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Multiple-quantum-well-based photonic crystals with simple and compound elementary supercells
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Exciton polaritons in one-dimensional photonic crystals based on multiple quantum well structures are
investigated. The effects due to interplay between resonant interaction of light with quantum well excitons, and
light scattering from well-barrier interface, are elucidated. Polariton dispersion equations and reflection spectra
in structures with two wells in an elementary supercell of the periodic structure are studied. Several examples
of different compound elementary supercells are considered. Special attention is paid to structures with the
period or the distance between quantum wells satisfying the resonance Bragg condition. Such structures are
characterized by a presence of a larger-than-usual polariton stop band. It is shown that in structures with a
complex elementary supercell, the width of such a stop band can be significantly enhanced in comparison to
that in simple structures.

DOI: 10.1103/PhysRevB.70.195106 PACS nuniber42.70.Qs, 78.67.De, 71.36c, 71.35-y

I. INTRODUCTION for creating MQW structures of a very high quality with
The physics of structures with periodically modulated di-V&lues of parameters that can be varied within a wide range.
electric permeability allowing for Bragg diffraction of light '€ main difference between multiple quantum wells and a
(photonic crystalsis an exploding field that attracts both P&SSIVe one-dimensional PC lies in the role played by radia-
fundamental and technological interegtee Ref. 1, and ref- Uve coupling between excitons in different quantum wells.
erences therejnDepending upon the type of modulation one This coupling is particularly important when the period of

can consider three-, two-, or one-dimensional photonic Cryst_he structure is comparable with the wavelength of light at

o s . the exciton frequency?® In this case, radiation induces a
ta_lls. In its S|mplest_ realization, a photo_nlc CrysQﬁ[_?) con- strong coherent interaction between excitons of different
sists of two materialsA and B, with different indices of

. : : wells, which leads to a significant modification of both dis-
refraction, which are assumed to be constant in the frequeng g

. ! X . . . persion of electromagnetic waves propagating in such a
region of interest. One-dimensional photonic crystals of thisscture and radiative dynamics of the quantum well exci-

kind are simply periodic multilayer structures, which were s particularly drastic changes occur in so-called Bragg
|ntens_|ve3Iy5 studied in the padtbut still attract significant  pmQw structures, in which oscillator strength of all but one
attentionz—>An assumption of frequency independent dielec-mode vanishes, and the strength of coupling of the remaining

tric constant in such structures implies absence of internghode with radiation becomes proportional to the number of
excitations of the medium in a given frequency region; therewells in the structuré®

fore, such structures are sometimes called passive photonic In the limit of infinitely long periodic structures, the ra-
crystals. If, however, one of the materials constituting a PCdiative coupling gives rise to a photonic band structure with
has dipole active internal excitations in the PC’s operationathe largest photonic stop-band in the vicinity of the exciton
frequency region, the assumption of constant indices of refrequency. Since in this frequency region light most strongly
fraction breaks down, and one has to take into account freinteracts with excitons forming polaritons, we shall call this
quency dispersion of the dielectric permeability. Such strucregion a polariton stop-band. The formation of this polariton
tures, which can be called optically active or resonant PCbhand-gap is not related to the scattering of light due to the
were earlier considered in Refs. 6-8, and has recently beespatial modulation of the refractive index; it exists even in
enjoying growing interest:*! the absence of a dielectric contrast between different layers
A special class of resonant PCs arises when one consideo$ the structure. For this reason, the systems of this kind
periodical structures with semiconductor quantum dotsshould be classified as a semiconductor analog of optical
quantum wires or quantum wef$:1® External excitations in  lattices?® which are usually understood as periodic arrange-
these materials are excitons affected by quantum confingnents of atoms in vacuum or a homogeneous dielegtric.
ment in zero, one, or two dimensions respectively. Multiple Thus, we can distinguish between two essentially differ-
quantum wellstMQW), which form one-dimensional peri- ent mechanisms of formation of band structure: periodically
odic structures, are of most interest from a practical point oimodulated coupling between light and internal excitations of
view. This is because existing growing technologies allowa medium in optical lattices, and light scattering from spatial
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inhomogeneities of dielectric constant in PCs. In real MQWa quantum well in its middle. A dispersion equation relating
structures, however, radiative coupling coexists with the dithe Bloch wave numbeK and the light frequencw can be
electric mismatch between wells and barriers. Thereforewritten in terms of the elements of this transfer matrix’as
propagation of light in MQWs is controlled by an interplay 1

between radiative couplin¢pptical lattice mechanisjrand cosKd=3(Ty1 + Ty, @)
scattering from well-barrier interfacegphotonic crystal
mechanism While the contrast in the indices of refraction of
wells and barriers was taken into account in some earlie

calculations of the reflection coeficients of MQW by indices of refractiom, andny, respectively, this equation

stru_cture%z Q”d in the analysis of the modification of th_e can be presented in the following convenient analytical form:
exciton oscillator strength due to presence of cladding
layers?® the general picture of the polariton spectrum in such D; +D,Sw)

structures has not yet been elucidated. One of the objectives cosKd =G(w,a,b) = 1-2 " )
of this paper is to give a complete theory of polariton disper- ba

sion and optical spectra of optically active one-dimensionathere

whereT is the w-dependent transfer matrix through the pe-
riod d. Using results of Ref. 22 and assuming that the well
find barrier layers have widtlessandb and are characterized

PC structures based on multiple quantum wells, in which
radiative coupling and interface scattering play equally im- D, =cos¢, - rgacos¢_: (1 —rﬁa){cosaﬁé1 COS ¢y,
portant roles.

Another important extension of the theory of resonant 1/n, ny\ . .
PCs, which we introduce in this paper, involves consider- _5<n_+n_)sm $asingy |,
ation of periodic structures with more than one well in an b Ta
elementary supercell. While previous studies were mostly . P .

D, =sin¢, + 1y, Sin ¢_ — 2rp, Sin ¢y, 3

concerned with structures having a simple basis consisting of
a single sphere, cylinder, or a quantum well, extending CoNg. =k.a, Pp=kob, ¢.=kob*ksa, kyp=(w/C)Nyp, Tpa=(Np
sideration to more complicated structures would give more_p y/(n, +n,) and the single-pole functio®(w) is defined as
flexibility in designing structures with desirable optical char-

acteristics. It was shown, for instance, that by including one Sw) = Iy (4)

or several “defects” in an MQW structua well with dif- w-wy+il

ferent characteristics, increased distance between adjacent . L .
wells, etc), one can significantly modify optical properties of Hereaftery andI’ denote exciton radiative and nonradiative

the structures allowing for engineering spectra with pre-decay rates, respectively. In the limig—n;, one hasry,
defined propertie¥27 Introducing structures with a com- — 0+ ¢+—kd and G(w,a,b) = G(w,d), where the function
plex basis further extends capabilities to design the opticaP(«.d) determines the polariton dispersion equation in the
properties of materials. From experimental and technologicabsence of the mismatth

points of view, growing periodic MQW structures with sev- cosKd=G(w,d), G(w,d)=coskd+ S(w)sinkd. (5)

eral wells in a supercell does not involve significant difficul-

ties, and actually such structures have already been studié the other hand, in the absence of the exciton contribution,

experimentally in Refs. 28 and 29, where reflection of lightEd. (2) transforms into the standard dispersion equation,

from structures with alternating quantum wells of two kinds D, (o)
has been considered. In the present paper, we derive disper- cosKd = 12 (6)
sion equations for exciton polaritons in one-dimensional Mba

MQW based photonic crystals with a complex basis consistfor the normal light waves in an optical superlattfc®.
ing of several quantum wells, and analyze the reflection Equation(2) can be rewritten in two equivalent forms:
spectrum of such structures.

Kd DD, Kd DgDg

oS — = orsif—=——> 7
Il. EXCITON POLARITONS IN MQW PHOTONIC 2 1- Mba 2 1- Mba
CRYSTALS WITH A SIMPLE SUPERCELL: ROLE OF THE with factorized right_hand Sides, where
REFRACTIVE INDEX CONTRAST .
D3 = C0i¢+/2) ~Tpa COS(¢—/2): D5 = S|m¢+/2)
As it has been explained in the Introduction, an accurate .
description of optical properties of MQW in the region of an ~Tpa Sin(-12), (8)
exciton resonance requires taking into account both mecha- ,
nisms of interaction between light and a MQW: radiative Dy =04 ¢:/2) + Ipa COLP-12) + Hw)[SIN($./2)
coupling to excitons and interface scattering due to mismatch —IpaSin(¢_/2)],
between dielectric properties of well and barrier layers. The
general effect of this mismatch on the exciton polaritons in Dg = SiN(¢h4/2) + r, SIN(¢_12) = S w)[co ,/2)
long-period quantum well structures has been previously
considered in Ref. 22. In particular, an expression for the ~I'paCog¢p/2)].

transfer matrixT was derived for a layer of the widtthwith ~ These forms are patrticularly convenient for analyzing polar-
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iton dispersion in quantum well structures, when exciton 0.02
resonance frequenay; is close to a characteristic frequency
w defined by 0.01 1 .
— 3
w(npb + na)/c= . (9) s 6.6 4
Naive consideration could lead to an expectation that this is Ig
the frequency at which the Bragg resonance in structures -0.01 | 2
with the refraction index contrast would take place. Reality,
however, is more complicated. Let us introduce the param- -0.02 .
eter é=k,(w)a which can be rewritten as(w/c)n,a -0.01 0.00 0.01
=many,(an,+bny) ™%, see the definitiori9). Assuming the pa- (@,

rameteré to be small, we can use in our analysis the follow-

ing approximations:

Solutions to the equatior3;(w)=0 andD,(w)=0 give three
exciton-polariton frequencies at the Brillouin zone edge
=/d. Neglecting the nonradiative damping rdtein (4),
they can be written as

1 1 n
w1 2= wot =(6-Q)) £ = \/(5— 02 +4-2A% (10
' 2 2 Ny

— N
w3:w+—bQ’,
a

where

— Ny — Np) — 2__
5= w — wy, Q’=Mw andA = [/ —ol,.
Ny w

In the absence of the dielectric-constant mismatch, (EQ).
reduces to Eqg. 12 in Ref. 16. The frequencKatO0 is found
from the equatiorDg(w)=0 and given by

2
dg(Ng,Np) = dg(Np) + (Ny — Ny) [ ;dBr(nb)arCtan

where

dg(Np) = (77¢/ wgy,) (13

defines a Bragg structure in the absence of the contrast. It can

be shown that the periodg, defined by Eq.(12) in fact
satisfies the conditiorDl(wo)/(l—rﬁa)=—1 or Ds(wp)=0

FIG. 1. Allowed minibands(white) and forbidden minigaps
(gray) for propagation of light through MQW structures with a con-
trast of refraction indices in dependence on relative detuning of the
characteristic frequencw from the exciton resonance frequency
wg. The boundary curves 1-4 describe the exciton-polariton fre-
quencieq10), (11) at the Brillouin-zone edge and center. The fol-
lowing parameters are taken in the calculatidly/ wy=7x 1075,
n,/ny=1.1, anda/b=0.05.

Ng— N,
w(K=0)= w;= wy+ — b

™ (11)

gro = .

The knowledge of the polariton frequencieskat0 andK
=/d permits one to determine the structure of allowed and
forbidden minibands. Figure 1 illustrates this structure as a
function of the detunings. Actually, the figure shows the
evolution of a polariton band structure with variation of the
barrier thickness (or the periodd=b+a), provided five
other parameters, wg, I'g, N,, andn, are fixed.

One can see that the double forbidden-gap structure turns
into a single minigap at two different values &fThe first of
them satisfies the conditian, = w,. At this value the allowed
miniband between two forbidden gaps becomes completely
dispersionless and, in fact, vanishes. The exact value of the
periodd where it happens can be presented in the form

sin(wgn,a/c) a

Ng + Np + (Ny = Ny)cog wpn&/c) Ny

: (12)

a passive(i.e., without excitons PC characterized by the
same indices of refraction. Then the conditiop=wpc can
be recast in the form

Kpd(wo)dg, =,

where Kpc is the wave number of electromagnetic waves

(14)

similar to that given by Eqg. 23 in Ref. 22. The physical propagating in the respective PC. Equati@4) clearly dem-
meaning of this condition becomes clear if one realizes thabnstrates that the Bragg condition in MQW photonic crystals

in this case the exciton frequenay, coincides with the

has essentially the same form as the one in optical lattices:

lower frequency boundanypc of the respective band gap in wavelength of electromagnetic waves in a medium without
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excitons taken at the exciton frequency must be equal to the =l =0 =l
doubled period of the structure. The only difference is that in
optical lattices, the wavelength is determined by a standard
linear form for electromagnetic dispersion law, while in
MQW PCs this dispersion law is determined by a dispersive
equation, Eq(6), for passive photonic crystals.

In the case of small contrast, the exact condition, (E4)

1

can be presented in a simple forg=w,—A,, which is, of d |
course, equivalent to Eq12). Here w,=wc/[2(nyb+n,a)] is i 1.
the center of the band gap in the passive PC and L d, ’ 'd2 12

=2w;|rpaSin(w,nalc)/ o is the half-width of this gap. o .

Analysis shows that taking into account radiative coupling F!G- 2. The periodic structure with two quantum weftiark
between excitons does not change the position of the cent&fctangularsin the elementary supercell. Indicesandj enumer-
of the band gap, which remains at frequenrgy but it modi- ate the supercells and quantum wells inside one supercell.
fies the half-width of the stop band. In the presence of both

radiative coupling and the refractive index contrast, the half- LN
width is given by the following expression: T=11 T, (17)
i=1
_ x2 A2 ~ .
¢ = VAT + A5, (15 whereT, is the transfer matrix through the three-layer sub-

_ ) ) _ system that consists of the quantum weéind the halves of
whereAq, is the half-width of the forbidden gap in structure the adjacent barriers. This matrix can be expressed in terms
without the contrast and is given by well-known expres%ﬁon of the reflection and transmission coefficients

2
2w ~ L1t -rrRy TRy
R (16) Tj—t_( o) (18)
T j Lj

A single-gap miniband structure is also realizedvasat- ~ Wheret; is the transmission coefficient of the three-layer sub-
isfying the equationw,;=ws. It is a case of the accidental system with the wellj, andr; and rg; are the reflection
degeneracy of the two exciton-polariton states at the poingoefficients from the subsystem for the electromagnetic wave
K=1/d. Therefore, the disappearance of one forbidden gafncident from the left and from the right, respectively. In
can be considered an effect of crossing the staieandw;. ~ €ach well only the ground-state exciton resonaagg is
Since these states have different symmeiiee® is symmet- taken into account, unless otherwise is stated. The exciton
ric and another is antisymmetric with respect to the reflectiorfrequencieswy; in different wells can be different or coin-
in the interface plane the states do not couple, and an ex-cide, but the possible difference is assumed to be small in
pected anticrossing effect does not occur. comparison with the spacing between the ground- and

excited-state exciton levels.
If one neglects the mismatch between the background di-

lll. DISPERSION EQUATION FOR EXCITON electric permeabilities of the quantum wed}, and the bar-
POLARITONS IN MQW WITH COMPLEX rier, &, then, in the vicinity of the exciton resonance, the
ELEMENTARY SUPERCELL reflection and transmission coefficients can be presented as
In this section we analyze the dispersion properties of ikd: ik, - ikdo:
y P prop t=€d(1+2), r,=éhz, rg=ekz, (19

polaritons in MQW optical lattices with several wells in an
elementary supercell. Thus, we neglect here the contrast ighere
the indices of refraction of wells and barriers, which was
studied in the previous section in the case of structures with

a simple basis.

Let us enumerate the quantum wells in the periodic struc- —
ture by the pair of indicesn and j, wherem=...,-2, Herek=(w/c)n,, ny=\e, I'o; andT are the exciton radia-
-1,0,1,2... numerates elementary supercells, ard tive and nonradiative decay rates in the well of the goand
=1,2,... nis the well's number inside the supercell. As the d,; anddg; are the distances between the center ofjttie
elementary supercell, we choose a region between twwvell and the center of the well situated to the left or to the
planes s_hoyvn by vgrtical dashed lines in Fig. 2. One of thejght from thejth well, respectivelyd;=(d,;+dg))/2. Let us
planes lies in the middle betwgen the cgnters of the last We“ote thatt?~r, = €2k4(1+2Z,) and the matrix18) can be
in the supercelim-1 and the first well in the superceth, ) HR !
and the second plane is in the middle between the centers Bfesented in the form
the last well in the supercelin and the first well in the

supercelim+1. The transfer matrixT, for a supercell can be
written as the product where

iry
ZJ = - .
Woj ~ W~ |(F0j + F])

T = To(dy) +iS (@) T (dey,cl ), (20
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'T'O(dj) = periodd must be replaced bg/2.

As has been shown in Ref. 13, a resonant Bragg
structure with the periodg, satisfying the condition given in
. —eikaj — gk(dgyd )12 Eqg. (13) has a forbidden gap in the interval between the
T (dgpdij)=| ., . - ) frequencies wg—A and wyt+tA, where A s

gkdij=dr)/2 g ikd given by Eq.(16) (in this section we drop subinde3L). In
structures with the period=Ndg, exceeding that of a con-
ventional resonant Bragg structure by the integer fabtor
T the width of the forbidden gapA3, decreases by a factor of
q(w):—ojf. (21) VN. This can be shown by expandir@(w,d) in Eq. (5)
= woj + T} in powers of w—w, In addition, it follows from Eq.
(23) that, in structures with two identical wells in the el-
ementary supercell and the interwell distandes=N; dg;,
the width of the forbidden gap is given by
2\,’2/(N1+N2)A.

We provide the detailed analysis of E@3) for a few
specific structures. First of all, we consider the structures
with the elementary supercells containing two identical
quantum wells with arbitrary distances ,. In this case, the

_ (eikdj 0 ) supercell. As a result, E¢23) reduces to Eq5), where the

0 gikd

and

Therefore each component of the transfer mafiiw) as a
function of complex variablews=w’ +iw” has the same pole
of the first order at the frequenayy;—il'; where the trans-
missiont; is zero. Hence the suy;+T,, has poles of the
first order at all frequenciesg;—il’j (j=1,...,n) and this
sum is real as soon 45=0 and the frequency is real. This
property allows one to represent rhs of KEt) in the form

1 n dispersion equatiof23) can be rewritten in the form with a
5(T11+ T,,) = coskd+ >, C"S(w), (22)  factorized right-hand side, namely, é@$d/2)=D,D_,
j=1 where

where the coefficient@}”) are real. It is worthwhile to stress D, = cogkd/2) + S(w)[sin(kd/2) + sin(k&/2)]. (25

that the functionsS(w) do not contain the radiative decay There are several resonant structures satisfying particular

ratesFOi mh thef|_r denc()jmlna_t;)rs, ;]n contrasrt] tZP((;];). 'Lhe conditions imposed on their geometrical characteristics. Let
reason is that, firsto; describes the strength of the photon-yne heriod of the structure satisfy the Bragg conditidn,

exciton interaction that leads to the formation of exciton po—_dB While analyzing the dispersion of exciton polaritons
- r- L

laritons and, secondly, in an infinite periodic structure and ir\/ve neglect the nonradiative exciton decay andise0. The

the absence of the nonradiative decay, this interaction do n%‘équence of allowed minibands and forbidden gaps is deter-

result in the absorp_tmn of the polaritons. . mined by the frequencies of exciton polaritons at the points
In a structure with one quantum well in the elementary, — 4 andk=/d. The four frequencies at the edge of the
supercell this dispersion law is reduced to E8),'* where  guioin zone are solutions of the equatid@,D_=0, and

the periodd is merely the distance between the nearest quaqhey are given by

tum wells.
Here we present the dispersion equation for the normal Y = wo+ AV1 + sinks/2), ©? = wo+ A1 - sinks/2).
light waves in a periodic structure with alternating quantum (26)

wells of two kinds(Fig. 2). After the substitution of Eqg18)
and(19) to Eq.(22), the dispersion law can be reduced to aThe two frequencies at the center of the Brillouin zoKe,

rather simple form: =0, are equal t(zvf):woi lo secké/2). The interval between

() (3) 5 : .
: 0 andw,” is a narrow forbidden gap surrounded by a pair
coZ(KA2) = Gy(@,42)Gy(0,d/2) - S S(@)SIPKID,  of lowed windows(or minibands gap yap
23
23 0? < w< o and wf’) <w< w&z)
where the period of the structuckis equal to the sund; N . . .
+dy, di, are the distances between the nearest—neighbov?’:";h’ in their turn, are sandwiched between the forbidden

wells (Fig. 2, 8=d,—d,, and gap

i oY < w<0? andw? < v < 0.
Gj(w,l) = coskl + §(w)sinkl. (24)

, . . When decreasing the distance between the wells in the el-
In two particular cases, the dispersion equati@®) tums  ementary supercell the allowed windows converge while the

to Eq.(5). Indeed, if there are no excitonic states in the wellst, hiqden gaps increase and tendy@A. This can be under-
with even numbersii.e., 'p,=0), then Eq.(23) becomes stood by taking into account that the limit,—0 corre-

- _ sponds to the structure with one quantum well in the elemen-
cosi(Kd2) = cogkd'2)Gy(w,d/2) or cosKd=Gy(w,d) tary supercell and the doubled exciton radiative decay rate,
and, therefore, coincides with E@). Another limiting case 2T°,. In the opposite case, where the wells are equally sepa-
is a structure with the identical wells 1 and 2 adg=d, rated in the structure, the frequencie?, »'? (or wil),wiz))
=d/2. It is nothing more than a multiple quantum well- coincide, and the lower and higher gaps disappear; only the
structure with the period/2 and one well in the elementary central narrow gap survives. This result also follows from the
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“1 +\/1(F + o) wg + 1 (277 K)z ir
w—wyp= *t — wogt ——| — — =11,
0 - 01 02/ Wo 42\ d
05 (28)
the same as in a periodic system of identical quantum wells
=4 with the periodd/2, the exciton resonance frequensyand
;o the radiative decay ratd o;+1g,)/2.
= Now we consider a structure with a close pair of quantum
wells, d; <d,~d, which differ both in the radiation decay
0.5 ratesI’y, and the exciton frequenciesy. In the limit 6—d
Eq. (23) takes the form
r r
1.0 01 02 :
cosKd = coskd + ( — + - )sm kd.
0.0 02 04 d i 06 0.8 1.0 0w+l - wptil,
FIG. 3. The dependence of the position and the width of the (29

forbidden minigaps upon the distanck between the quantum ; ig jnteresting to compare this result with the polariton dis-
wells in the elementary supercell of the periodic structure with the e jon Jaw in a structure with a simple elementary supercell,
period satisfying doubled resonant Bragg conditias/ c)ny(dy put with two exciton frequencies taken into account. In gen-
+dp)=2m. Bright and dark regions correspond to the bands ancy o “yhe coupling of the electromagnetic field with the exci-
forbidden gaps, respectively. The third forbidden balnd wg| tonic states leads to the radiative decay rdigsandI'y, as
=Tolsin(2mdy/d)] is indistinguishable on this scale sinBg<<A. well as to a renormalization of the exciton frequencigzs How-

ever, if one neglects this renormalization, which is valid if
fact that wherd, =d, the structure under consideration is the ka<<1, wherea is the width of the quantum well, then the
regular structure with a simple elementary supercell, but wittXciton dispersion relation coincides with Eg9).

the period two times smaller than the Bragg widty. It As the final example, let us consider the same two-well
corresponds to the so-called anti-Bragg case with the smafiompound structure, the interwell spaciaf? and different
gap I3 exciton frequenciesg; and wgy. The dispersion equation of

the periodd being twice as thick as the Bragg period and anform

arbitrary ratiod,/d,. In this case, there is one narrow gap _

embracingwy and two wide gaps on the opposite sidesogf CoS(Kd/2) = Gy(w,d/2)Gy(w,d/2). (30)

To analyze the spectrum in the vicinity of this frequency, itisgne can see that the set of polariton frequencies at the edge

convenient to subtract unity from both parts of E23) and k= 7/d consists of those in the two independent structures

to transform this equation into Sifd/2)=D.D’, with with one quantum well, either 1 or 2, in the supercell and the
period d/2. Assuming thatl’y;=T"g,=1y and the periodd
satisfies the Bragg condition at the average frequeacy

L =(wg+wg) /2, (i.e., wnyd/c=m), we obtain a set of four

The smallest gap is defined by the conditida—w|
<Ty|sin(27d,/d)|, while the wide gaps lie between the fre-

quencigs(u:_woiA sin(7d;/d) and w=wyt A_cos(a-rdl/d) as o =w+ Qa1 \ /(w—21>2 +A2?, (31

shown in Fig. 3. Asd;—0, d/2 or d, the wide gaps merge 4 4

and form a single gap defined y—wy| <A. We note that

here, in accordance with the discussion in the paragraph aft@therew,,=wg,~ wo; andA is defined according to Eq16).

Eg. (16), the band gap is/2 times smaller than in the case A special case, when two band gaps coalesce to form a single

d=dg,, d;—0. wide band gap, is realized when the frequency spacifg
The next example is a structure with two wells in the equalsy2A. Under this condition, the width of the forbidden

elementary supercell with the same values of the excitoigap is 2/2A.

frequencies and the nonradiative decay rai®s: wg,= wq Using the general Eqg$l), (18), and(19), one can prove

andI';=T",=T", while the relation betweel'y; andT'y, is  that, for periodical structures containimg=2,3,4,...quan-

arbitrary. Let the distances between the wells coincitle, tum wells in the elementary supercell with equal distances

=d,=d/2, and satisfy the Bragg conditiofwy/c)n,(d/2) d/n between them, the dispersion equations take the form

=1. In the frequency regionw— wy| < w, the dispersion of

the exciton polaritons cons'ih;s of|tvvo branches cosKd=2GPGY -1 (n=2),
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coskd=4GPGPGY - (G +GP +GP) (n=3),
(32)

coskd = 8G{GSGYGY - 2(GGYY + GYGY + GG
+G{GH) +1 (n=4),
where
G\"(w) = Gj(w,d/n) = cogkd/n) + sin(kd/n)S;(w).
(33)

Formally, the structure of the right-hand sides of these equa-

tions can be obtained by expanding &oswith respect to
powers of cogd/n),3?

coskd= > M{" cod(kd/n) = 21 cod'(kd/n)
|

-3
- %2”‘3 cod2(kd/n) + %2“‘5 cod™4(kd/n)

B n(n-4)(n-5)

3l 2" cod 8(kd/n) + - --

and replacing cogd/n) by symmetrized products éffunc-
tions G}”)(w), so that co¥?(kd/n) turns to

cod?(kd/n) — %[Un(l n-2)+U,(2:n-1)+U,3;n)

+ -+ +Uy(n;2n-3)], (34)
where
n-1’
A=) = (n) . N — . Un(l;lr)
Un(l;n ')—HGJ , Ughin+1 )_U“(l’n)—un(l;l—l)'
(35

The coefficienthzg independent of cqkd/n) remains un-
changed. Let us note that E@2), for n=2 coincides with
Eq. (30) since codKd/2)=(1+cosKd)/2.

Taking into account PC effectsefraction index contragt

PHYSICAL REVIEW B 70, 195106(2004)
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FIG. 4. The evolution of the reflection spectrum with increasing
the number of supercells in the structure witfyd=0.1 and the
period satisfying the doubled Bragg condition. Curves 1, 2, 3 are
calculated folN=10, 40, and» correspondingly.

F,1=1-cogk a) - ri[1 - cogk.a)],
F, =~ [sin(ka) + 2rp, sin(ksa) + rp, sin(k,a)],
F3=sin(k_a) + 2rp, sin(k,a) - r2, sin(k,a),
F,=1-cogk a) + 2rpJcogk,a) — cogk.a)]
+rpd1 - cogk,a)],
k.=k,tk,. One can check that, ai;—n,, this equation
transforms into EQ.30). The numerical solution of this
equation will give form of polariton spectrum, including po-

sitions and widths of polariton stop bands. A more detailed
analysis of this equation will be presented elsewhere.

IV. REFLECTION SPECTRA

in systems with complex elementary supercells makes a con- The reflection spectrum of a structure containing 10 pairs
sideration of the polariton spectrum much more complicatedef identical quantum wells is shown in Fig. 4. The calcula-
Therefore, we will restrict ourselves by presenting here gjon has been performed using the following parameters:
general form of the polariton dispersion equation for a two-=2d,, d,/d=0.1,T=I'=7x 10°w,. We have taken into ac-
well structure, which in the optic lattice case is described bycount that the transfer matrix for any symmetrical inhomo-

Eq. (30). Taking the contrast of the indices of refraction int(_) geneous layer can be written in terms of its reflecti@®)
account, we have to introduce separately well and barriegng transmissiot7) coefficients as

thicknessesa;, b;, which, however, in this structure are inde-
pendent ofj, i.e.,a;=a,=a, b;=b,=Db so that the period of
the structure equals(2+b). The dispersion equation for ex-

citon polaritons in this case can be written as
cog(Kd/2) = G,(w,d/2)Gx(w,a,b)
+ F1+ F3Si(0) + F3S)(w) + F4S(0)S)(w)

2
l _rba

(36)

where

R ;(TZ—RZ R)
T== .
-R 1

For a layer of the widthd with two identical quantum wells
inserted symmetrically inside the layer, the coefficieRts
and 7 have the forré

(37

» :ie”‘d< 1-cos¢
2 Q+i(1-7)

1+ cos¢
Q+i(1+7n)

) , (38)
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id [ 1-cos¢ 1+ cos¢ - w;d;/d) differ due to this front-well effect.
T=e*| 1~ QO+il-7) o+ i1+’ Two wide peaks in Fig. 4 are caused by two forbidden
gaps in the spectrum of the infinite periodic structgsee
where ) =(w—-wo+il')/Ty, ¢p=kd,, d, is the interwell dis-  Fig. 3). The values oR,, differ from 1 at these regions due to
tance andy=€?. a finite exciton nonradiative decay. Approximately one spec-
Figure 4 shows the reflection spectrum fréirsuch pairs  tral peak can be obtained from the other by reflection in the
with the period satisfying the double Bragg condition vertical line passing through the resonance frequengy
K(wo)d=27. The transfer matrixT ™ of such a system has With increasingN, this symmetry property improves. How-
the same forng37), with R and7 replaced by the reflection €Ver, in the vicinity ofw, the spectrum is essentially asym-
(Ry) and transmissiofiZy,) coefficients of the whole system. Metric. The asymmetry survives even in the lifit- .
This transfer matrix is obtained from the transfer matrix This result follows from a comparison of the coefficients
through a single supercell by raising the latter to til ~ R==Rul@=wp;di/d) and R',, =Ru(w=—wp;1-dy/d). In-
power. If one neg|ects a small frequency variation of thedeed, the semi-infinite structure 1212... differs from the
wave vectork(w)=nyw/c and replace&(w)d with 27 then ~ structure 2121... by the front well. As a result,, andR’.,
one can see that the coefficieRg=|R |2 and Ty=|Tyl2 as ~ €an be related by

functions of w and d,/d possess some important symmetry _ 2R gk
properties. First, the substitutial/d— (1/2)+(d,/d) leads R, = e"‘d<r + —lkd2)
to 1-rR.€
. . | L (L+R.ERE)2
sing — —sin¢g, cos¢ — —cosp, n— -7, =e'kd7€x+ékdlrm, (41

and, therefore,
wherer=Z=il'y/[wy—w—i(T'x+I')] andt=1+r are the re-

Ro— =Ry To—Tp TN TN (39  flection and transmission coefficients for a single w@ll,
=R,/ (1-T,eXY), andK is the wave vector of an exciton
d, T(Z'}) 2 1 d; polariton at the frequency in the infinite structure. One can
Ru{ @~ @0 )= TN T Ryl @~ w05+ ) see that the absolute valugs.| and|R’.| are different due
22 to the second term in the right-hand side of E4fl), which
becausdT Y |=[T'Y|. Similarly, the change is proportional tor and has the half-width of the order of
I'y+I'. Taking into account the symmetry relatioh0), one
d - 1 d can say that the values of the reflectivRy at the frequen-
d 2 d cies w=wp* dw can essentially differ in the regiofiw~I'g
leads to +I'. The calculation illustrated in Fig. 4 confirms this con-
clusion.
w-wy— —(w—wy), SiNg— SiNgd, COSh— —COSe, If the nonradiative decay is neglected=0, one has a

total reflection in the region of the forbidden gaps. In this
case, the coefficient®., and R’,, can be represented as

- R TN _, T(NT - . .
Ro— =Ry T—Tp TV =T exp(i®) and expid’) respectively, where the phasés &’

and, as a result, are complicated functions of the frequency. It follows from
Eq. (41) that they are related by
dl) ( 1 d1>
Ryl w—wo;— | =R —w; T +
N(w o d N\ @0 @ 2 d ®' =® + kd+ 2 arctan Fol Coi(_bﬂhde)] .
d Wy~ W + FO S|n(q) + kdz)
= RN(éuo— w;1 —El> (40) In the frequency region between the wide peaks, the reflec-

tivity R(w) contains a set of narrow maxima and minima. As
Let us notice that infinite periodic structures with the inter-N—oo, the set turns into a pair of narrow maximum and
well distance in the elementary supercell equatiicandd minimum located symmetrically with respect ég.
—d; are identical. Meanwhile, such structures witHirite The reflection coefficient of a pair of wells with the dis-
number,N, of quantum wells are not. Indeed, the first struc-tanced; between them, satisfying the Bragg condition and
ture, with the distancel;, can be denoted by 121212, with the same values @b, andI" but with different radiative
where the numbers 1 and 2 enumerate the wells in the ellecay rated’y;# I'g,, coincides with the reflection coeffi-
ementary cells. The second one with the interwell distanceient of a single well with the radiative decay rate equal to
d-d; can be presented as 212121 (i.e., it containsN-1  I'g;+I'g,. Therefore the reflectivity of a structure withsuch
pairs 12 with two additional wells 2 and 1 grown at the pairs and the period=2d, is the same as that of a resonant
distanced,=d-d, from the leftmost well 1 and the rightmost Bragg structure with R identical wells, characterized by the
well 2, respectively. For large enough values bdf, the effect ~ exciton radiative decay ratd’o;+1"gy) /2.
of the last well on the reflection coefficie, can be ne- The reflection spectra shown in Fig. 5 illustrate properties
glected. On the contrary, the first well can charf@g sig-  of the structure with two wells in the elementary supercell
nificantly and, thus, valuesR(w—wy;d;/d) and R(wy  and different exciton resonance frequencieg,; # wg,. Let
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10 V. CONCLUSION

In this paper, the theory of multiple quantum well photo-
nic crystals has been developed in two directions. First, we
gave a complete picture of a polariton spectrum in systems
where radiative coupling of excitons and interface scattering
of electromagnetic waves due to refraction index contrast
between wells and barriers play equally important roles. We
clarified the physical meaning of the Bragg condition in this
case, and showed that it can be formulated in the form of a
standard relation between wavelength of exciton radiation
and the period of the structure. In this relation, however, the
wavelength should be determined from a modified dispersion
equation describing electromagnetic waves in a passive

(0o, )/A without exciton$ photonic crystals. In the approximation of
small contrast, we found a simple expression for the width of

FIG. 5. The effect of the difference between the exciton frequenthe polariton stop band, which turned out to be equal to a
cieswgy and wg, on the reflection spectrum of the structure with 10 “pythagorean” sum of band widths of respective optical lat-
pairs of the quantum wells with equal both radiative and nonradiatice and passive photonic crystal.
tive decay rate¥ o, =T4,=T'1=T»=7X 10 %wy;. The quantum wells Second, we developed a theory of exciton polaritons in
are equidistant and the period meets the Bragg condition at thEompound one-dimensional photonic crystals. It has been
frequency wg;. The curves 1-5 have been obtained @,  ghown that the dispersion equation has the form Kabs
~woy)/ =0, 0.002, 0.005, 0.01, and 0.015 correspondingly. - — 7)) whereF(w) as a function of the complex frequency

_ o _ o has poles at the resonance frequeneigsiT’; of the “me-
the wells be situated equidistantly, and the distance betweethanical” excitons in quantum well§=1,2,..) constitut-
them d;=d/2 meets the resonant Bragg condition for thejng the elementary supercell. In important particular cases,
frequencywyy, i.e., k(wpy)d;=. When frequenciess, and  7(w) can be represented in an analytical form, permitting
wgy coincide, the reflection coefficient of the structure con-gnpe to investigate explicitly the dependence of the polariton
sisting of N pairs equals to the reflection coefficient of a spectrum and the structure of the forbidden minigaps upon
Bragg structure with ® identical wells and has a Lorentz- the exciton parameters and the geometrical characteristics of
type shape with half-width I'o+I". When wg,# wo; @nd  the photonic crystal. This investigation allows one to draw a
|wgo— woa|>maxTy,I'} the reflection peak splits onto two sonclusion that the compound structures are promising from
narrower peaks at the frequenciefa1=wo1 and wmax2  the application point of view, because at the same length of
=~ woy, With the half-widths close tdNI'o+I". Each peak is the period of the structure the forbidden gap and, therefore,
produced by the corresponding subsystem of quantum wellghe modification of the electromagnetic wave spectrum due

With increasing the difference,— wo;, the peak atwy; be-  to interaction with excitons can be essentially amplified.
comes more symmetric while the second peak reveals a nar-

row dip nearwp,y 2 Such a spectrum is reminiscent of spec- ACKNOWLEDGMENTS
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