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We discuss how a pair of quantum point contacts (QPCs), which are coupled to each other via their

mutual wavefunction overlap with a common continuum, can be used to provide a realization of a

multi-continuum Fano resonance. This behavior arises from the multi-subband character of the QPCs,

each of whose transverse subbands may be viewed as providing a unique continuum. Reminiscent of

the original analysis of Fano, we show that the resonance exhibited by this system can be defined in

terms of an asymmetry parameter (q) and characteristic level broadenings (C & C0), although these

parameters now determine the resonance lineshape through their inclusion in energy integrals, a

result that we refer to as the “integral” Fano formula. We also demonstrate how, dependent upon the

effective dimensionality of the “detector” QPC that exhibits the Fano resonance, the resonance

amplitude can significantly exceed the one-dimensional conductance quantum (2e2/h). Our

experimental and theoretical results, therefore, provide further support for the scenario of

spontaneous bound-state formation in QPCs near pinch-off and suggest that this bound state may be

used to study new aspects of Fano-resonance phenomenology.VC 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4765026]

I. INTRODUCTION

The Fano resonance1 is a quantum-mechanical interfer-

ence phenomenon that arises when a transition to a final state

occurs simultaneously via a continuum and a discrete quan-

tum level. Although this phenomenon was originally

discussed in relation to photoionization in atomic physics,1

it has subsequently been observed in various atomic,2,3

optical,4,5 and mesoscopic systems.6–8 (For a recent review

of Fano resonances in mesoscopic systems, we refer the

reader to Ref. 9, while Ref. 10 contains some more general

comments on this phenomenon.) When the discrete state

involved in the resonance process has energy E0 and width

C, Fano showed that the resonance cross-section is given by

r ¼ r0
ðeþ qÞ2
e2 þ 1

; (1)

where e¼ (E – E0)=C is the detuning from the resonance

level and q is the Fano parameter that characterizes the

asymmetry of the resonance lineshape. The two limiting

cases of Fano resonances are a symmetric Breit-Wigner reso-

nance (jqj ¼1), when the transition from the continuum is

vanishingly weak, and; a symmetric anti-resonance (dip) for

q¼ 0 when the continuum transition dominates. In all other

cases, the resonance lineshape is asymmetric, with q¼ 1

yielding maximal asymmetry and corresponding to the situa-

tion where transmission via the continuum and discrete level

are of the same amplitude.

In solid-state realizations of the Fano resonance, it is

common to implement the discrete level by making use of

gated quantum dots.6–8 In these structures, however, the

transfer matrix element between the dot and the continuum

is typically small. In order to increase it, it is therefore neces-

sary to physically implement the continuum (formed by a

Fermi sea of conduction electrons) in close proximity to the

dot, which has the unintended consequence of also increas-

ing the Coulomb interaction.8 We have recently demon-

strated an alternative implementation of Fano resonances,

however, by exploiting the phenomenon of bound-state (BS)

formation in quantum point contacts (QPCs) near pinch-off.

While this phenomenon was first predicted in Refs. 11 and

12, it has subsequently been confirmed in a number of other

theoretical reports, each of which start from different initial

assumptions yet nonetheless arrive at the same conclusion

regarding the existence of such a BS.13–15 To achieve experi-

mental detection of this BS, we have performed experiments

on pairs of QPCs, which we couple non-locally by means of

a high-mobility two-dimensional electron gas (2DEG).16–19

The continuum required for the Fano resonance is then pro-

vided by a “detector” QPC, which we configure far away

from pinch-off, while the bound state is formed in a “swept”

QPC. In a series of experiments16–19 and associated theoreti-

cal reports,20,21 we have shown that a Fano resonance is

observed in the conductance of the detector-QPC, when the

BS formed in the swept-QPC is driven up through the Fermi

level at pinch-off. In Ref. 18, we demonstrated that the line-

shape of this resonance could be varied systematically in

experiment, simply by changing the distance between the

two QPCs, thereby affecting the discrete-state/continuum

coupling that governs the Fano resonance.

0021-8979/2012/112(10)/103704/7/$30.00 VC 2012 American Institute of Physics112, 103704-1
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While the study of Fano resonances has a long history,

more than half a century, by far the vast majority of studies

have focused on the interference arising by coupling a single

continuum to just one discrete level. In his original analysis,

however, Fano also predicted1 the possibility of more-

complicated resonances, involving either the interference of

a single level with multiple continua or the coupling of mul-

tiple discrete states to a common continuum. Recently, we

have realized a demonstration of the latter multi-state Fano

resonance, by forming two bound states on separate QPCs,

and coupling these to each other (and a detector) via a region

of 2DEG.22 Another distinctive feature of QPCs, however, is

that they may easily be configured to carry a current via a

number of one-dimensional subbands. Since each one of

these subbands may be viewed as representing a particular

continuum, in this report we discuss how our experimental

setup also provides a natural footing to implement a multi-
continuum Fano resonance. Specifically, we demonstrate

how appropriate configuration of the detector-QPC can cause

it to exhibit a Fano resonance with an amplitude that signifi-

cantly exceeds 2e2/h (:G0), thereby providing a clear indi-

cation that more than one subband participates in the

resonance. We confirm this result by calculating the conduct-

ance of a multi-subband detector-QPC that is coupled to a

BS. Starting from the transfer Hamiltonian for a single sub-

band, we derive equations of motion for electron operators

and determine the Green’s functions for the detector and BS

electrons, as well as their dependence on the system parame-

ters. We thus show that the current (and the conductance) of

the detector exhibits a clear Fano resonance. Unlike usual

discussions of such resonances, however, its q-parameter and

linewidth appear in integrations over the electron energy in

the detector and reservoirs, a result that we refer to as the

“integral” Fano formula. To provide a straightforward gener-

alization of this formula to the multi-subband case, we

neglect the role of subband mixing in the detector and obtain

its total conductance, as well as the amplitude of its resonant

peak, by simple superposition of the contributions from each

continuum (i.e., from each subband). While we show here

that this approach accurately predicts the giant Fano resonan-

ces observed in experiment, we caution that in strongly non-

linear situations (in particular, at high source-drain voltages),

the underlying physics may be more complicated. This will

need to be addressed in future work, however.

II. EXPERIMENTAL RESULTS

The experiments reported here were performed on the

multi-gate device of Refs. 17–19 (Fig. 1(a)), which was real-

ized in a GaAs/AlGaAs 2DEG of density 2.3� 1011 cm�2,

mobility 4� 106 cm2/Vs, Fermi wavelength 53 nm, and

mean free path 31 microns (at 4.2 K, where all measurements

reported here were performed). A scanning-microscope

image of the device is shown in Fig. 1(a), on which we also

indicate schematically the ohmic and gate contacts that were

formed on the device mesa. These contacts allowed us to in-

dependently determine the conductance of the various QPCs

and to demonstrate a Fano resonance in the conductance of a

detector-QPC when configured close to a swept-QPC that is

driven to pinch-off. Although we focus here on results

obtained for a particular device, we emphasize that this de-

vice contains multiple (6) QPCs, each of which allowed ob-

servation of the resonance when used as either the swept- or

control-QPC.17 Moreover, the resonance phenomenon that

we discuss has been observed in multiple thermal cycles per-

formed over a period of three years, in devices fabricated on

other wafers, and for coupled QPCs with different gate

geometries.16,17

To illustrate the key points of interest here, we focus on

measurements obtained for the configuration shown in Fig. 1(a),

in which a voltage V1 is applied to the upper right-hand pair of

gates to form the detector-QPC, while the lower right-hand

pair form the swept-QPC that is biased at gate voltage V2. The

left-hand set of gates, as denoted by “G,” is held at ground

potential and so have no significant influence on the underlying

2DEG. We emphasize again that the results obtained for this

gate configuration should be considered as illustrative, and are

reproduced in measurements of other configurations. In Fig. 1

(b), we plot the measured conductance (G1(V1)) of the

detector-QPC as a function of its gate voltage (V1). As indi-

cated by the filled and open data points, the results of this sin-

gle measurement can be broken up into two characteristic gate-

voltage ranges. The first of these (filled symbols) is character-

ized by a rapid change of G1 with V1, while the second (open

FIG. 1. (a) Colorized scanning-electron micrograph of the device used to

implement the coupled QPCs in this study. Gates whose terminals are

denoted by “G” are held at ground potential in the experiments and so do

not influence the 2DEG underneath them. The gates biased with the voltage

V1/V2 form the detector-/swept QPC. This figure also illustrates schemati-

cally the eight Ohmic contacts that could be used to make measurements in

various probe configurations. (b) Measured variation of the conductance

(G1) of the detector QPC as a function of its gate voltage (V1) at 4.2 K. Data

plotted with filled, and open, symbols are referred to here as the 2-D, and

1-D, regimes, respectively. The inset shows an expanded view of the region

enclosed by the dotted lines in the main panel. For clarity, not all data points

are plotted.
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symbols) corresponds to a much slower variation. Physically,

the former range corresponds to the situation where the 2DEG

directly underneath the gates is still not fully depleted, and so

the detector-QPC is not formed. In this regime, which we refer

to hereafter as the two-dimensional (2-D) regime, the detector

device is essentially of 2-D character. The latter range, on the

other hand, should correspond to the situation where the QPC

is formed and the detector exhibits its 1-D character. (It should

be noted here that, due to our relatively-high measurement

temperature of 4.2 K, the 1-D conductance quantization is not

resolved.17 This can be attributed to thermal smearing of the

Fermi level23 and is properly accounted for in our theory

below.) The inset to Fig. 1(b) shows an expanded view of the

region enclosed by dotted lines in the main panel and indicates

that the transition between the 2-D and 1-D regimes occurs

near V1¼�0.8V. Simply by variation of V1, we should there-

fore be able to study the influence of the effective dimensional-

ity of the detector on its Fano resonance, and it is this issue that

provides a focus of this manuscript.

In Fig. 2, we show as insets examples of the Fano reso-

nance exhibited in the conductance of the detector-QPC and

thus highlight the manner in which this resonance is modified

by varying the detector conductance. The main panel plots

the data of Fig. 1(b), this time showing the variation

of G1(V1) on a logarithmic scale. Referring to the insets,

panel � shows a small resonance, with an amplitude of

around 0.2G0, when the detector is configured in the 1-D re-

gime of Fig. 1(b). As we have reported previously, this reso-

nance is correlated to the pinch-off of the swept-QPC (not

shown here), and its amplitude of <G0 is also typical of our

prior experiments.16–19 Of more interest is the behavior

exhibited in panels ‹–fl, which show that a resonance with

an amplitude very much larger than G0 can be obtained by

configuring the detector in its “2-D” regime. Indeed, panel ‹

corresponds to the case V1¼ 0, for which there is no

detector-QPC as such and the role of the detector is instead

provided by a macroscopic region of 2DEG. In spite of this,

we see a detector resonance with an amplitude of around

10G0, and a peak of similar magnitude is also apparent in

panels › and fi. Only as we make V1 more negative and

approach the “1-D” detector regime, do we see a reduction in

the resonance amplitude, as indicated by panels fl and �. A

major focus of the remainder of this paper will, therefore, be

on explaining our observation of a detector resonance with

an amplitude either much greater, or smaller, than G0, de-

pendent upon the effective detector dimensionality.

III. FANO-RESONANCE OF COUPLED QUANTUM
POINT CONTACTS: THEORETICAL FORMULATION
FOR A SINGLE-SUBBAND DETECTOR

To account for our experimental observations, we first

examine the conductance of a single-subband QPC (repre-

senting our detector) that is formed between a pair of 2DEG

reservoirs, and which is coupled via mutual wavefunction

overlap to a BS of energy E0. As demonstrated previously in

Ref. 20, this kind of model system provides a useful means

to describe the detector-BS coupling. In this work, we start

from the Hamiltonian:

H ¼
X
kQPC

EkQPCa
þ
kQPC

akQPC þ
X
kL

EkLc
þ
kL
ckL þ

X
kR

EkRc
þ
kR
ckR

þ E0a
þ
0 a0 þ

X
kLkQPC

�
TkLkQPCc

þ
kL
akQPC þ T�

kLkQPC
aþkQPCckL

�

þ
X
kRkQPC

�
TkRkQPCc

þ
kR
akQPC þ T�

kRkQPC
aþkQPCckR

�

þ
X
kQPC

�
VkQPCa

þ
kQPC

a0 þ V�
kQPC

aþ0 akQPC

�
; (2)

where aþkQPC=akQPC , cþkL;R=ckL;R , and aþ0 =a0 are, respectively,

electron creation/annihilation operators for the QPC, the left

(L) and right (R) reservoirs, and the BS. The energies EkQPC and

EkL=R are for electrons with wavenumber k in the QPC, and the

left and right reservoirs, respectively. The matrix element

TkL;RkQPC describes electron transfer between the QPC and the

reservoirs, while VkQPC describes that between the QPC and

the BS. It is this latter matrix element that therefore provides

the effective coupling between the detector and the BS.

We next derive the Heisenberg equations of motion for

the electron operators and obtain corresponding Green’s

functions. The Fourier transform for the Green’s function of

the QPC electrons takes the form:

FIG. 2. The main panel re-plots the data of Fig. 1(b), this time with G1 plot-

ted on a logarithmic axis. Insets show the detector peak observed in G1 as

the swept-QPC is driven to pinch-off (also at 4.2 K, see Refs. 17–19 for fur-

ther details). The five different panels plotted as insets correspond to differ-

ent values of the detector conductance, as indicated by the labeling in the

main figure.
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GkQPCðxÞ ¼ ðx� EkQPC � iCRðxÞ � iCLðxÞÞ�1; (3)

where we have neglected any energy shift due to the

reservoir-QPC interaction. The level broadenings due to this

interaction are determined from the imaginary parts of the

reservoir Green’s functions:

CL;RðxÞ ¼
X
kL;R

TkL;RkQPC
�� ��2Im grkL;RðxÞ; (4)

with

Im grkL;RðxÞ ¼ pdðx� EkL;RÞ: (5)

The Green’s function of the BS electrons is given by

G0ðxÞ ¼ ðx� E0 � iC0ðxÞÞ�1
(6)

and, by considering a symmetric QPC (CL ¼ CR ¼ C=2), the
broadening of the BS can be expressed as

C0ðxÞ ¼
X
kQPC

����VkQPC

����
2

Im GkQPCðxÞ

¼
X
kQPC

����VkQPC

����
2 CðxÞ
ðx� EkQPCÞ2 þ C2ðxÞ : (7)

An explicit expression for the broadening C can be

obtained by using a relation connecting the transfer matrix

element of the QPC with its transmission coefficient ( ~T ), and
the densities of states in both sides in the reservoirs (D2D)

and the QPC (DQPC).
23 This relation takes the form:����Tk2DkQPC
����
2

¼
~T

2p2D2DDQPC
: (8)

By substituting Eqs. (5) and (8) into Eq. (4) and replacing

the summation with an integration as

X
k2D

ð:::Þ !
ð
dEk2DD2Dð:::Þ; (9)

where dEk2D is used for both reservoirs, we obtain the desired

broadening as

CðEÞ ¼
~T

pDQPC
: (10)

The physical significance of this parameter becomes clearer,

if one has full transmissions at the boundaries, ~T ¼ 1, and a

one-dimensional density of states for the n-th subband of the

QPC in the form:

D1D
QPC ¼ 1

p�h
m�

2

� �1=2

ðE� EnÞ�1=2L; (11)

where m* is the electron effective mass, L is the length of

the structure, and En is the bottom of the subband. In this

case, the broadening can be written as

CðEÞ ¼ �h

L

2ðE� EnÞ
m�

� �1=2

¼ �h

s
; (12)

where s is the transfer time defined as

s ¼ L

v
¼ L

2ðE� EnÞ
m�

� ��1=2

; (13)

with v being the electron velocity along the QPC direction.

According to this result, the broadening of Eq. (10) can be

understood as arising from the finite lifetime of electrons

inside the QPC region.

IV. THE ELECTRON CURRENTAND THE “INTEGRAL”
FANO FORMULA

Next, we calculate the electron current through the

QPC, which we write as

I ¼ IL ¼ e
d

dt

X
kL

hcþkLckLi

¼ ie

�h

X
kL;kQPC

ðTkLkQPChcþkLakQPCi � T�
kLkQPC

haþkQPCckLiÞ: (14)

We evaluate this expression using the Langreth theorem,24

and the Green’s functions determined in Sec. III. After

replacing the summation with an integration (as in Eq. (9)),

we then obtain

I ¼ e

h

~T

p

ð
dEk2D

ð
dEkQPC ½ fLðEk2DÞ � fRðEk2DÞ�Im GkQPCðEk2DÞ

� 1þ C0ðEk2DÞ
Re2GkQPCðEk2DÞ
Im2GkQPCðEk2DÞ

Im G0ðEk2DÞ
" 

þ 2
ReGkQPCðEk2DÞ
Im GkQPCðEk2DÞ

Im G0ðEk2DÞ � Im G0ðEk2DÞ
#!

; (15)

where the Fermi functions of electrons in the left and

right reservoirs are defined as fLðEk2DÞ ¼ ðexpfðEk2D � EF

�V=2Þ=Tg þ 1Þ�1
and fRðEk2DÞ ¼ ðexpfðEk2D � EF

þV=2Þ=Tg þ 1Þ�1
, respectively, with V being the applied

source-drain voltage (we express temperature, energy, fre-

quency, and voltage in units of eV). Following Refs. 1 and

25, we introduce the parameters:

q ¼ ReGkQPC

Im GkQPC

¼ Ek2D � EkQPC

C
(16)

and

e ¼ Ek2D � E0

C0

; (17)

to finally obtain

I ¼ e

h
~T

ð
dEk2D ½fLðEk2DÞ

� fRðEk2DÞ�
ð
dEkQPCDQPCðEkQPCÞ

1

1þ q2
ðeþ qÞ2
e2 þ 1

: (18)
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On comparing Eq. (18) to the standard Landauer formula, it

is evident that the transmission coefficient has the Fano line-

shape of Eq. (1), normalized by the factor 1/(1þq2). A key

difference with the standard Fano resonance, furthermore, is

that both e and q are now functions of the integration varia-

bles, for which reason we refer to Eq. (18) the “integral”

Fano formula.

While Eq. (18) was derived for a single-subband QPC, its

generalization to the multi-subband case is quite straightfor-

ward if inter-subband scattering is negligible, which should be

valid for the extremely clean samples used in our experiments.

Under this condition, an additional summation over all sub-

bands should be added to the QPC density of states (DQPC),

the bound-state broadening (C0, see Eq.(7)), and the expres-

sion for the QPC current (Eq. (18)). In general, the two elec-

tron spin projections should be considered as independent

continua, but in the present, spin-degenerate, case they are

accounted for simply by multiplying the calculated contribu-

tion of each subband to the current by a factor of two.

V. THEORETICAL RESULTS

The conductance (G¼ I/V) obtained from Eq. (18) for the

QPC/BS system is shown in Fig. 3 as a function of the energy

separation between the Fermi level (EF) and the BS. A word

is merited at this point, on the correspondence of these calcu-

lations to the results of experiment, in which the BS is formed

in the swept-QPC.16–19 As the voltage (V2) applied to the

gates of this QPC are made more negative, the confinement of

its BS should be increased, thereby driving it up through EF.

The detuning shown on the horizontal axis of Figs. 3(a)–3(d)

should therefore be viewed as being proportional to V2, with

EF – E0 increasing as this voltage is made more negative. To

obtain the results shown in Fig. 3, we consider an equidistant

set of QPC subbands with minimal subband energies

En¼ (nþ 1=2)�hx, n¼ 0, 1, 2,…. To provide a direct compari-

son to the results of our experiment in Sec. II, in all calcula-

tions, we take EF¼ 10meV, V¼ 0.5mV, and T¼ 4.2 K. For

ballistic transport through the QPC, we can take ~T ¼ 1, so

that we then use jVkQPCj2¼ 5� 10�12 (eV)2 as the only fitting
parameter. It should therefore be emphasized that the fitting

we perform using this parameter essentially provides us with a

means to determine VkQPC from experiment, something that

was not possible previously but which is important due to the

fact that this parameter indicates the strength of the coupling

between the detector and the BS.

Turning to our results, in Figs. 3(a) and 3(b), we con-

sider a 1-D density of states of Eq. (11) for the QPC,

(m*¼ 0.067m0, with m0 the free-electron mass, and

L¼ 100 nm). In Figs. 3(c) and 3(d), in contrast, we have used

a two-dimensional form for the detector density of states:

D2D
QPC ¼ m�

p�h2
LW; (19)

with W¼ 100 nm being the approximate distance between

the gates. It should also be emphasized that the linewidths, C
and C0, are not parameters, but functions, and are calculated

before substitution in Eq. (18). The motivation for the ad-
hoc introduction of Eqs. (10) and (19) is to distinguish

between the two regimes, of 2-D and 1-D detection that we

observe experimentally. Figs. 3(a) and 3(b), for which

�hx¼ 3 and 4.5meV, respectively, both show that the

assumption of a 1-D QPC density of states leads to a detector

peak with an amplitude significantly smaller than G0. (Note

the higher background conductance for the smaller subband

spacing of Fig. 3(a), since a larger number of 1-D subbands

now contribute to the conductance. The same is true for the

comparison of Figs. 3(c) and 3(d).) In Figs. 3(c) and 3(d), in

contrast (for which �hx¼ 1 and 3meV, respectively), the use

of a 2-D detector density of states yields a peak amplitude

much larger than G0. In fact, the peak amplitudes exhibited

in Figs. 3(a)–3(d) are in good agreement with our corre-

sponding experimental observations in the 1-D and 2-D

regimes (see Fig. 2). Notably, comparison of the data of

Figs. 3(a) and 3(d), obtained for the same subband separa-

tions, shows that the peak amplitude is increased by a factor

of around ten by the 2-D nature of the density of states.

To further understand the influence of the characteristics

of the detector on the amplitude of its resonance, in Fig. 4, we

break down the full resonance in terms of its contributions

from the different QPC subbands. Fig. 4(a) is calculated from

the data of Fig. 3(b), for which the 1-D subband separation is

4.5meV. With a Fermi energy of 10meV, and at zero temper-

ature, one therefore expects that only the lowest two subbands

should be populated. At 4.2K, however, higher subbands

should develop a non-zero population, and the results of Fig.

4(a) reflect these expectations. Considering the behavior away

from the resonance condition (i.e., for EF – E0= 0), the low-

est two subbands are almost fully conducting, each with con-

ductance (Gpm) close to G0. The third mode is partially

FIG. 3. QPC conductance calculated at 4.2 K, as a function of the energy

detuning between the Fermi energy and the discrete state (with energy E0).

(a) and (b) assume a 1-D density of states for the QPC, while (c) and (d)

assume a 2-D one. (a) �hx¼ 3meV, (b) �hx¼ 4.5meV, (c) �hx¼ 1meV, (d)

�hx¼ 3meV.
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conducting, contributing 0.14G0, and the remaining modes

provide an even smaller amount (<0.1G0 in total). In combi-

nation, these contributions yield the observed background

conductance of 2.14G0. Turning to the behavior at resonance,

Fig. 4(a) shows that this also has contributions from all of the

subbands that are at least partially conducting. While the larg-

est of these come from the lowest two subbands, the higher

ones also provide significant contributions, in spite of the fact

that their background conductance � G0. A similar picture is

apparent in the results of Fig. 4(b), which break down the con-

tributions to the 2-D resonance of Fig. 3(d). In this case, the

subband separation is taken as 3.0meV, so that the lowest

three subbands are almost fully conducting. The fourth sub-

band is partially conducting, contributing around 0.25G0, and

with the contributions from even higher subbands included,

we obtain the observed background conductance of close to

3.25G0. By summing the contributions at resonance, we ulti-

mately obtain a resonance amplitude of around 1.75G0, con-

sistent with Fig. 3(d).

VI. DISCUSSION AND CONCLUSIONS

The theoretical analysis of our experiments reveals a

number of important aspects of the Fano resonance in the

conductance of the detector-QPC. First, the results of Fig. 4

clearly show that, regardless of the detector dimensionality,

this resonance is actually comprised of a set of simultaneous

resonances, which arise individually from the coupling of

each of the (fully- or partially-transmitted) detector subbands

to the swept-QPC BS. Thus, the detector resonance should

be viewed as a manifestation of the multi-continuum reso-

nance predicted in the original work of Fano.1 According to

this interpretation, each subband serves as a unique contin-

uum that gives rise to a Fano resonance due to its own,

2DEG-mediated, coupling to the BS. Second, our theory con-

firms the experimental observation (Fig. 2) that the resonance

exhibited by the detector can significantly exceed G0, when

this QPC possesses a 2-D character. Essentially, the depend-

ence of the resonance amplitude on the detector density of

states arises from the fact that, in the 1-D case, the conduct-

ance of each subband is bounded by G0, and the individual

contributions of these subbands to the overall resonance are

even smaller than this (Fig. 4(a)). No such restriction arises

when the detector possesses a 2-D density of states, however,

for which Fig. 4(b) shows that the contribution of the indi-

vidual subbands is typically larger (although still somewhat

smaller than G0). After summing over all of these subbands,

the resulting resonance can easily exceed G0. An important

feature revealed in Fig. 4 is that, even for modes that are

only weakly conducting, their individual resonances can be

significant (non-conductive subbands, on the other hand, do

not contribute to the resonance at all).

While our theory for the integral-Fano formula captures

key elements of the experiment, its success follows from an

ad-hoc assumption that the detector supports a set of trans-

verse subbands, to which we may assign either a one- or

two-dimensional density of states. Since this approach is not

strictly physically accurate, some justification for its intro-

duction should be given, specifically in regards to the case

that we refer to as “2-D” detection. This corresponds to the

situation in which the detector QPC is either close to forma-

tion or in which it has just been formed. Under such condi-

tions, the purely-2-D character of transport has been broken,

but the 1-D subbands are not necessarily energetically well

resolved. In this intermediate regime, some form of theoreti-

cal assumption is therefore required, and in our case, we

impose this through the detector dimensionality. It should be

noted that for the 1-D density of states, Eq. (10), the contri-

bution of large energies is suppressed by a factor propor-

tional to E
1=2. To introduce the same suppression for the 2-D

case, we just formally insert the finite upper integration limit

in Eq. (18). Ultimately, this approach can only be justified

empirically, by its ability to account for the dramatic ampli-

tude variations that we observe for the detector resonance in

our experiments.

Another aspect of the comparison between experiment

and theory concerns the symmetry of lineshape of the detec-

tor resonance. The resonances in Fig. 2 show an asymmetric

character that is more pronounced in the 1-D regime of

detection, consistent with our earlier studies.16–19 The calcu-

lated peaks (Figs. 3 and 4), on the other hand, are much

more symmetric (although not completely so). Most likely,

this difference can be attributed to the fact that our theory

FIG. 4. (a) Contributions of the different subbands to the resonance of Fig.

3(b) (�hx¼ 4.5meV). Conductance per mode (Gpm) is plotted on the vertical

axis (note the break in this axis and the different scales before and after the

break). The lowest two subbands are almost fully transmitted, while Gpm

decreases systematically with increasing subband index. (b) Subband contri-

butions (Gpm) for the resonance of Fig. 3(d) (�hx¼ 3meV). Again note the

break in the vertical axis and the different scales before and after this. The

lowest three subbands are almost fully transmitted in this case, and Gpm

decreases systematically for higher subbands.
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accounts only for broadening due to electron transfer into

and out of the detector QPC and the BS. In the experiment,

however, other mechanisms can contribute to C and C0,

changing the q-parameter. Indeed, according to Eq. (13), an

increase of C should lead to a decrease of q, and, correspond-
ingly, to more asymmetric lineshape. Examination of spe-

cific scattering mechanisms (in particular electron-phonon

and electron-electron interactions) and their influence on the

lineshape are beyond the scope of this present paper and will

need to be left for the future.

In conclusion, we have demonstrated that the Fano reso-

nance exhibited by wavefunction-coupled QPCs can be

viewed as a multi-continuum resonance, which arises from

the coupling of the different conducting (or partially-conduct-

ing) modes of the detector to a common discrete state. In the

case that we have referred to as 2-D detection, we have seen

that, even though the individual mode contributions to the res-

onance are smaller than G0, the net resonance can significantly

exceed the conductance quantum. We therefore consider this

giant Fano resonance as a characteristic signature of a multi-

continuum process. In a notable difference with the original

formulation of Fano,1 our theory shows that the resonance

width (C) and Fano parameter (q) are not constants of the sys-
tem. Rather, they are involved in integrations over the electron

energy in the detector and reservoirs, a result that we refer to

as the “integral Fano formula.” This “integral Fano formula”

represents a new manifestation of Fano-resonance phenome-

nology, which could find broad application to mesoscopic sys-

tems, which tend to be much more strongly energy dependent

than their atomic counterparts.
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