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The variance of the Lyapunov exponent is calculated exactly in the one-dimensional Anderson model
with random site energies distributed according to the Cauchy distribution. We find a new significant
scaling parameter in the system, and derive an exact analytical criterion for single parameter scaling
which differs from the commonly used condition of phase randomization. The results obtained are
applied to the Kronig-Penney model with the potential in the form of periodically positioned & functions

with random strength.
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The hypothesis of single-parameter scaling (SPS) in the
context of transport properties of disordered conductors
was developed in Ref. [1]. It was suggested that there ex-
ists a single parameter, conductance g, which determines
a scaling trajectory g(L), where L is a size of a sample.
It was soon understood [2] that scaling in the theory of
localization must be interpreted in terms of the entire dis-
tribution function of the conductance. In order to take the
fluctuations of the conductance into account, it is conve-
nient to consider a parameter (L) = (1/2L)In(1 + 1/g)
instead of g itself [2]. The main properties of this parame-
ter are that itslimit y = y(L — ) is nonrandom [3] and
that it has a normal limiting distribution for L > y~! [4].
SPS in this situation implies that the distribution function
of g isfully determined by the mean value of ¥(L). This
mean value, which is the scaling parameter, is close to the
limiting value y, provided that L > y~!. The parameter
v is called the Lyapunov exponent (LE), and its inverse
is the localization length, /.. = y~!, of aparticle’'s wave
function. Below the random function ¥ (L) will be referred
to as the finite-size LE. The localization length of the
Anderson model (AM) has been calculated by many au-
thors (see Refs. [3,5,6]). SPS presumes that the variance,
o?, of ¥(L) isnot an independent parameter but is related
to LE in a universal way:

o’ =vy/L. D

This relationship was first derived in Ref. [2] within the
so-called random phase hypothesis, which assumes that
there exists a microscopic length scale over which phases
of complex transmission and reflection coefficients be-
come completely randomized. Under similar assumptions,
Eq. (1) was rederived later by many authors for a num-
ber of different models. According to the random phase
model, if the phase randomization length, I, is smaller
than the localization length, /.., then Eq. (1) is valid.
An analytical derivation of the distribution function of LE
for the continuous Shrédinger equation [3] and numeri-
cal simulations of tight-binding AM [7] showed that the
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inequality [,y > 1 holds as long as disorder remains
weak. Accordingly, SPS was believed to violate only at
strong disorder, when [, becomes microscopic. How-
ever, recent numerical simulationsfor adisordered Kronig-
Penney model (KPM) [8] demonstrated that, contrarily to
the existing picture, even when disorder is weak and .
islarge, a strong violation of SPSis still possible.

In this paper we demonstrate that the condition for the
validity of SPS based upon the phase randomization con-
cept is not accurate. We study an emergence and violation
of SPS in one-dimensional systems without the assump-
tion of phase randomization. We calculate exactly the
variance of the finite size LE for AM with the Cauchy
distribution of site energies (the Lloyd model) and derive
Eq. (1) without any ad hoc hypothesis. This calculation
also produces an analytic criterion for SPS in the form
v~ 1> I;. The new length [, which is different from the
phase randomization length, is a new significant length
scale. We show that even in the limit of weak disorder,
when the localization length is macroscopic, the states at
the tails of the spectrum never obey SPS.

One-dimensional models with off-diagonal disorder
(random hopping models) represent a special case. These
models demonstrate a delocalization transition in the
vicinity of the zero energy state [9], which results in a
violation of SPS[10] as well asin other unusual phenom-
ena. In this paper we focus upon regular one-dimensional
situations, which include models with diagonal disorder
as well as random hopping models far away from the
critical point, E = 0.

SPS also takes place in the regime of weak localization,
which occurs at weak disorder in two- and three-
dimensiona electron systems, as well as in quasi-one-
dimensiona wires in the limit of a large number of
conducting channels [11]. In this case, SPS manifests
itself in the form of universal conductance fluctuations
[12,13]. In the weak localization limit, the mean con-
ductance coincides with (yL)~! and remains the only
significant parameter, which also determines non-Gaussian
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corrections to the high moments of the distribution func-
tion [14]. SPSis violated only for very higher moments,
when the far tails of the distribution function become
important [14,15]. This situation is also out of the scope
of the present paper, since the weak localization limit
cannot be realized in one-dimensional models.

Calculation of the variance of the Lyapunov exponent
for an exactly solvable model.—In this paper we discuss
a quantum particle on a chain of sites, which is described
by the following equation:

‘pn+l + ‘pn*l - Unlpn =0, (2)

where ¢, represents the wave function of the system at
the nth site. The meaning of U, depends upon the in-
terpretation of the model (2). AM corresponds to Eq. (2)
with U, = —E + €,, where E is the energy of the par-
ticle, and €, is a random site energy. Another redliza-
tion of Eq. (2) is a KPM with the potential given by the
sum, > V,8(x — na), of periodicaly positioned & func-
tions with random strengths, V,,. Inthiscase U, is defined
as U, = 2cos(ka) + (V,/k)sin(ka), where k = J/E is
an energy variable, and « is the period of the structure
[3,16]. We assume that the parameters €, or V, are dis-
tributed with the Cauchy probability density (the Lloyd
model):

Pe(x) = 1 r

e
where &, = xo + il', and & = xo — i". Parameters x
and I' represent the mean value and the width of the dis-
tribution, respectively. For AM xo = 0, whereas for the
KPM xy = Vy. The distribution of parameters U, aso
has the form of Eqg. (3), where we now denote U, as the
center of the distribution, and I'y as its width. Specific
expressions for Uy and I'y in both AM and KPM can be
obtained straightforwardly.

Below, we calculate the mean value, y, and the variance,
o?, of the finite size LE, y(L), in the limit L > y~!
(further, al lengths are normalized by the lattice constant,
a). Following Ref. [3] we present average LE as

in = 'ﬁn/lﬂn*l ,

and averaging (- - -) is carried out over the stationary dis-
tribution of the random variables z,,. It turns out [3] that
z, are distributed according to Eq. (3) with the complex
parameter &, replaced by &, which satisfies the equation

©)

Y = <In|Zn|>7

Eq + &' =Uo +ily. (4)
It is convenient to parametrize &, as
Ew = pexplie). )

Inthis notation v = In| p|. Both p = |&,| and the phase,
@(E) = arg(&,), depend on the energy, E.

The variance o> can be expressed in terms of z,, as
N—1 N—n

2
0'2 = ﬁ Z Z <|n|Zn||n|Zn+k|>
n=0 k=1
1
I - 2 ©

Therefore, o> can be expressed through the two point dis-
tribution, P»(z,, zx), of the parameters z,,. A joint distri-
bution of multiple random variables can be expressed in
terms of the product of margina and conditiona distribu-
tions. The latter probability distribution of z;, under the
condition that z,, is fixed, can be shown to satisfy the fol-
lowing recurrent relation (k > n):

P(znlzi 1) = fP(Zn|Zk)PC(Zk+l + 7z Ndzw, ()

where P is the Cauchy distribution, Eq. (3). The advan-
tage of the Cauchy distribution is that the recurrence rela-
tion (7) can be solved exactly. The solution again has the
form of the Cauchy distribution, Eq. (3):

1
(zk = &k-n)(zk — &-n)”

with complex parameters & obeying the equation
&+ &L =Ug +ily, ©)

and I'y, = Im(&;). Thesame Eqg. (9) determines parameter
& of the one-point distribution of quantities z,, [3]. In the
latter case, however, one looks for the stationary solution
of the equation, while the conditional distribution requires
solution of Eq. (9) with theinitial condition &y = z,,. With
the use of the evaluated two-point probability distribution,
the correlator {In|z,| In|z,+|) can be represented as

_ Iméy ]“ In|z| In|&(2)]
<|n|Zn| |n|2n+k|> i . (Z — gst) (Z — f:t) dz.
One can substitute this correlator into Eq. (6) and sum it
over k without further assumptions. After calculating the
average(In?|z,|), the variance o> can be expressed through
the parameters p and ¢ [Eq. (5)]:

, 1 {_ Inp4 — 2p?cos(2¢) + 1
Y (p? — 12

+ [: dx arctan[ —g Cosqf_ p—— “
+ 0(1/L%). (10)

Here we are interested in the limit v < 1; i.e, the lo-
calization length is large [joc > a = 1. In this limit the
parameters B(y, ¢) and £ (v, ¢) areequal to 8 = 2y sing
and £ =1 + 2y?, respectively. We also assume that
¢ = m/2; the case ¢ = /2 can be handled by the re-
placement ¢ — 7 — ¢. Equation (10) is the main result
of our calculations. It presents the asymptotically exact
(L — =) expression for the variance of LE in the Lloyd
model.

Ty
P(aalzr) = =

©)

2679



VOLUME 84, NUMBER 12

PHYSICAL REVIEW LETTERS

20 MARcH 2000

Discussion.—The behavior of theintegral in Eqg. (10) is
governed by the parameter

k= (yl)", (11)
where [ is a new length scale in the system:
Iy = 1/sing = [&aul/IMm&s, (12)
and &, isgiven by Eq. (4). Inthelimit [; < v, i.e,
k> 1, (13
Eg. (10) reduces to
o? =2y/L, (14)

implying validity of SPS. Thus, Eq. (13) represents atrue
criterion for SPS.

It should be noted, however, that our result, Eq. (14),
differs from Eq. (1) by the factor of 2. This difference
reflects the well-known peculiarity of the Cauchy distribu-
tion—all of its moments, except for the first one, diverge.
As a result, neither the approximation of the Gaussian
white noise [3] nor aweak disorder expansion [7] used to
derive Eq. (1) can be applied to the LIoyd model. We have
calculated the variance of LE for AM with the Cauchy dis-
tribution of site energies using the random phase hypothe-
sis, and following the approach of Ref.[7]. We found
that, though a proportionality between the variance and LE
persists, the numerical coefficient differsfrom both Eq. (1)
and Eq. (14). This result implies that the phase random-
ization model isnot valid at all for the Lloyd model. More
important, however, is the fact that SPS holds even when
the phase randomization hypothesis fals. This is an ad-
ditional confirmation of the fact that the real criterion for
SPS is given by the inequality (13) rather than by phase
randomization.

Even though the localization properties of the Lloyd
model are the same as those of generic models [17], one
might question the generality of the new scale [; and crite-
rion (13) in light of the peculiarity of the Lloyd model.
In order to confirm a generic nature of applicability of
Eqg. (13), we carried out numerical simulations of KPM
with rectangular barriers of random widths. Statistics and
the shape of potential in these cal cul ations are considerably
different from the LIoyd model. The results of the simu-
lations are shown in Fig. 1 along with 7(k) = o>L/(2y),
obtained from our analytical Eq. (10). One can see from
Fig. 1 that the crossover between different asymptotes oc-
curs in the same region for both models. This alows us
to conclude that the crossover length I, and criterion (13)
retain their significance beyond the Lloyd model.

According to Thouless [18], the phase ¢ (E) is propor-
tional to the integrated density of states ¢(E) = 7w G(E)
[in the case of KPM ¢(E) must be reduced to the inter-
val [0,7]]. For the states close to the center of the ini-
tial conductivity bands, ¢ (E) ~ 7 /2 and, consequently,
Iy ~ 1. Inequality (13) reduces then to I, > 1, which
essentially impliesthat disorder isweak. However, as soon
as the energy approaches a band edge, [, grows signifi-
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FIG. 1. The function 7(x) obtained from the analytical solu-
tion of the LIoyd model Eqg. (10) (solid line) and the numerical
simulations of KPM with rectangular barriers of random widths
(open circles). Numerical results were rescaled by the factor
of 2 in order to make it clear that, though the two different
models give different asymptotes of the 7(x) function, the
crossover length is the same for both models.

cantly, so that x << 1 can coexist with weak disorder,
loe > 1, when ¢ < 1 or 7 — ¢ < 1. These inequali-
ties hold for both AM and KPM at energies outside the
initial spectrum, i.e., at the tails of the density of states for
AM and within former band gaps for KPM. In this case
I;(E) can be expressed in terms of the number of states
between E and the closest fluctuation spectrum boundary.
For AM with the Cauchy distribution these boundaries are
at =, For KPM their role is played by energies at which
¢(E)/m is an integer. The states in these regions arise
due to rare realizations of the disorder, and can be associ-
ated with spatially localized and well-separated structural
defects. The length [, can then be interpreted as an aver-
age distance between such defects. In view of this inter-
pretation of I, the transition between two types of scaling
regimes occurs when the average distance between these
defects becomes comparable with the localization lengths
of the respective states.

The variance o2 in the limit opposite to Eq. (13) can be
conveniently presented in terms of the function 7(«)

T = K<% - K>. (15)

It is, thus, determined by the scale I, rather than the local-
ization length I,.. This equation describes the transition
from SPS to scaling with two independent parameters /.
and /. The particular form of the function 7(x) is proba-
bly model dependent. At the sametime, our results suggest
that « is a universal parameter, which naturally describes
the crossover between different types of statisticsin the lo-
calization parameter.

The previous criterion for SPS based upon the phase
randomization length [2,7] effectively restricts the strength
of disorder [3,7]. The new criterion, Eq. (13), separates
al the states of the system with a given strength of the
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disorder into two groups, which demonstrate distinct scal-
ing properties. The boundary between the groups, defined
by the condition x = 1, coincides with the boundaries of
the initial spectrum |Uy| = 2, provided that T'y < 1.
For the states inside the original spectra, SPS holds as
long as the disorder remains weak. The length scale /; in
this case is of the order of the lattice constant « and, thus,
has no scaling significance. Nevertheless, it is important
to notice that this length scale differs from the phase
randomization length. Indeed, it was found numerically
in Ref. [7] that [, increases toward the center of the band
E = 0 as 1/E. Absence of the phase randomization for
E = 0 was also obtained anaytically in Ref. [19]. Both
numerical, Ref. [7], and analytical, Ref. [19], calculations
suggest that SPS till holds at £ = 0, in spite of the
fact that the phase does not randomize and the standard
weak-disorder expansion for LE fails [5,6] at this energy.
At the same time, applying criterion (13) one finds that
SPS in this case violates only when disorder is so strong
that the localization length becomes of a microscopic
magnitude, [, = 1 in accord with Ref. [7]. Indeed,
Iy = 2/\J4 — U& and decreases toward the center of
the band, where it assumes the minimum value [, = 1.
This allows us to conclude that initially conducting states
always demonstrate SPS in a meaningful scaling regime
loe > 1.

The situation for the states from the former band gapsis
totaly different: SPS violates when both lengths, /; and
l1oc, @€ macroscopic. Such aviolation is significant from
the scaling point of view. In the case of KPM, [, remains
macroscopic throughout entire band gaps, provided that
the energy is sufficiently high, k > V. Contrarily, ljoc ~
1 for those states of AM that are not very far from the
boundary. A strong violation of SPSin this case coincides
with the system being driven out of the scaling regime.

Change in the strength of disorder affects the two scal-
ing lengths I}, and I; differently. In the case of the gap
states, [, only weakly depends upon disorder. It is ap-
proximately equal to the penetration length, which would
describe tunneling through the system in the absence of
disorder. Disorder related corrections to this quantity are
of the order of I';;. The parameter I7!, on the contrary,
is linearly proportional to I'y;. Increase in disorder, there-
fore, causes the critical parameter « to increase. Thus, the
system can cross over between k < 1 and SPS (k > 1)
regimes with an enhancement of the disorder. The re-
sults seem paradoxical since the restoration occurs be-
cause of increasing disorder, which must, however, remain
small enough to keep the system within the scaling regime.
This effect is also more important for KPM than for AM,
and was observed numerically in Ref. [8] for a periodic-
on-average random system.

Another interesting feature, which is specific for KPM
and absent in AM, is a presence of resonance states where

v = 0 regardless of the disorder. Though this feature is
unstable with regard to a violation of the strict periodic-
ity in the position of the & functions, it is also present
in some other models, such as random superlattices, and
deserves a discussion. At the resonance, both y and /;!
vanish. Their ratio, «, however, remains finite and ex-
periences a jump at the resonance point from the value of
2Vy/T" > 1 at the band side of theresonanceto I' /2V, <«
1 a the gap side. It means that the change of statistics
of LE at the resonance states from SPS behavior at the
band side to two parameter scaling at the gap side occurs
discontinuously.
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