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Stochastic resonance in a proton 
pumping Complex I of mitochondria 
membranes
D. Kaur1, I. Filonenko2, L. Mourokh1,3, C. Fendler4 & R. H. Blick4,5

We make use of the physical mechanism of proton pumping in the so-called Complex I within 
mitochondria membranes. Our model is based on sequential charge transfer assisted by conformational 
changes which facilitate the indirect electron-proton coupling. The equations of motion for the proton 
operators are derived and solved numerically in combination with the phenomenological Langevin 
equation describing the periodic conformational changes. We show that with an appropriate set of 
parameters, protons can be transferred against an applied voltage. In addition, we demonstrate that 
only the joint action of the periodic energy modulation and thermal noise leads to efficient uphill proton 
transfer, being a manifestation of stochastic resonance.

One of the most important energy conversion mechanisms in nature are proton-pumping complexes of mito-
chondrial membranes. They enable to convert electronic energy into the more stable form of a proton gradient 
across a cellular membrane1. Though these complexes are well studied in biology, the actual physical mechanisms 
of energy conversion have remained elusive for many cases. This is especially true for Complex I2, where a tre-
mendous distance of up to 15 nm separates electrons and protons, which suggests that a nanomechanical (con-
formational) mechanism is at play. The structure of bacterial Complex I was determined in refs3–5 and recently 
the studies of yeast6 and mammalian7,8 complexes exhibited similar structures. This particular enzyme consists of 
an L-shaped assembly of a hydrophobic arm embedded in the lipid membrane and a hydrophilic peripheral arm, 
which protrudes into the mitochondrial matrix. Electron transfer occurs in the hydrophilic domain via a set of 
FeS complexes, while the actual proton pumps are located within the membrane.

The mechanism of coupling between electron transfer and proton translocation is still enigmatic8. In the 
model proposed in refs4,9, it was suggested that the motion of the helix HL might be responsible for proton pump-
ing. In the oxidized state, this helix moves to the right to open the upper half-channels for protons. In the reduced 
state, it moves to the left to open the lower half-channels. This model does not, however, explain what the energy 
transfer mechanism from the hydrophilic to the membrane domain is in order to assist proton transfer against 
the population gradient. Moreover, the crucial role of the helix in proton pumping was not confirmed in the 
mutation experiments10. Instead, it is proposed11 that stabilization of negatively charged quinone intermediates 
drives a conformational change. Two different conformations of the complex supporting this idea were found in 
recent experiments6–8.

Here, we propose a model for the indirect electron-proton coupling, assisted by conformational changes. It 
is well established that in all electron-driven proton pumps, the electron-proton Coulomb interaction plays a 
crucial role in transferring energy from electron to proton degrees of freedom. While in Complex I, electrons and 
protons are well separated. Consequently, direct Coulomb coupling seems to be unlikely. Rather, electron trans-
fer events in the peripheral arm and at the hydrophilic-membrane domain interface7 facilitate periodic charge 
redistribution in the membrane domain. In particular, it was proposed6 that coordinated loops rearrangement 
could result in a shift of the ubiquinone binding site and a movement of a cluster of negative charges which, in 
turn, might trigger an electrostatic pulse toward the membrane arm. However, it is still unclear how this electro-
static pulse enables the uphill proton transfer. In the present work, we reveal this mechanism. We focus on the 
energy transfer between electron and proton subsystems, while neglecting the exact dynamics associated with 
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the conformational changes. They are modeled by a positive charge Q = e, with a periodically changed distance 
to the proton sites. It should be noted that if the actual charge would be negative, it would not affect the results of 
our work.

In the present paper, we discuss a model (see Fig. 1(a)), in which the electron transfer causes a periodic exter-
nal force acting on the movable charge. This system consists of three proton sites (A, B, and M) located between 
the source and drain, and the charge located near the middle site M. The energies of the sites and the chemical 
potentials of the reservoirs are shown in Fig. 1(b). With the movable charge close to the site M, its energy is 
greater than that of site B, while when the charge is moved away, it is lower than that of the site A. The interaction 
of the system with the environment (represented as a set of independent oscillators) leads (i) to the reorganization 
of the environment due to the charge transfer events between the sites and (ii) to friction of the charge motion. 
Moreover, we show that the thermal noise caused by the environment is essential for an effective proton pumping.

Theoretical Approach
The Hamiltonian of this system is given by
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where σ
+a a/ 6 are the proton creation/annihilation operators for the σ-site (σ = A, B, M), Eσ are the energies of 

these sites, Δσσ’ are the transfer amplitudes between the sites, +s s/k k and +d d/k k are the creation/annihilation oper-
ators for protons with wave-vector k for the source and drain, respectively, TSk and TDk are the transfer magnitudes 
between the sites and the reservoirs, pj and xj are the momentum and coordinate of the j-th harmonic oscillator 
with mass mj and frequency ωj, and Cσj are the coupling strengths of the proton-environment interaction.

The energy of the site M depends on the charge position x as
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where lp is the horizontal distance between the charge at equilibrium and the site M and rp is its vertical shift. We 
assume that the charge motion is in the overdamped regime. Thus, the charge position obeys the phenomenolog-
ical Langevin equation,

Figure 1.  (a) Schematics of the model: three proton sites are placed between the source and drain reservoirs. 
The piston having a charge near the edge oscillates in the vicinity of the middle site. (b) Energy diagram: The 
energy of the site A is slightly below the chemical potential of the source, while the energy of the site B is slightly 
above the chemical potential of the drain. The solid line represents the energy of the site M when the piston is 
moved far away from the site and the dashed line shows the energy of this site when the piston returns back.
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where k is the elastic force constant, NM is the population of the M-site, A and Ω are the amplitude and frequency, 
respectively, of the periodic force associated with the electron transfer in the hydrophilic domain, ζ is the drag 
coefficient, and ξ is the fluctuation source (white noise) with zero mean value and the correlation function given 
by

ξ ξ ζ δ′ = − ′ .t t T t t( ) ( ) 2 ( ) (4)

Equations for the site populations can be derived using the equations of motion for the creation/annihilation 
operators of Eq. (1). It was shown previously12–14 that in the high-temperature limit the resulting rate equations 
can be written as
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where µS/D are the chemical potentials of the source/drain. Kinetic coefficients Φα (α = A, B) have the form,
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are the reorganization energies of the environment due to the proton transfer. The proton currents are given by
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In the steady state regime, IS = −ID. The proton pumping occurs when the drain current is positive. So, protons 
are transferred from the reservoir with lower chemical potential to the reservoir with higher chemical potential.

Results and Discussion
Eqs (4, 5) are coupled, as the electrostatic force acting on the piston depends on the population of the center site, 
while the energy of this site involved in Eqs (8, 9) depends on the piston’s position, as shown in Eq. (2). We solve 
these equations numerically, substituting the obtained values for the site populations in Eq. (11), and perform-
ing the time averaging and averaging over possible realizations of the white noise ξ. The results are shown in 
Fig. 2(a–c) for the following set of parameters: Ω = 109 s−1, A = 41.4 nN, ΛA = ΛB = 50 meV, ΔAM = ΔBM = 25 meV, 
ΓS = ΓD = 10 meV, lp = 0.5 nm, k = 8.9 N m−1, and ζ = 4.14 nN m−1 s, which corresponds to the diffusion coefficient 
D = T/ζ = 10−12 m2 s−1. The voltage applied across the membrane is 160 mV, so that the chemical potential of the 
source reservoir is assumed to be μs = −80 meV and the chemical potential of the drain reservoir is μd = 80 meV. 
The energy of the proton sites are EA = −150 meV and EB = 250 meV. These energies were chosen to prevent the 
back current at moderate temperatures, i.e., to ensure that the site A is always populated from the source reservoir 
and depopulated by the site M, and the proton is not transferred back to the reservoir. Correspondingly, the site B 
is always depopulated by the drain reservoir, see the energy levels in Fig. 1(b).
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The temperature dependence of the current is shown in Fig. 2(a) for a vertical separation of rp = 0.8 nm 
between the charge and the site M and the bare energy of the site M being EM0 = −200 meV. It is evident from 
this figure that for the chosen set of parameters, the most effective operation of the proton pump occurs at phys-
iological temperatures. At high temperatures the current becomes negative because the broadening of the Fermi 
functions of the reservoirs enables the back current which becomes dominant. The bare energy of −200 meV of 
the site M is optimal, as can be seen from Fig. 2(b). The dependence of the current on the vertical shift is presented 
in Fig. 2(c). From the figure, we can assess that if the charge and the site M are well separated, the electrostatic 
energy is not enough to raise the energy of site M above that of site B. Instead, the energies of the sites become 
close in value and this enhances the back current.

It is evident from our analysis that the proton pumping in mitochondria membranes can be achieved by the 
three-site system when the energy of the center site is modulated by moving the charge which represents the 
periodic conformational changes. This effect is similar to the electron pumping achieved in semiconductor nano-
structures: it was initially predicted by Thouless15 and later on experimentally verified16. The energy scales in these 
systems are almost 100 times smaller than that of the mitochondria, so the effects observed there at 4 K can take 
place at the physiological-temperature environment of mitochondria membranes. In refs17,18, another type of the 
charge pumping caused by a random force was predicted. This phenomenology is explored in various Brownian 
ratchets19. In our system, we have both periodically changed force and the white noise, so it is important to know 
what the origin of the proton pumping is. In Fig. 3, we show the temperature dependence of the pumped current 
for different levels of the white noise with the fixed magnitude of the periodic force. It is evident from this figure 
that the pumping disappears at low noise levels. Similar scenario can be seen in Fig. 4 where the level of the noise 
was fixed but the magnitude of the periodic modulation decreases. Correspondingly, we conclude that only the 
joint action of the periodic modulation and the noise can lead to the proton pumping in our model. This is the 
manifestation of stochastic resonance20 when the noise having a broad spectrum enhances the effect of the peri-
odic driving. In our analysis, we have used the white noise, Eq. (4), with all the frequencies involved. The magni-
tude of this noise is quite large at the elevated physiological temperatures and even the moderate periodic driving 
force can be significantly amplified by means of the stochastic resonance.

Summary
In summary, we have examined a possible mechanism of the proton pumping in Complex I of the mitochon-
dria membranes relying on a moving-charge-mediated energy transfer process. Three proton sites are placed 

Figure 2.  (a) The temperature dependence of the proton current; (b) dependence of the proton current on the 
unperturbed energy of the site M; (c) dependence of the proton current on the vertical shift of the piston with 
respect to the site M.

Figure 3.  Temperature dependence of the pumped current for different noise levels and fixed magnitudes of the 
periodic force.
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between the source and drain reservoirs with chemical potential of the source (negative side of the membrane) 
being smaller than the chemical potential of the drain (positive side). The moving charge representing the 
electron-driven conformational changes of the actual complex modulates the energy of the middle proton site. 
When the charge is far away, the energy of this site becomes smaller than the energy of the site near the source 
reservoir, so the center site is populated. When the charge returns back, the energy of the center site becomes 
larger than that of the site near the drain reservoir, and the proton is transferred there and eventually to the drain. 
Correspondingly, the proton pumping is achieved. We have shown that for a set of parameters similar to the real 
system, the operation of our model is most effective at physiological temperatures. Examining the physical origin 
of the obtained phenomenology, we have demonstrated that stochastic resonance, i.e. the joint action of the peri-
odic modulation and the noise can lead to effective proton pumping.
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Figure 4.  Temperature dependence of the pumped current for different magnitudes of the periodic force and 
fixed noise level.
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