Logo

The roots of education are bitter, but the fruit is sweet.

Aristotle

Prof. So Takei

Dr. Takei’s research focuses on understanding how macroscale, collective behavior of electrons and atoms in matter emerges from the laws of quantum mechanics governing their motion on the microscopic scale. His research activities primarily involve the use of analytical tools, supplemented by numerical techniques, to study the transport of mass, charge, spin, and/or heat through various low-dimensional quantum matter, including systems tuned close to thermal and quantum critical points, magnetically ordered systems (e.g., ferromagnets and antiferromagnets), as well as quantum spin systems hosting a myriad of interesting phenomena such as topological order and emergent excitations with fractional quantum numbers and statistics. Of particular interest is in understanding how spin angular momentum can be transported through insulating spin systems, an emerging subfield of condensed matter physics, still largely unexplored but a topic of relevance due to the recent exciting experimental developments that have come out of the field of spintronics.

Research in Dr. Takei’s group maintains a healthy synergy with experiments; they are a driving force for his theoretical efforts, and his goal, in turn, is to stimulate future experiments. Transport properties of different materials are theoretically studied with the machinery of linear-response theory, nonequilibrium quantum field theory, semi-classical dynamics, the renormalization group technique, scaling theories and more. While his ultimate goal is to advance the fundamental understanding of quantum matter via transport studies, an important subset of his work focuses on proposing novel device applications, such as new platforms for classical and quantum computation, based on the theoretical understanding that he develops through his research.