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ABSTRACT 

We propose a simple design of a rotary nanomotor comprised of three quantum dots attached to the rotating ring (rotor) 
in the presence of an in-plane dc electric field. The quantum dots (sites) can be coupled to or decoupled from source and 
drain carrier reservoirs, depending on the relative positions of the leads and the dots. We derive equations for the site 
populations and solve these equations numerically jointly with the Langevin-type equation for the rotational angle. It is 
shown that the synchronous loading and unloading of the sites results in unidirectional rotation of the nanomotor. The 
corresponding particle current, torque, and energy conversion efficiency are determined. Our studies are applicable both 
to biologically-inspired rotary nanomotors, the F0 motor of ATP synthase and the bacterial flagellar motor, which use 
protons as carriers, and to novel artificial semiconductor systems using electrons. The efficiency of this semiconductor 
analog of the rotary biomotors is up to 85% at room temperature.   
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1. INTRODUCTION 
Biological rotary motors provide remarkable examples of how electrochemical energy can be efficiently converted into 
mechanical motion [1, 2]. Two of the most important representatives of this family, the F0 motor of ATP (adenosine 
triphosphate) synthase and the bacterial flagellar motor, are powered by H+ or Na+ ions, which flow down the 
electrochemical gradient across the mitochondrial or cell membranes, thereby generating a torque [3-6]. Both of these 
rotary motors have similar components: (i) a stator, tightly attached to the membrane, and (ii) a ring-shaped rotor, which 
can freely rotate around its axis. It is assumed [3-5] that the rotor has several (10 to 14) proton-binding sites. In the 
presence of an external electric field (which might be created by the charges stored in the stator), the population of these 
sites by charged particles (protons) can lead to a rotational torque.  

In this paper we propose a simple model of an electronic device based on the same principles. In some sense, the 
structure of such artificial system can be even simpler than that of the original biological one (see Fig. 1). Three quantum 
dots (mimicking protonable sites) can be attached (or embedded) to the rotating rings. Electron states in these dots are 
tunnel-coupled to two reservoirs (source and drain) allowing the population and depopulation of the dots. We show 
below that the second source reservoir allows us to alternate the direction of rotation. This electronic counterpart of 
biological motors can be placed in an external electric field (in particular, inside a capacitor) thereby inducing a torque.  

We examine the dynamics of this bio-mimicking nanomotor using methods of condensed matter physics which are 
natural for this case and have been successful for the modeling of real biological motors. In our previous publications 
[7,8], we used them to describe the loading/unloading of protonable sites in the F0 motor of ATP-sinthase. (Afterwards, 
the same idea was used for the electron-tunneling-powered rotation of the “blade-nanotube” structure [9].) In the present 
paper, our Hamiltonian includes the mechanical part describing the nanomotor rotation with the kinetic term and heat 
bath term responsible for friction; transfer Hamiltonian for electron tunneling between reservoirs and the dots; inter-dot 
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Coulomb interaction; and coupling of the electrons to an external electric field. We introduce possible electronic states in 
the system and derive a master equation for their density matrix. This equation is coupled to the Langevin equation for 
the rotating angle. A numerical solution of these equations allows us to describe the rotation of the nanomotor, determine 
the time evolution of the dot populations and induced torque, as well as obtain the dependencies of the time-averaged 
torque and electron particle current on the source-drain voltage, in-plane electric field, and temperature. Of special 
interest is the system behavior in the presence of an external torque. We show that if this torque is large enough, the 
nanomotor can work in the reverse regime, pumping electrons against the applied voltage. 

2. MODEL 
The system under consideration here consists of three equally-spaced quantum dots A, B, and C attached to the rotating 
ring (rotor) in the presence of a constant y-directed electric field (Fig.1). The dots can be coupled to two electron sources 
S1 and S2 as well as to the electron drain D. The source leads S1 and S2 can be connected (or disconnected) at will to the 
electron reservoir with an electrochemical potential μS, whereas the drain is connected to the reservoir with the 
electrochemical potential μD smaller than μS. We show below that the activation of the lead S1 results in a clockwise 
motion of the rotor, whereas a connection of the S2-lead (and disconnection of the S1-lead) generates a counterclockwise 
rotation. At each instant of time only one source lead is connected to the reservoir. 

 
Fig. 1. Schematics of the nanomotor. With S1-lead connected to the circuit, the rotor experiences the clockwise rotation. 

The Hamiltonian of the system has the form: 
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where φ is the angle of rotation, p = −ih(∂/∂φ) is the operator of angular momentum of the rotator with radius r0 and 
effective mass M. We take into account here the effects of a constant y-directed external electric field, with a potential 
energy profile  

U(φ) = − U0 cos φ,  

on the electrons localized in the three sites σ = A,B,C with positions, characterized by the angles φA, φB, φC, respectively. 
The operators +

σa and aσ describe the creation and annihilation of an electron on the site (dot) σ with a population nσ = 

σσ aa+ , whereas the operators +
αkc and ckα are related to the k-state of the electron in the source and drain reservoirs 

(leads) with energy Ekα (α = S1, S2, D). The Coulomb repulsion between electrons is given by the potentials Uσσ’. The 
tunneling coupling between dots and leads is given by the Hamiltonian 
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where the tunneling amplitudes Tkα are multiplied by the factor 
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which reflects an exponential dependence of the tunneling rate on the distance between the σ-dot and the α-lead with a 
characteristic spatial scale λ. To take into account the influence of the classical dissipative environment {Q} with the 
Hamiltonian HBath on the rotational degrees of freedom, we include the term  

HQ = − r0 φ Q + HBath  

in Eq. (1). Correspondingly, the nanorotator experiences Brownian motion by the Langevin equation in the overdamped 
regime 
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where ζ =4πηr0
2h is the drag coefficient, Νext is the external torque acting on the nanomotor, η is the viscosity, h is the 

nanomotor height, and the Gaussian fluctuation source ξ is characterized by the correlation function: <ξ(t)ξ(t′)> = 
2ζTδ(t−t′). 

To describe the process of loading and unloading of proton-binding sites A, B, and C, we introduce the electron vacuum 
state  

|1> = |vacuum>,  

jointly with seven additional states,  

|2> = +
Aa |1>,  

|3> = +
Ba |1>,  

|4> = +
Aa +

Ba |1>,  

|5> = +
Ca |1>,  

|6> = +
Aa +

Ca |1>,  

|7> = +
Ba +

Ca |1>,  

|8> = +
Aa +

Ba +
Ca |1>.  
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Each of the electron operators can be expressed in terms of the operators ρμν  = |μ><ν| (μ,ν = 1, .., 8). The populations of 
the dots, nσ , are expressed in terms of the diagonal operators ρμ ≡ ρμμ , as:  

nA = ρ2+ρ4+ρ6+ρ8,  

nB = ρ3+ρ4+ρ7+ρ8,  

nC = ρ5+ρ6+ρ7+ρ8.  

Thus, for the electrons localized on the rotor sites A, B, C we obtain the Hamiltonian  

HABC  = ∑ =

8

1μ με |μ><μ|,  

with an energy spectrum depending on the local value of the rotor angle φ:  

ε1 = 0,  

ε2 = EA −U0 cos(φ+φA),  

ε3 = EB −U0 cos(φ+φB),  

ε4 = ε2+ε3,  

ε5 = EC −U0 cos(φ+φC),  

ε6 = ε2+ε5,  

ε7 = ε3+ε5,  

ε8 = ε2+ε3+ε5.  

We assume here that the characteristic time, γ−1, of electron tunneling to and out of the dots is much shorter than the time 
scale of the rotary angle, <φ& >, and that the noise produced by the electron tunneling between the dots and the source 
and drain contacts has much less effect on the mechanical motion of the rotor than the noise ξ generated by the bath {Q}. 
Accordingly, we can average the stochastic Eq. (4) over fluctuations of the electron reservoirs without averaging over 
the fluctuations of the mechanical heat bath. The partially averaged proton population nσ involved in Eq. (4) depends on 
the local fluctuating value of the rotational angle φ. To determine these populations, we derive the following master 
equation for the proton distribution ρμ, averaged over reservoirs fluctuations, 

∑=+
ν
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γμ =∑ν μνγ , and Γα(φ) = Γα|wασ(φ)|2, ωνμ = εμ−εν (h = 1), Γα = 2π∑k kT 2|| α δ(ω−ωνμ) [10,11], and aσ;μν are the matrix 

elements of corresponding annihilation operators. The electrons in the reservoirs are characterized by the Fermi 
distributions, fα(ω) =[exp{(ω−μα)/T}+1]-1 with electrochemical potentials μS =V/2, μD =−V/2, where V is the electron 
voltage applied to the system and T is the temperature (kB = 1). We include the absolute value of the electron charge, |e|, 
into the definition of the voltage V and measure the voltage in units of energy, meV. Notice that, despite of the averaging 
over electron reservoirs, the master equation, Eq. (5), contains a stochastic component, which is determined by the 
fluctuations of the rotor angle φ(t), taken at the same time t. Eq. (5) is valid for weak coupling between dots and leads, 
and for the case when the angular coordinate φ(t) does not change significantly on the characteristic time scale, τT = π/T, 
of the Fermi distribution. 

The solution of the master equation, Eq. (5), jointly with the Langevin equation, Eq. (4), allows us to determine the 
average electron particle current through the structure, defined as 
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for any of two sources which can be connected to the nanomotor, as well as the torque induced in the system 
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3. NUMERICAL RESULTS 
We consider here the rotation of a system with height h = 10 nm and radius r0 = 100 nm. Three torque-generating sites, 
A, B, and C, are attached at the points φA =0, φB =2π/3, and φC =−2π/3, respectively. The locations of the two possible 
source contacts S1, S2 and the drain D are defined by φS1=−2π/3, φS2=2π/3, φD=0. For the Coulomb interaction between 
sites in a medium with a dielectric constant εr ~7, we obtain: Uab ≃ Ubc ≃ Uac ≃ 1.15 meV. We choose the value 10-3 
Pa·s for the viscosity assuming a water environment for the nanomotor.  

In Fig. 2, we present a summary of our numerical solution of the Langevin equation coupled to the master equation, for 
the source-drain voltage V=μS−μD =500 meV, external potential U0 =200 meV, the tunneling couplings to the leads ΓS 

=ΓD = 2·105 s−1, electron tunneling length λ=1 nm, and temperature T=300 K when the source contact S1 is activated, the 
rotor moves in the clockwise (positive) direction. Switching on the source contact S2 leads to the same behavior, but with 
a rotation in the counterclockwise (negative) direction.  

 
Fig. 2. Time evolution of (a) the rotational angle, (b) populations of the dots, and (c) the induced torque. 
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It is evident from Fig. 2 that successive populations and depopulations of the dots lead to a continuous nanomotor 
rotation and for this set of parameters the full rotation occurs for about 4.8 s. The torque changes from zero (or even 
negative values due to thermal fluctuations) to more than 20 pN·nm.  

Fig. 3 illustrates the synchronous dynamics of loading and unloading the dots A, B, and C having populations nA, nB, and 
nC, when they pass through the source and the drain leads.  

 
Fig. 3. Subsequent populations and depopulations of the three dots. 

The site C is populated first because of its close proximity to the source lead S1. The external electric field pushes the C-
electron, and, correspondingly, the whole rotor unit, to turn through the angle 2π/3 to the position of the minimum of the 
potential U = − U0 cos(φ+φC). At this position of the rotor, the site C approaches the drain contact D and unloads the 
electron. At the same rotor position, the site B starts to be populated since this site is in the loading range of the source 
lead S1. This leads to a subsequent 120º-turn of the rotor. This process repeats over and over, resulting in a continuous 
unidirectional rotation of the rotary ring. 

The dependence of the average particle current on the applied source-drain voltage is shown in Fig. 4 for various 
temperatures. 

 
Fig. 4. Average electron particle current as a function of the source-drain voltage. 
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One can see that voltages smaller than 350 mV are not enough to overcome the friction and produce charge transport 
and, consequently, the nanomotor does not work. Increasing the temperature leads to the growth of fluctuations and the 
Brownian-motion-assisted nanomotor operation. The same tendencies can be seen in Fig. 5 showing the time-averaged 
torque as a function of the source-drain voltage. 

 
Fig. 5. Dependence of the time-averaged torque on the source-drain voltage. 

We obtained the results above for the situation when no external torque is applied to the system. However, such torque 
can drastically affect the system behavior. In Fig. 6 we present the particle current as a function of the counterclockwise 
torque for various source-drain voltages applied to the nanomotor. Notice that the dc in-plane electric field is 
considerably larger in this case. 

 
Fig. 6. Dependence of the particle current on the external counterclockwise (CCW) torque. 
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For relatively large but not significant values of the source-drain voltage and large enough external torque, the particle 
current is negative which means that electrons are transferred against the voltage, so the nanomotor works in the 
pumping regime. Only an applied voltage of the order of one volt can overcome this external torque.  

The efficiency of the nanomotor can be described by the following expression 

IV
N

Eff
Ω

= ,                                                                                                                                                         (9) 

where <N> and <Ω> are the averaged torque and angular velocity, respectively, I is the particle current and V is the 
applied voltage. For the parameters of our model this efficiency can be up to 85% which makes this nanomotor structure 
highly attractive for device purposes. The efficiency of real biological nanomotors can be up to 90%.  

4. CONCLUSIONS 
In conclusion, we have examined a system of three quantum dots placed on a nanorotor in the presence of an external 
electric field. When the dots are connected to the source (drain) reservoirs, they are electron-populated (- depopulated) 
which induces a torque on the nanorotor and eventually leads to unidirectional rotation of the system. Using two source 
reservoirs coupled in different positions, the direction of rotation can be alternated. We have determined the 
dependencies of the time-averaged electron particle current and induced torque on the source-drain voltage, in-plane 
electric field strength, and temperature. We have also showed that the application of an external torque can lead to the 
operation of the system in the pumping regime with electrons transferred from the drain to the source against the applied 
voltage. The efficiency of such system can be up to 85% at room temperature. 
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