Logo

The saddest aspect of life right now is that science gathers knowledge faster than society gathers wisdom.

Isaac Asimov

Visiting Scholars

Photo
Dr. David F.P. Pile

CONDENSED MATTER PHYSICS

BAppSc in Physics/Maths, Queensland University of Technology, Brisbane, Australia - 1997
BAppSc Honours in Physics, First Class, Queensland University of Technology, Brisbane, Australia - 1998
PhD in Physics, Queensland University of Technology, Brisbane, Australia - 2003
David received a PhD in physics (on diffraction theory) from Queensland University of Technology in 2003 (under principal adviser Dr Dmitri Gramotnev and associate advisor Prof. Gerard Milburn). He was then was a JSPS postdoctoral research fellow in the University of Tokushima under Prof. Masuo Fukui (discoverer of long-range plasmons in Prof. Stegeman's group). From 2006 David spent two years as associate researcher and plasmonics group leader in Prof Xiang Zhang’s group at UC Berkeley.

Research experience and interests includes theoretical analysis and experimental investigation of condensed matter physics, acoustic & optic wave propagation including plasmon-polaritons, slow and fast light, novel waveguides, and physics of periodic and layered media.  Research highlights include: prediction and experimental confirmation of the plasmonic nanofocusing effect in tapered gap plasmon waveguides; discovery of channel-plasmons in sharp V-grooves (which have been identified by several groups as being the “ideal” nano-optical waveguide - see follow-up works of Prof. Bozhevolnyi); method for 100% transmission through sharp 90 degree bends in plasmon waveguides; prediction and experimental demonstration of two-dimensionally localised gap-plasmons; first nano-scale Fabry-Perot cavity; finite-difference methods for solution of electromagnetic problems and proposal of the compact 2D-FDTD approach; negative group velocity of plasmons (with Prof. Yongmin Liu, Northeastern); development of the low-loss nano-scale optical waveguide (subsequently used in the first plasmon nanolaser) and proper methods for assessing nano-scale waveguide mode confinement (with Prof. Rupert Oulton, Imperial); unidirectional nano-antennae and extreme control of electromagnetic radiation in complex media (with Dr Geoffroy Lerosey, CNRS).

Since November 2008, David has been an editor at Nature Photonics.
  1. H. Choi*, D. F. P. Pile*, S. Nam, G. Bartal, X. Zhang, “Compressing surface plasmons for nano-scale optical focusing”, Optics Express., vol. 17, 7519-7524 (2009). (*Co-first-author)
  2. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale”, Nano Lett., vol 9, 327-332 (2009).
  3. R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes”, New Journal of Physics, vol. 10, 105018 (2008).
  4. R. Oulton, D. A. Genov, V. J. Sorger, D. F. P. Pile, X. Zhang, “Hybrid plasmon-dielectric waveguide with strong confinement and long propagation”, Nature Photonics, vol 2, 496 (2008).
  5. T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons”, J. Appl. Phys, vol. 104, 033102 (2008).
  6. K. C. Vernon, D. K. Gramotnev, D. F. P. Pile, “Channel plasmon-polariton modes in V-grooves filled with dielectric”, J. Appl. Phys, vol 103, 034304 (2008).
  7. D. F. P. Pile, D. K. Gramotnev, R. F. Oulton, X. Zhang, “On long-range plasmonic modes in metallic gaps”, Optics Express, vol 15., 13669 (2007).
  8. Z. Liu, D.Xi, D. F. P. Pile, Q. Luo, N. Fang, X. Zhang, “Enhanced backward scattering by surface plasmons on silver film”, Appl. Phys. A, vol. 87, 157-160 (2007).
  9. R. F. Oulton, D. F. P. Pile, Y. Liu, X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface discontinuities: Implications for nano-scale cavities”, Phys. Rev. B, vol. 76, 035408 (2007). Selected for the February 12, 2007 issue of Virtual Journal of Nanoscale Science & Technology, Vol. 16, issue 4.
  10. K. C. Vernon, D. K. Gramotnev, D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate”, J. Appl. Phys., vol. 101, 104312 (2007).
  11. S. Wang, D. F. P. Pile, C. Sun, X. Zhang, “Nanopin plasmonic array and its optical properties”, Nano Letters, vol. 7, 1076-1080 (2007).
  12. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, X. Zhang, “Local electric field enhancement during nano-focusing of plasmon by a tapered gap”, Phys. Rev. B, vol. 75, 035431 (2007).
  13. Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, X. Zhang, "Negative group velocity of surface plasmons on thin metallic films", Proc. of SPIE, vol. 6323, 6323M1-9 (2006).
  14. D. F. P. Pile, D. K. Gramotnev, “Adiabatic and non-adiabatic nano-focusing of plasmons by tapered gap plasmon waveguides”, Appl. Phys, Lett., vol. 89 041111 (July 24, 2006).
  15. D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap”, J. Appl. Phys., vol. 100, 013101 (July 2006).
  16. M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, D. K. Gramotnev, "Characteristics of plasmonics waveguides and nonlinear metallic particles”, Proc. of SPIE, vol. 6324 (2006) (invited).
  17. M. Haraguchi, D. F. P. Pile, Y. Matsuzaki, D. K. Gramotnev, M. Fukui, T. Okamoto, "Characteristics of plasmonic waveguides for coupled wedge plasmons", Proc. of SPIE, vol. 6324 (2006).
  18. M. Haraguchi, D. F. P. Pile, T. Okamoto, M. Fukui, D. K. Gramotnev, “New plasmon waveguides composed of twin metal wedges with a nano-gap”, Optical Review, vol. 13 228 (2006).
  19. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, T. Okamoto, M. Haraguchi, M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide”, Appl. Phys. Lett., vol. 87, 261114 (Dec 2005).
  20. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, “Theoretical and experimental observation of strongly localized plasmons on triangular metal wedges for subwavelength-waveguiding”, Appl. Phys. Lett., vol. 87, 061106 (Aug 2005).
  21. D. F. P. Pile, “Compact-2D FDTD for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index”, Appl. Phys. B, vol. 81, 607-613 (2005).
  22. D. F. P. Pile, “Gap modes of one-dimensional photonic crystal surface waves”, Appl. Optics, vol. 44, 4398-401 (July 10, 2005).
  23. D. F. P. Pile, D. K. Gramotnev, “New plasmonic sub-wavelength waveguides: next to zero losses at sharp bends”, Opt. Lett., vol. 30, 1186-8 (May 15, 2005).
  24. D. F. P. Pile, D. K. Gramotnev, “A nano-scale Fabry-Perot interferometer using channel plasmons-polaritons in triangular metallic grooves”, Appl. Phys. Lett., vol. 86, 161101 (2005).
  25. D. K. Gramotnev, D. F. P. Pile, “Single-mode sub-wavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface”, Appl. Phys. Lett., vol. 85, 6323-5 (2004). Number 1 accessed article of the American Institute of Physics, Dec 2004.
  26. D. F. P. Pile, D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface”, Opt. Lett., vol. 29, 1069-1071 (2004).
  27. D. K. Gramotnev, S. Goodman, D. F. P. Pile, "Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters", J. Mod. Optics, vol. 51, 1069-71 (2004).
  28. D. K. Gramotnev, D. F. P. Pile, “Frequency response of second-order extremely asymmetrical scattering”, Appl. Phys. B, vol. 77, 663 (2003).
  29. D. F. P. Pile, D. K. Gramtonev, “Second-order grazing-angle scattering in uniform wide holographic gratings”, Appl. Phys. B, vol. 76, 65-73 (2003).
  30. D. F. P. Pile, D. K. Gramotnev, “Higher-order extremely asymmetrical scattering”, Opt. Quantum Electron., 35, 237-257 (2003).
  31. D. K. Gramotnev, D. F. P. Pile, “Extremely asymmetrical scattering in gratings with weak dissipation: some physical analogies”, Appl. Phys. B, 2002, vol.75, no.6-7, pp.695-701 (2002).
  32. D. K. Gramotnev, D. F. P. Pile, “Extremely asymmetrical scattering of weakly dissipating bulk and guided optical waves in periodic Bragg arrays”, J. Optics A: Pure and Applied Optics, vol.3, no.2, pp.103-107 (2001).
  33. D. K. Gramotnev, D. F. P. Pile, “Double-resonant extremely asymmetrical scattering of electromagnetic waves in non-uniform periodic arrays”, Optical and Quantum Electron., vol.32, no.9, pp.1097-1124 (2000).
  34. D. K. Gramotnev, D. F. P. Pile, “Double-resonant extremely asymmetrical scattering of electromagnetic waves in non-uniform periodic arrays”, Physics Letters A, vol.253, pp.309-316 (1999).
  35. D. K. Gramotnev, D. F. P. Pile. “Extremely asymmetrical scattering of optical waves in non-uniform periodic Bragg arrays”, Applied Optics, vol.38, no.12, pp.2440-2450 (1999).