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Evidence of isoelectronic traps in molecular beam epitaxy grown
Zn,_,Be,Se: Temperature- and pressure-dependent
photoluminescence studies
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We have studied undoped ZnBeSe alloys grown by molecular beam epitaxy by
photoluminescencéPL) as a function of temperature and pressure. We suggest that there are
isoelectronic excitonic traps in this material. The binding energy of the isoelectronic bound excitons
is deep, between 40 and 50 meV. We have also shown that the temperature and pressure
dependences of the Zn,Be,Se PL are close to those of ZnSe. From this we conclude that the
dominant excitonic recombination is of an “effective mass” type. 2001 American Institute of
Physics. [DOI: 10.1063/1.1381039

II-VI wide band gap semiconductors are of high interestthe anion site. Furthermore, one would expect that formation
for fabricating devices emitting light in the green and blueof localized levels would preclude a change in the band gap,
spectral regions. However, performance of such devices dé-e., a given material could not show both a change in the
pends on the adequacy of bipolar doping of the materials andand gap with alloy composition and the formation of local-
on device “lifetime.” Recently, the use of Be in ZnSe basedized levels'’ It is also worth noting that although the Be is
alloys (i.e., Zn,_,Be,Se ternary alloyhas been suggestéd. on the cation site, which as mentioned, has only one report of
This improves the hardness of the matefialwhich is im-  isoelectronic excitons, the actual center here appears due to
portant for longer device lifetime. At the same time, rela-complexegsee below.
tively small beryllium concentrations are required to obtain  In the present letter we report on photoluminescence
large band gaps and material that is lattice matched to GaA@L) of ZnBeSe alloys at low Be concentrations. Interest-
substrates. While considerable work is currently being donéngly, the PL data give good evidence for both a change in
on ZnBeSe, so far relatively little is still known about its the band gap and an isoelectronic bound exciton. Since, we
optical and other properties. doubt that a simple substituent can give both effects, we

During formation of semiconductor alloys some of the hypothesize that the isoelectronic center results from Be
atoms are replaced by substitutional atoms. Such a system¢®mplexes.
often described by the virtual crystal mod¥ICM) (see, e.g. Our samples were nominally undoped samples grown by
Refs. 4—6 and references thepeifhe “original” VCM pri- molecular beam epitaxfMBE). For the details of the growth
marily assumed a perfect lattice and an average crystal pgrocedure see Guet al® All the samples showed similar
tential, but subsequent work modified these assumptions iRL. The dominant feature in all cases consists of a strong
various ways, for instance including fluctuations due to com{airly sharp line(sometimes consisting of two peaks, with a
positional disordel(see, e.g., Refs. 7 and 8 and referencesplitting less than 3 meMn the near band edge regipRig.
therein. In general, these models predict a variation of bandl(a)]. Additional features are several weaker lines on the
gap with alloy composition, with examples for 1I-VI mate- low-energy side, and in most of the samples two lines on the
rials shown, for instance, in Refs. 7 and 9. It has, howeverhigh-energy siddFig. 1(b)]. We attribute the peaks on the
been found that this model works reasonably well if the eleciow-energy side to phonon replicas of the main gepk\Ve
tronic properties of the two alloy constituents are fairly simi-have previously attributed the latter two peaks to free
lar, but if there are large differences in electronegativityexcitons'® with their location giving the excitonic band gap.
and/or size there can be, instead, formation of a localize&uch peaks were observed in all but one of the samples we
(isoelectronig level, which can then result in formation of an examined; they have the highest energy of all observed peaks
“isoelectronic bound exciton’(e.g., Ref. 4 and references and it is well known that nonpseudomorphic epitaxial ZnSe
therein. This type of level has been observed in a number ofayers show two free exciton peaksFurthermore, the en-
system&'91® with the best-known example being GaP:N. ergy position of these peaks depends on Be composition. If
Until very recently® all such systems involved disorder on one plots peak energies as a function of the Be concentration
one can obtain a smooth extrapolation to the ZnSe vafues.

aAuthor to whom correspondence should be addressed; electronic mail: .Since the dominant emission Is sharp, very Strm'_
ik29@columbia.edu sisting to high temperaturggelatively close to the excitonic
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band edge (40-50 meV from the free exciton pgaksed FIG. 3. (@ Photoluminescence of undoped ZnBeSe under hydrostatic pres-

does not shift with excitation intensity it is likely excitonic Su'e and(b) peak energy of the dominant PL line as a function of applied

emissior?! However, 40-50 meV is actually quite deep for * oo o

an exciton and there are very few reports of such deep exci- ]

tons. To obtain a better understanding of this we carried ouf/€ Obtain ap =(9.0=0.7)x10"* eV/K and Bp =(365

further studies on the PL as a function of temperature and">) ﬁ’z‘s’Vh'?h are very close to those obtained earlier for

pressure. ZnSe. : ) This ;uggests“that tEIS line, while relatively deep,
Figure 2 shows the energy of the dominant PL peak as ¥ of an “efiective mass typé. . .

function of temperature. The PL clearly follows the general ,. The PL was alsq SFUd'ed under hydrostgﬂc pressure in a

temperature  dependence of the band gap Oflamond anvil cell within a closed cycle refrigerator system.

i ; 14
semiconductoré? From a fitting of the experimental data for For the specifics of the setup see for exgmple ml‘
| lesth lid i in Fig. 2 to Varshini and references thereinThe spectra obtained at different
?ever?azgsamp esihe solid fine I Fg. 0 varshini's pressures at 11 K are shown in FigaB The energy position
ormu of the dominant peak as a function of applied pressure is
plotted in Fig. 3b). It is well known that if the PL is due to
an effective mass type defect, the spectrum will shift to
o T? higher energy with pressure coefficients close to those of the
E(T)=E(0)— Bt T (D pand gag® Fitting the datdFig. 3(b)] to a quadratic depen-
dence of the PL energy on the applied pressig (

E(P)=E(1 atm+a,P+ B,P? (2

wherea, and 8, are the linear and quadratic pressure coef-
ficients respectively, we obtaimv,=6.61*+0.07meV/kbar
4 andgB,=—(1.1x0.2)x 102 meV/(kban?. These values are
very close to those obtained for the pressure shift of the ZnSe
band gap [a,=6.50.2 meV/kbar, g,=—(0.5£0.3)
X 102 meV/(kban?].2"?8

Thus, both temperature and pressure studies show effec-
tive mass behavior even though the exciton is d@éfhis
suggests that Béor rather, as discussed earlier, more prob-

N
®

a, = (9.0£0.7)x10" eVIK

,Bp,_ =365+5 K - ably a complex of Beintroduces an isoelectronic trap. Since
the Be atom is substantially small@bout 30%than Zn it is

quite probable that Be will introduce a short-range potential
) ) o ) which would lead to the formation of an isoelectronic
10 100 trap?®® Moreover, since the ionization energy of Be is

Peak Position (eV)
3

0
3

slightly smaller than that of Zn, according to the theory of
Hopfield et al!! this would lead to having the trap capture a

FIG. 2. Peak energy of the dominant PL line as a function of temperaturehole first, with an electron then captured via the Coulomb
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