − R2
* , T2 → T 2

* , T̂ sNd → T̂ sNd†

and, as a result,

RNSv − v0;
d1

d
D = RNSv0 − v;

1

2
−

d1

d
D

= RNSv0 − v;1 −
d1

d
D . s40d

Let us notice that infinite periodic structures with the inter-
well distance in the elementary supercell equal tod1 and d
−d1 are identical. Meanwhile, such structures with afinite
number,N, of quantum wells are not. Indeed, the first struc-
ture, with the distanced1, can be denoted by 1212. . .12,
where the numbers 1 and 2 enumerate the wells in the el-
ementary cells. The second one with the interwell distance
d−d1 can be presented as 2121. . .21 (i.e., it containsN−1
pairs 12 with two additional wells 2 and 1 grown at the
distanced2=d−d1 from the leftmost well 1 and the rightmost
well 2, respectively). For large enough values ofN, the effect
of the last well on the reflection coefficientRN can be ne-
glected. On the contrary, the first well can changeRN sig-
nificantly and, thus, valuesRsv−v0;d1/dd and Rsv0

−v ;d1/dd differ due to this front-well effect.
Two wide peaks in Fig. 4 are caused by two forbidden

gaps in the spectrum of the infinite periodic structure(see
Fig. 3). The values ofR` differ from 1 at these regions due to
a finite exciton nonradiative decay. Approximately one spec-
tral peak can be obtained from the other by reflection in the
vertical line passing through the resonance frequencyv0.
With increasingN, this symmetry property improves. How-
ever, in the vicinity ofv0 the spectrum is essentially asym-
metric. The asymmetry survives even in the limitN→`.
This result follows from a comparison of the coefficients
R`;R`sv−v0;d1/dd and R8`;R`sv−v0;1−d1/dd. In-
deed, the semi-infinite structure 1212. . . differs from the
structure 2121. . . by the front well. As a result,R` andR8`

can be related by

R8` = eikdSr +
t2R`eikd2

1 − rR`eikd2
D

= eikdR` + eikd1r
s1 +R`eikd2d2

1 − rR`eikd2
, s41d

where r ;Z=iG0/ fv0−v−isG0+Gdg and t=1+r are the re-
flection and transmission coefficients for a single well,R`

=R2/ s1−T2e
iKdd, and K is the wave vector of an exciton

polariton at the frequencyv in the infinite structure. One can
see that the absolute valuesuR`u and uR8`u are different due
to the second term in the right-hand side of Eq.(41), which
is proportional tor and has the half-width of the order of
G0+G. Taking into account the symmetry relation(40), one
can say that the values of the reflectivityR` at the frequen-
cies v=v0±dv can essentially differ in the regiondv,G0
+G. The calculation illustrated in Fig. 4 confirms this con-
clusion.

If the nonradiative decay is neglected,G=0, one has a
total reflection in the region of the forbidden gaps. In this
case, the coefficientsR` and R8` can be represented as
expsiFd and expsiF8d respectively, where the phasesF, F8
are complicated functions of the frequency. It follows from
Eq. (41) that they are related by

F8 = F + kd+ 2 arctan
G0f1 + cossF + kd2dg

v0 − v + G0 sinsF + kd2d
.

In the frequency region between the wide peaks, the reflec-
tivity Rsvd contains a set of narrow maxima and minima. As
N→`, the set turns into a pair of narrow maximum and
minimum located symmetrically with respect tov0.

The reflection coefficient of a pair of wells with the dis-
tanced1 between them, satisfying the Bragg condition and
with the same values ofv0 andG but with different radiative
decay ratesG01ÞG02, coincides with the reflection coeffi-
cient of a single well with the radiative decay rate equal to
G01+G02. Therefore the reflectivity of a structure withN such
pairs and the periodd=2d1 is the same as that of a resonant
Bragg structure with 2N identical wells, characterized by the
exciton radiative decay ratesG01+G02d /2.

The reflection spectra shown in Fig. 5 illustrate properties
of the structure with two wells in the elementary supercell
and different exciton resonance frequencies,v01Þv02. Let
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the wells be situated equidistantly, and the distance between
them d1=d/2 meets the resonant Bragg condition for the
frequencyv01, i.e., ksv01dd1=p. When frequenciesv01 and
v02 coincide, the reflection coefficient of the structure con-
sisting of N pairs equals to the reflection coefficient of a
Bragg structure with 2N identical wells and has a Lorentz-
type shape with half-width 2NG0+G. When v02Þv01 and
uv02−v01u@maxhG0,Gj the reflection peak splits onto two
narrower peaks at the frequenciesvmax,1=v01 and vmax,2
<v02, with the half-widths close toNG0+G. Each peak is
produced by the corresponding subsystem of quantum wells.
With increasing the differencev02−v01, the peak atv01 be-
comes more symmetric while the second peak reveals a nar-
row dip nearvmax,2. Such a spectrum is reminiscent of spec-
tra obtained in Refs. 24, 25, and 27 for systems with so-
calledV-defects, in which one or several wells are replaced
with wells characterized by a different exciton frequency.
This resemblance can be understood by realizing that the
system considered here is a structure, in which theV-defects
are introduced in place of every other well.

V. CONCLUSION

In this paper, the theory of multiple quantum well photo-
nic crystals has been developed in two directions. First, we
gave a complete picture of a polariton spectrum in systems
where radiative coupling of excitons and interface scattering
of electromagnetic waves due to refraction index contrast
between wells and barriers play equally important roles. We
clarified the physical meaning of the Bragg condition in this
case, and showed that it can be formulated in the form of a
standard relation between wavelength of exciton radiation
and the period of the structure. In this relation, however, the
wavelength should be determined from a modified dispersion
equation describing electromagnetic waves in a passive(i.e.,
without excitons) photonic crystals. In the approximation of
small contrast, we found a simple expression for the width of
the polariton stop band, which turned out to be equal to a
“pythagorean” sum of band widths of respective optical lat-
tice and passive photonic crystal.

Second, we developed a theory of exciton polaritons in
compound one-dimensional photonic crystals. It has been
shown that the dispersion equation has the form cosKd
=Fsvd, whereFsvd as a function of the complex frequency
v has poles at the resonance frequenciesv0j −iG j of the “me-
chanical” excitons in quantum wellss j =1,2, . . .d constitut-
ing the elementary supercell. In important particular cases,
Fsvd can be represented in an analytical form, permitting
one to investigate explicitly the dependence of the polariton
spectrum and the structure of the forbidden minigaps upon
the exciton parameters and the geometrical characteristics of
the photonic crystal. This investigation allows one to draw a
conclusion that the compound structures are promising from
the application point of view, because at the same length of
the period of the structure the forbidden gap and, therefore,
the modification of the electromagnetic wave spectrum due
to interaction with excitons can be essentially amplified.
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